Problem 1:
$A=\left(\begin{array}{ccc}2 & 0 & -1 \\ 4 & -5 & 2\end{array}\right), B=\left(\begin{array}{ccc}7 & -5 & 1 \\ 1 & -4 & -3\end{array}\right), C=\left(\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right) D=\left(\begin{array}{cc}3 & 5 \\ -1 & 4\end{array}\right)$
then

$$
\begin{aligned}
&-2 A=\left(\begin{array}{ccc}
-4 & 0 & 2 \\
-8 & 10 & -4
\end{array}\right) \\
& B-2 A=\left(\begin{array}{ccc}
3 & -5 & 3 \\
-7 & 6 & -7
\end{array}\right) \\
& A C \text { is not defined } \\
& C D=\left(\begin{array}{cc}
1 & 13 \\
-7 & -6
\end{array}\right)
\end{aligned}
$$

Problem 9: If

$$
A=\left(\begin{array}{cc}
2 & 5 \\
-3 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{cc}
4 & -5 \\
3 & k
\end{array}\right)
$$

What value of k, if any will make $A B=B A$?
Well,

$$
A B=\left(\begin{array}{cc}
23 & -10+5 k \\
-9 & 15+k
\end{array}\right)
$$

and

$$
B A=\left(\begin{array}{cc}
23 & 15 \\
6-3 k & 15+k
\end{array}\right)
$$

Recall two matrices are equal if the corresponding entries are equal.

So if there is a k, it will have to satisfy these four equations:

$$
\begin{aligned}
23 & =23 \\
15+k & =15+k \\
6-3 k & =-9 \\
-10+5 k & =15
\end{aligned}
$$

But clearly the first two are trivial equations, leaving us with these two:

$$
\begin{aligned}
6-3 k & =-9 \\
-10+5 k & =15
\end{aligned}
$$

There is a unique solution, namely $k=5$. So this means that there is exactly one value of k, namely $k=5$ for which $A B=B A$.

