
SASweave User’s Manual

Russell V. Lenth
The University of Iowa

Søren Højsgaard
Aarhus University

Version 1.2.9
June 27, 2007

Abstract

SASweave is a collection of scripts that allow one to embed SAS code into a LATEX
document, and automatically incorporate the results as well. SASweave is patterned
after Sweave, which does the same thing for code written in R. In fact, a document
may contain both SAS and R code. Besides the convenience of being able to easily in-
corporate SAS examples in a document, SASweave facilitates the concept of “literate
programming”: having code, documentation, and results packaged together. Among
other things, this helps to ensure that the SAS output in the document is in concor-
dance with the code.

Keywords SAS, SASweave, R, Sweave, literate programming

Contents
1 Introduction 2

2 Preparing the source file 5
2.1 Option details . 6
2.2 Options for code and output listings . 7
2.3 Graphics options . 8
2.4 Options for file handling . 9
2.5 Options for code reuse . 10
2.6 Argument substitution . 10

3 Running SASweave 10

4 Examples 11
4.1 Basic use of SASweave . 12
4.2 R and SAS together . 12
4.3 Multiple figures in a float . 13
4.4 Separating code and output; hiding code . 15
4.5 Argument substitution; hiding code . 15

5 Discussion 18

1

1 Introduction

SASweave is a collection of AWK and shell scripts that provide a similar capability for SAS
(SAS Institute Inc., 2003) that Sweave (Leisch, 2002) does for R (R Development Core Team,
2006). That is, SASweave provides the ability to embed SAS code into a LATEX document.
By processing the document with SASweave’s sasweave script, the code is executed and
the results are included in the document. This provides a “literate programming” capabil-
ity (Knuth, 1992) for SAS, whereby code, output (including graphics), and documentation
are all kept together, and where these elements are guaranteed to be synchronized.

For readers unfamiliar with literate programming and Sweave, Figure 1 shows just
how easy this is (assuming prior familiarity with LATEX). The figure displays a SASweave
source file named demo.SAStex. The file is for all practical purposes a LATEX source file;
however, it includes two SAScode environments that each contain SAS statements; these
are called “code chunks.” (The portions that are not code chunks are called “text chunks.”)
The first code chunk produces printed output, and the second one produces a graph. The
\SASweaveOpts macro in the preamble, as well as the second SAScode environment, spec-
ify options for how to format the results. (The data set used in this example is one of the
standard data sets provided in the sashelp library; so it should run correctly as-is on any
SAS installation.)

When we run the SASweave script sasweave on demo.SAStex in Figure 1, it runs the
SAS code, gathers the output, integrates it into a .tex file with the other LATEX markup,
runs pdflatex, and produces the document demo.pdf displayed (with margins cropped)
in Figure 2. Note that the SAS code for each chunk is displayed, followed by its output in
a different font. The second code chunk produces no printed output, so we see only the
resulting graph.

This example illustrates most of what is needed to use SASweave effectively. There
are, however, a number of options (see Section 2) that allow one to do things like exclude
the listing of code or the output, change the way it is displayed, or re-use chunks of code.

SASweave (and Sweave) actually provide two different ways to process a source doc-
ument. The SASweave script sasweave performs weaving, whereby the code, output, and
documentation are all packaged together into a .tex file. The script sastangle performs
tangling, whereby the SAS code is simply extracted from the source document and saved
in a .sas file, thereby creating a production version of the code. The Sweave analogues
of these are implemented in the R functions Sweave and Stangle, included in R’s utils
package.

The implementation of SASweave documented here is inspired by an earlier version
by Højsgaard (2006), which, like Sweave, was written in R. Both the old and the present
SASweave provide a means for incorporating both SAS and R code in a document. The
present version allows control (via the filename extension) over the order in which the
SAS and R code is executed. In tangling a source file containing both SAS and R code, two
separate code files are created.

SASweave code-chunk specifications are patterned after Sweave’s LATEX-like syntax
for delimiting code chunks, similar to Sweave’s LATEX syntax. When a document contains
both SAS and R code chunks, either the noweb or LATEX syntax may be used for the R code.
We did not attempt to produce an exact equivalent of Sweave. There are some extensions,

2

\documentclass{article}
\usepackage{mathpazo}

\title{SASweave Demo}
\author{Russ Lenth}

\SASweaveOpts{outputsize=\footnotesize}

\begin{document}
\maketitle

This illustrates how to use \verb"SASweave" to integrate SAS code and output
in a \LaTeX{} document.
\begin{SAScode} %%% Code chunk 1
proc univariate data = sashelp.shoes;

var sales;
ods select moments;

\end{SAScode}

We can also easily include graphics\ldots
\begin{SAScode}{fig=TRUE} %%% Code chunk 2
proc gplot data=sashelp.shoes;

plot returns * sales;
\end{SAScode}

\end{document}

Figure 1: Simple SASweave source file, demo.SAStex.

3

SASweave Demo

Russ Lenth

May 30, 2007

This illustrates how to use SASweave to integrate SAS code and output in a
LATEX document.

SAS> proc univariate data = sashelp.shoes;
SAS> var sales;
SAS> ods select moments;

The UNIVARIATE Procedure
Variable: Sales (Total Sales)

Moments
N 395 Sum Weights 395
Mean 85700.1671 Sum Observations 33851566
Std Deviation 129107.234 Variance 1.66687E10
Skewness 3.94185882 Kurtosis 24.5888987
Uncorrected SS 9.46854E12 Corrected SS 6.56746E12
Coeff Variation 150.649921 Std Error Mean 6496.08993

We can also easily include graphics. . .

SAS> proc gplot data=sashelp.shoes;
SAS> plot returns * sales;

Total Returns

 $0

 $10,000

 $20,000

 $30,000

 $40,000

 $50,000

 $60,000

Total Sales

$0 $500,000 $1,000,000 $1,500,000

1
Figure 2: demo.pdf—produced by running sasweave on the file in Figure 1.

4

some things that work differently, and some missing capabilities (e.g., in-text evaluation
of expressions).

The present version of SASweave provides shell scripts sasweave and sastangle for
Unix/Linux or Windows. These scripts in turn execute several AWK scripts; thus, it is
necessary for a suitably advanced AWK implementation (GAWK or NAWK) to be installed
on the system. These are standard on Unix systems, and an open-source version of GAWK
is available for Windows. More details on how these scripts work are given in Lenth and
Højsgaard (2007).

This article is organized as follows. Section 2 details how to prepare the source file, and
the various options for controlling how (and whether) code chunks, output, and graphics
are displayed. Section 3 describes how to run the shell scripts for SASweave. Section 4
provides some examples to illustrate how to handle several typical situations.

2 Preparing the source file

To use SASweave, prepare a text file (hereafter called the “source file”) containing stan-
dard LATEX markup, plus one or more SAScode environments. The SAScode environments
contain the SAS statements to be executed and incorporated in the document. Normally,
the name of the source file should have the extension .SAStex rather than .tex. The
sasweave script processes this file and creates a .tex file with the SAS output inserted.
Optionally, sasweave can also run pdflatex to produce a formatted document.

The source file may contain option specifications that control how code chunks are
processed. These options are detailed later in this section. A \SASweaveOpts{} command,
which changes the defaults for all subsequent code chunks, may appear (alone on a line)
anywhere in the source file. One-time options for a given code chunk may be given in
braces following a \begin{SAScode} statement. For example, to change the prompt for
all code-chunk listings and put them in a box, we could include this statement in the
source file:

\SASweaveOpts{prompt=Example: , codefmt = frame=single}

To embed a code chunk that is executed but completely invisible in the document, we
would use

\begin{SAScode}{echo=FALSE, hide}

... SAS statements ...

\end{SAScode}

In order to be interpreted correctly, all \begin{SAScode}, \end{SAScode}, and \SASweaveOpts

statements must start at the beginning of a line of the source file.
The SAS code chunks are executed in the order they appear in the source file, and in

the context of a single sas run. However, because SASweave also passes the text chunks
through SAS statements, each code chunk must be intact. Errors will occur if the state-
ments for a single SAS PROC or DATA step are split into two or more code chunks. There
is one exception: statements in PROC IML may be split among several code chunks, and

5

Extension(s) Description
.SAStex SAS code only
.Rtex or .Stex R code only (LATEX syntax)
.nw or .Rnw or .Snw R code only (noweb syntax)
.SRtex or .SASRtex Both SAS and R (LATEX syntax), run sas first
.RStex or .RSAStex Both R (LATEX syntax) and SAS, run R first
.SASnw Both SAS and R (noweb syntax), run sas first
.nwSAS Both R (noweb syntax) and SAS, run R first
.tex Pass file to pdflatex

Table 1: Filename extensions for use by SASweave.

results in one chunk will be available to the next. (SASweave accomplishes this by mon-
itoring when the code invokes or leaves IML. If an IML run is ended by some other means
than a QUIT statement, a DATA step, or another PROC, there may be errors in subsequent
code chunks.)

SASweave also supports source files that contain R code, with or without SAS code.
When both are present, it can matter whether sas or R is run first. For that reason, we
have defined standard filename extensions that determine how a file is processed; those
extensions are detailed in Table 1. All standard Sweave extensions are supported; files
having those extensions are passed directly to Sweave. Also, a file with a .tex extension is
passed straight to pdflatex. This makes it possible to use the same command to process
a very wide variety of LATEX-based documents.

When the source file contains both SAS and R code, the tangling process produces two
independent code files. If the code is interdependent so that it is important that one of
those code files be run before the other, it is up to the programmer to document that need.

2.1 Option details

Options are enclosed in braces at the end of a \begin{SAScode} or \SASweaveOpts state-
ment, and specified as a list of keyword=value pairs, separated by commas. Any whites-
pace in the options list is ignored, except in a prompt option (see below). Generally, op-
tions will appear on the same line with \begin{SAScode} or \SASweaveOpts; but to extend
them to additional lines, put an ampersand (&) at the end of the line. Anything after the
closing brace is ignored.

Many options are boolean; these may be specified as TRUE or FALSE, or simply as T or
F. If a boolean option is specified but not given a value, it is taken as TRUE; for example,
\begin{SAScode}{fig} is equivalent to \begin{SAScode}{fig=TRUE}. All keywords and
values are case-sensitive. The following five characters are used in parsing options, and
hence cannot be used in other ways: { } , = &.

6

2.2 Options for code and output listings

echo (Type: boolean Default value: TRUE)
Determines whether the code chunk is displayed in the document. If TRUE, each line
is displayed, preceded by the current prompt string.

hide (Type: boolean Default value: FALSE)
If TRUE, the listing output from SAS is not shown.

results (Type: text Default value: verbatim)
A setting of results=verbatim is equivalent to hide=FALSE; and results=hide is
equivalent to hide=TRUE. There is no results=tex option like there is in Sweave.

eval (Type: boolean Default value: TRUE)
If FALSE, the code chunk is not actually evaluated; it is simply displayed. This is
useful when one wants to display the commands only, and show the results else-
where in the document rather than immediately following the code listing. When
evaluation is suppressed, then obviously there will be no output, and thus hide is
automatically set to TRUE when eval=FALSE.

squeeze (Type: boolean Default value: TRUE)
When TRUE, SASweave will reduce the number of blank lines in the SAS output,
thus producing more compact results. The top two lines of each page are stripped
off regardless of the value of squeeze.

codefmt (Type: Text Default value: (null))
This option is used specify how the listing of a code chunk is formatted. Code

chunks are put into a verbatim-like environment named SASinput derived from the
LATEX package fancyvrb (Van Zandt, 1998). The value of codefmt may be any of the
customization commands available for that package. However, one must separate
the commands with semicolons instead of commas. Also, remember that braces are
illegal within SASweave options, so it may be necessary to work around them by
defining macros. Here is an example:

\newcommand{\red}{\color{red}}

\begin{SAScode}{codefmt += formatcom=\red;fontfamily=courier}

... SAS statements ...

\end{SAScode}

The “+=” operator (available only here and for outfmt) causes the given commands
to be appended to any formats already in existence (specified in a \SASweaveOpts

line). Using “=” instead would replace any existing codefmt. (The fancyvrb com-
mand \RecustomVerbatimEnvironment may be used to change the default formats
for SASinput to be used when codefmt is null.)

outfmt (Type: Text Default value: (null))
This is the same as codefmt, only it sets the format of the output listing environment
SASoutput.

7

codesize (Type: LATEX command Default value: \small)
outsize (Type: LATEX command Default value: \small)

These provide less verbose ways to set the font size for code and output listings.
They are not true options, in that they just map into codefmt and outfmt specifica-
tions. For example, codesize=\normalsizemaps to codefmt+=fontsize=\normalsize.

prompt (Type: Text Default value: SAS>)
The string specified here is added to the beginning of each line of a code chunk. Do
not put it in quotation marks. Unlike other options, all whitespace between the “=”
and the next “,” or closing “}” is kept as part of the prompt string.

ls (Type: integer Default value: 80)
This specifies the limit on the number of characters in each line of SAS output (as

in the SAS statement options ls = 80;). The line size is set to this value before
evaluating each code chunk. (For technical reasons, SASweave must manage the
line size; thus, any options ls statement within a code chunk has no effect on sub-
sequent code chunks.)

2.3 Graphics options

fig (Type: boolean or integer Default value: FALSE)
If TRUE or positive, SASweave sets up a .pdf file to receive graphical output, and
the graph(s) are included in the document. An option of fig=TRUE implies that one
graph will be created. If, say, fig=3, then SASweave expects 3 graphs to be gen-
erated. The code must produce at least the number of graphs specified, or an error
will occur. Moreover, use of fig requires graphics to be generated by SAS/GRAPH;
the newer experimental ODS graphics capabilities are not supported.

The remaining options in this section have an effect only if fig is not FALSE.

width (Type: number Default value: .6)
This specifies the actual width of the included graph, as a multiple of \linewidth,

similar to what is done using \setkeys{Gin} in Sweave. (This is completely different
from the width option in Sweave.)

hsize (Type: number Default value: 4.0)
vsize (Type: number Default value: 4.0)

These options specify the hsize and vsize values in the goptions statement gen-
erated by SASweave. They set the width and height, in inches, of the plot in the
.pdf output file. It does not affect the displayed width of the graph in the document
(use the width option to change that). Changing hsize and/or vsize will affect the
shape of the plot and the apparent font size of labels and symbols.

striptitle (Type: boolean Default value: TRUE)
When TRUE, the top 30 points of the plot (relative to vsize) are clipped off. SAS

tends to put extra space at the top of plots, even when no title is given, and this
tightens-up the spacing around the plot.

8

plotname (Type: LATEX macro name Default value: (null))
If this is null, plots are displayed just below the SAS code and/or output listing. If

a LATEX macro name is provided here, the plots are not automatically included; in-
stead, macros are defined to be the appropriate \includegraphics commands, and
these commands may be used later to manually include the graphs at a desired place
in the document. The given macro name as-is will produce the first graph. If multi-
ple graphs are created, they may be referenced by appending the macro name with
letters A, B, C, etc. For example, the options fig=3 and plotname=\myplot will cre-
ate the macros \myplot, \myplotA, \myplotB, and \myplotC; \myplot and \myplotA

refer to the same graph (the first one). Subsection 4.3 illustrates this feature.

Note that plotname creates LATEX macros. To control the name of the .pdf file where
the plot is saved, use the label option (see Subsection 2.5). Manual graphics inclu-
sion of such a file will prove frustrating, however, because SAS does not set the PDF
page size to be the same as that of the graph.

figdir (Type: string Default value: ./)
This specifies the directory where graphics files are to be stored and retrieved. The

directory must already exist; it is not created.

infigdir (Type: string Default value: figdir)
This allows the figures to be retrieved from a different directory from where they

are stored. This seems contradictory, but it becomes useful when the source file is to
be woven into a .tex file (using sasweave -t), for later inclusion into a main .tex

document in a different directory. Make infigdir match what it needs to be relative
to the location of the main document.

2.4 Options for file handling

split (Type: boolean Default value: FALSE)
If FALSE, the results of weaving the code chunks are all incorporated in the main
.tex file; if TRUE, these results are written to separate .tex files and read-in to the
main file with an \input statement.

prefix.string (Type: string Default value: base filename)
This sets the beginnings of the names of all graphics files, as well as of the .tex files
generated if split is TRUE. It may include a directory path, delimited by slashes.
A hyphen, a code-chunk label, and the appropriate extension are appended to the
prefix string. For example, suppose that prefix.string is set to chunks/myprefix.
If it happens that code chunk #3 produces graphics, then the associated graphics
file is named chunks/myprefix-swv-003.pdf (it may have several pages if there
are multiple figures); in addition, if split=TRUE, the verbatim output for the chunk
will be written to chunks/myprefix-swv-003.tex. If no prefix.string is given and
the source file is named myfile.SAStex, the defaults are myfile-swv-003.pdf and
myfile-swv-003.tex, respectively. If a label (see Subsection 2.5) is also specified, it
is used in place of “swv-003” wherever it appears in these illustrations.

9

2.5 Options for code reuse

label (Type: name Default value: lastchunk)
This specifies a name under which the current code chunk is saved. In a subsequent
code chunk, the same code may be reused via the \SAScoderef command:

\SAScoderef{label }

where label is the label for the code to be reused. Unlike Sweave, the label key-
word is required. The default label of lastchunk is handy when for reusing the
previous code chunk.

If specified, the label is also used in lieu of the chunk number in naming any files
created by that chunk. For example, if the third code chunk in the source file
mysource.SAStex produces a graph, the graph will be saved to a file named mysource-swv-003.pdf.
However, if it is given a label of foo, then the file name will be mysource-foo.pdf.

showref (Type: boolean Default value: FALSE)
If TRUE, any SAS code recalled using \SAScoderef will be displayed in the code list-
ing (as long as echo is TRUE). If FALSE, reused code will be excluded from the listing.
This makes it possible to prevent sections of SAS code (perhaps ODS statements) from
being echoed. See Subsection 4.5 for an illustration.

The \SAScoderef command has a starred version \SAScoderef* that will force the
reused chunk to be displayed regardless of the value of showref. This allows one to
display some reused code while hiding other code within the same chunk.

2.6 Argument substitution

It is possible to define reusable chunks of SAS code that accept arguments to be provided
later in a \SAScoderef statement. This is done in much the same ways as a LATEX macro
definition: set up a code chunk that contains the symbols #1, #2, etc. as placeholders. First,
assign this chunk a label, and use options of eval=FALSE and (probably) echo=FALSE. Then
incorporate this chunk in later code chunks using

\SAScoderef{label }{arg1 }{arg2 } · · ·

(or the same with \SAScoderef*), where label is the label of the previously defined code
chunk. The contents of arg1 will be substituted for any appearances of #1, arg2 will
be substituted for any appearances of #2, and so forth. No careful checking is done by
SASweave; if too many arguments are provided, they’ll just have no effect, and if there
are too few, the code passed to sas will contain “#” characters, likely producing an error.

3 Running SASweave

The shell commands for tangling and weaving are as follows:

10

sastangle options filename [.SAStex]

sasweave options filename [.SAStex]

where filename is the name of the source file (if an extension is not given, .SAStex is
assumed). The possible options can include flags from the list below.

Option for sastangle

-s Run sas after the .sas file is created.

Treatment of intermediate files in sasweave (default is -g)

-c Clean up the intermediate files that are generated. If errors occur, intermediate files
are left anyway. If the creation of the .tex file is successful, the .sas and .lst

files are deleted, and the SAS .log file is renamed with an extension of .saslog.
If pdflatex processing is requested and it is successful, the .log and .saslog files
and any intermediate graphics files are deleted. (However, only files with standard
names are deleted; so the label, figdir, or prefix.string options—see Section 2—
may prevent graphics files from being deleted.) The .tex and .aux files are not
deleted.

-g Clean up intermediate files, but do not delete the graphics files.

-l Leave all the intermediate files in place.

Flags to specify the target of sasweave (default is -p)

-p Run pdflatex on the resulting .tex file.

-t Terminate after the .tex file is produced.

-n Rename the .tex file to an extension of .nw and stop. This and the -r option would
be needed only if the source file contains Sweave markup and one wants to manually
run Sweave. If this option is used, the source file should have a .SAStex extension;
otherwise, sasweave will run Sweave on its own.

-r Rename the .tex file to an extension of .Rtex and stop. See also the -n option.

4 Examples

The examples in this section illustrate how to use some of SASweave’s capabilities.

11

R> table(chickwts$feed)

casein horsebean linseed meatmeal soybean sunflower
12 10 12 11 14 12

R> write.table(chickwts, file = "chickwts.txt", row.names = FALSE,
+ quote = FALSE)

SAS> data sasuser.chickwts;
SAS> infile "chickwts.txt" firstobs = 2;
SAS> input weight feed $;
SAS> proc freq data=sasuser.chickwts;
SAS> table feed;

The FREQ Procedure
Cumulative Cumulative

feed Frequency Percent Frequency Percent

casein 12 16.90 12 16.90
horsebea 10 14.08 22 30.99
linseed 12 16.90 34 47.89
meatmeal 11 15.49 45 63.38
soybean 14 19.72 59 83.10
sunflowe 12 16.90 71 100.00

2

Figure 3: Results from code in Subsection 4.2

4.1 Basic use of SASweave

The example in Section 1 illustrates the most basic use of SASweave when no options
(other than font size) are specified. The first code chunk in Figure 1 is a simple SAS
program that produces only listing output.

The second code chunk shows the simplest way to incorporate a figure. The default
shape of the plotting region is square, but SAS’s formatting of labels causes it to be rather
tall because the label for the vertical axis is so long.

4.2 R and SAS together

Here is a simple example where both R and SAS code are incorporated in the same source
file. One of the standard datasets in R is summarized, and it is written to a text file,
imported into SAS, and summarized there as well. In this example, it is very important
that the R code be run first, as it creates the data needed by SAS; hence the filename
extension used is .RSAStex. By default, SAS statements are formatted in \small font. Font
sizing is not provided among the options in Sweave, so we do it manually. The results of
running sasweave (which also runs Sweave) on the code below are displayed in Figure 3.

12

{\small

\begin{Scode}

table(chickwts$feed)

write.table(chickwts, file="chickwts.txt", row.names=FALSE, quote=FALSE)

\end{Scode}

}

\begin{SAScode}

data sasuser.chickwts;

infile "chickwts.txt" firstobs = 2;

input weight feed $;

proc freq data=sasuser.chickwts;

table feed;

\end{SAScode}

4.3 Multiple figures in a float

The following code segment illustrates the use of several options. First, we suppress the
code listing (echo=FALSE). We ask for two plots (fig=2) of reduced width (width=.45).
Rather than the default placement of plots, we specify that that they be saved as LATEX
macros (plotname=\chickPlot) for later inclusion in a figure environment. Subsequently,
the macros \chickPlotA and \chickPlotB call up the two plots. Figure 4 shows the results
from the code below.

\begin{SAScode}{echo=FALSE, fig=2, width=.45, plotname=\chickPlot, &

outfmt = fontsize=\footnotesize}

proc glm data=sasuser.chickwts;

class feed;

model weight = feed / ss1;

output out=chickfit p=Predicted r=Residual;

means feed;

ods exclude NObs ClassLevels;

proc gplot data=chickfit;

plot weight * feed

Residual * Predicted;

\end{SAScode}

\renewcommand{\figurename}{Exhibit}

See Exhibit~\ref{chickfig} for some supplementary displays.

\begin{figure}

\caption{Plots of the \texttt{chickwts} data.}\label{chickfig}

\begin{center}

\begin{tabular}{ll}

Observed weights for each diet & Residuals versus predicted \\

13

Exhibit 1: Plots of the chickwts data.

Observed weights for each diet Residuals versus predicted
weight

100

200

300

400

500

feed

casein horsebea linseed meatmeal soybean sunflowe

Residual

-200

-100

0

100

200

Predicted

160 180 200 220 240 260 280 300 320 340

The GLM Procedure

Dependent Variable: weight
Sum of

Source DF Squares Mean Square F Value Pr > F
Model 5 231129.1621 46225.8324 15.36 <.0001
Error 65 195556.0210 3008.5542
Corrected Total 70 426685.1831

R-Square Coeff Var Root MSE weight Mean
0.541685 20.99052 54.85029 261.3099

Source DF Type I SS Mean Square F Value Pr > F
feed 5 231129.1621 46225.8324 15.36 <.0001
The GLM Procedure
Level of ------------weight-----------
feed N Mean Std Dev
casein 12 323.583333 64.4338397
horsebea 10 160.200000 38.6258405
linseed 12 218.750000 52.2356983
meatmeal 11 276.909091 64.9006233
soybean 14 246.428571 54.1290684
sunflowe 12 328.916667 48.8363842

See Exhibit 1 for some supplementary displays.

3

Figure 4: Results from code in Subsection 4.3

14

\chickPlotA & \chickPlotB

\end{tabular}

\end{center}

\end{figure}

4.4 Separating code and output; hiding code

Sometimes we want to put the results in a separate place from the code listing; for ex-
ample, in a float. The best way to do this is to reuse the same code, via labels. This
example shows two code chunks. Chunk 1 contains the code we want to run; but it is
only listed, not evaluated (eval=FALSE). Code chunk 2 recalls chunk 1 using its default la-
bel of lastchunk, and adds an ODS statement to restrict the output; this time it is executed,
but the code listing is suppressed (echo=FALSE). Figure 5 displays what is produced by
the code below.

Here is the SAS code to perform a robust analysis of the chick-weights data.

The output is displayed in Exhibit~\ref{robust-out}.

% Chunk 1

\begin{SAScode}{prompt=, eval=FALSE}

proc robustreg data = sasuser.chickwts method = M (wf = bisquare);

class feed;

model weight = feed;

Feed_overall: test feed;

\end{SAScode}

\begin{figure}

\caption{Results of \texttt{PROC ROBUSTREG}.}\label{robust-out}

% Chunk 2

\begin{SAScode}{echo=FALSE}

\SAScoderef{lastchunk}

ODS select ParameterEstimates TestsProfile;

\end{SAScode}

\end{figure}

4.5 Argument substitution; hiding code

In this example, we set up (but do not evaluate or echo) a code chunk named import;
it contains the strings #1, #2, and #3, which serve as placeholders for arguments to be
supplied later. In the second code chunk, we read a data file and run PROC REG; the file-
reading part is done by re-using the import chunk with appropriate arguments supplied.
That part of the code is not displayed in the listing, however, because showrefs is FALSE
by default.

\SASweaveOpts{eval=FALSE} %%% suppress all evaluation for this example

15

Exhibit 2: Results of PROC ROBUSTREG.

The ROBUSTREG Procedure
Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq
Intercept 1 329.0835 16.8600 296.0384 362.1286 380.97 <.0001
feed casein 1 -0.0836 23.8437 -46.8163 46.6492 0.00 0.9972
feed horsebea 1 -169.863 25.0075 -218.877 -120.850 46.14 <.0001
feed linseed 1 -110.343 23.8437 -157.076 -63.6106 21.42 <.0001
feed meatmeal 1 -49.5349 24.3796 -97.3180 -1.7518 4.13 0.0422
feed soybean 1 -82.8402 22.9764 -127.873 -37.8074 13.00 0.0003
feed sunflowe 0 0.0000
Scale 1 52.5603

Robust Linear Tests

FEED_OVERALL

Test Chi-
Test Statistic Lambda DF Square Pr > ChiSq
Rho 12.4552 0.7977 5 15.61 0.0080
Rn2 71.1819 5 71.18 <.0001

Here is the SAS code to perform a robust analysis of the chick-weights data.
The output is displayed in Exhibit 2.

proc robustreg data = sasuser.chickwts method = M (wf = bisquare);
class feed;
model weight = feed;
Feed_overall: test feed;

4

Figure 5: Results from code in Subsection 4.4

16

\begin{SAScode}{echo=FALSE, eval=FALSE, label=import}

proc import

datafile = "#1"

out = #2

dbms = #3

replace ;

\end{SAScode}

%

% Secretly read-in a file before an analysis ...

\begin{SAScode}{fig=2}

\SAScoderef{import}{c:\BPSdata\ta05-03.dat}{reactTime}{TAB}

proc reg data=reactTime;

model Time = Distance;

plot Time*Distance Residual.*Predicted.;

\end{SAScode}

SAS> proc reg data=reactTime;
SAS> model Time = Distance;
SAS> plot Time*Distance Residual.*Predicted.;

5

Note that import is effectively a macro for SASweave; and we can actually trick
SASweave into defining new macros based on it. The first code chunk below simply
calls up import and substitutes appropriate arguments so that it becomes a simplified
SASweave macro suitable for importing comma-delimited files. It is then used and dis-
played.

% Create a new "macro"

\begin{SAScode}{echo=FALSE, eval=FALSE, label=importCSV}

\SAScoderef{import}{#1.csv}{#1}{CSV}

\end{SAScode}

% Test run...

\begin{SAScode}{showref}

\SAScoderef{importCSV}{newFile}

\end{SAScode}

SAS> proc import
SAS> datafile = "newFile.csv"
SAS> out = newFile
SAS> dbms = CSV
SAS> replace ;

6

17

5 Discussion

SASweave provides a simple and reliable way of presenting and documenting SAS anal-
yses. We have used it to great benefit in consulting, research and teaching. In research and
consulting, one or more SASweave source files provide a useful foundation for preparing
analyses, simulation studies, etc. One can document the methods used and the associated
SAS code; then, when the source file is processed, there is a reliable record of exactly what
was done, along with the results.

In teaching how to use SAS, SASweave streamlines the preparation of class handouts.
Also, if “live” SAS analyses are done in class, it is an easy matter for the instructor to save
the .sas file, add SAScode environments and possibly comments, and use sasweave to
make a documented form of the class examples with output included.

References

Højsgaard, S. (2006). SASRweave: An R package for literate programming with SAS
and R at the same time. URL http://genetics.agrsci.dk/~sorenh/misc/software/,
accessed 2006-10-30.

Knuth, D. E. (1992). Literate programming. CSLI Lecture Notes 27, Center for the Study
of Language and Information, Stanford, California.

Leisch, F. (2002). Dynamic generation of statistical reports using literate data analysis.
In Härdle, W. and Rönz, B., editors, COMPSTAT 2002—Proceedings in Computational
Statistics, pages 575–580, Heidelberg, Germany. Physika Verlag. ISBN 3-7908-1517-9.

Lenth, R. V. and Højsgaard, S. (2007). SASweave: Literate programming using SAS. Jour-
nal of Statistical Software, 19(8). URL http://www.jstatsoft.org/.

R Development Core Team (2006). R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0,
URL http://www.R-project.org/.

SAS Institute Inc. (2003). SAS/STAT Software, Version 9.1. Cary, NC. URL http://www.

sas.com/.

Van Zandt, T. (1998). The fancyvrb package: Fancy verbatims in LATEX. LATEX package
version 2.6, URL http://www.CTAN.org/.

18

http://genetics.agrsci.dk/~sorenh/misc/software/
http://www.jstatsoft.org/
http://www.R-project.org/
http://www.sas.com/
http://www.sas.com/
http://www.CTAN.org/

Index
&, 6

AWK, 5

chunks, 2
code chunk, 2

contiguity requirement, 5
code reuse, 10

argument substitution, 10
example, 15

example, 15
“macros”, 17

codefmt, 7
codesize, 8

demo
results, 4
source code, 3

echo, 7
eval, 7
extensions, see filename extensions

fig, 8
figdir, 9
filename extensions, 6

table, 6
floating environments

code output, 15
graphics, 13

formatting, 7

GAWK, 5
graphics, 8–9

assigning macros, 9
directories, 9
filenames, 9, 10
in a floating environment, 13
manual inclusion, 9
size and format, 8

hide, 7
hsize, 8

IML, 5
infigdir, 9
intermediate files, 11

label, 10
LATEX syntax, 2
literate programming, 2
ls, 8

noweb syntax, 2

ODS graphics, 8
options

codefmt, 7
codesize, 8
echo, 7
eval, 7
fig, 8
figdir, 9
for code and listings, 7–8
for code reuse, 10
for file handling, 9
for graphics, 8–9
hide, 7
hsize, 8
infigdir, 9
label, 10
line size, 8
ls, 8
outfmt, 7
outsize, 8
plotname, 9
prefix.string, 9
prompt, 8
reserved characters, 6
results, 7
showref, 10
split, 9
squeeze, 7
striptitle, 8
vsize, 8
width, 8

outfmt, 7

19

outsize, 8

pdflatex, 2
plotname, 9
prefix.string, 9
prompt, 8

R code, 12
results, 7

SAS/GRAPH, 8
SAScode, 5

specifying options, 6
\SAScoderef, 10

starred version \SAScoderef*, 10
with arguments, 10

SASRweave, 2
sastangle, 2

command line, 11
sasweave, 2

command line, 11
\SASweaveOpts, 5

format, 6
showref, 10
source-file preparation, 5–10

with R code, 6
split, 9
squeeze, 7
Stangle, 2
striptitle, 8
Sweave, 2
Sweave, 2, 12

tangling, 2
text chunk, 2

vsize, 8

weaving, 2
width, 8

20

	Introduction
	Preparing the source file
	Option details
	Options for code and output listings
	Graphics options
	Options for file handling
	Options for code reuse
	Argument substitution

	Running SASweave
	Examples
	Basic use of SASweave
	R and SAS together
	Multiple figures in a float
	Separating code and output; hiding code
	Argument substitution; hiding code

	Discussion

