Journal of Statistical Software

MMMMMM YYYY, Volume VV, Issue II. http:/ /www.jstatsoft.org/

SASweave: Literate Programming Using SAS

Russell V. Lenth Sdren Hgjsgaard
The University of lowa Aarhus University

Abstract

SASweave is a collection of scripts that allow one to embed SAS code into a BTEX
document, and automatically incorporate the results as well. SASweave is patterned after
Sweave, which does the same thing for code written in R. In fact, a document may contain
both SAS and R code. Besides the convenience of being able to easily incorporate SAS
examples in a document, SASweave facilitates the concept of “literate programming”:
having code, documentation, and results packaged together. Among other things, this
helps to ensure that the SAS output in the document is in concordance with the code.

Keywords: SAS, SASweave, R, Sweave, literate programming.

1. Introduction

SASweave is a collection of awk and shell scripts that provide a similar capability for SAS
(SAS Institute Inc. 2003) that Sweave (Leisch 2002) does for R (R Development Core Team
2006). That is, SASweave provides the ability to embed SAS code into a IXTEX document.
By processing the document with SASweave’s sasweave script, the code is executed and
the results are included in the document. This provides a “literate programming” capability
(Knuth 1992) for SAS, whereby code, output (including graphics), and documentation are all
kept together, and where these elements are guaranteed to be synchronized.

For readers unfamiliar with literate programming and Sweave, Figure 1 shows just how easy
this is (assuming prior familiarity with IATEX). The figure displays a SASweave source file
named demo.SAStex. The file is for all practical purposes a KTEX source file; however, it
includes two SAScode environments that each contain SAS statements; these are called “code
chunks.” (The portions that are not code chunks are called “text chunks.”) The first code
chunk produces printed output, and the second one produces a graph. The \SASweaveOpts
macro in the preamble, as well as the second SAScode environment, specify options for how
to format the results. (The data set used in this example is one of the standard data sets
provided in the sashelp library; so it should run correctly as-is on any SAS installation.)

http://www.jstatsoft.org/

2 SASweave

\documentclass{article}
\usepackage{mathpazo}

\title{SASweave Demo}
\author{Russ Lenth}

\SASweaveOpts{outputsize=\footnotesize}

\begin{document}
\maketitle

This illustrates how to use \verb"SASweave" to integrate SAS code and output
in a \LaTeX{} document.
\begin{SAScode} %ht% Code chunk 1
proc univariate data = sashelp.shoes;
var sales;
ods select moments;
\end{SAScode}

We can also easily include graphics\ldots
\begin{SAScode}{fig=TRUE} ¥/ Code chunk 2
proc gplot data=sashelp.shoes;

plot returns * sales;
\end{SAScode}

\end{document}

Figure 1: Simple SASweave source file, demo.SAStex.

When we run the SASweave script sasweave on demo.SAStex in Figure 1, it runs the SAS
code, gathers the output, integrates it into a .tex file with the other IATEX markup, runs
pdflatex, and produces the document demo.pdf displayed (with margins cropped) in Fig-
ure 2. Note that the SAS code for each chunk is displayed, followed by its output in a different
font. The second code chunk produces no printed output, so we see only the resulting graph.

This example illustrates most of what is needed to use SASweave effectively. There are,
however, a number of options (see Section 2) that allow one to do things like exclude the
listing of code or the output, change the way it is displayed, or re-use chunks of code.

SASweave (and Sweave) actually provide two different ways to process a source document.
The SASweave script sasweave performs weaving, whereby the code, output, and documen-
tation are all packaged together into a .tex file. The script sastangle performs tangling,
whereby the SAS code is simply extracted from the source document and saved in a .sas
file, thereby creating a production version of the code. The Sweave analogues of these are
implemented in the R functions Sweave and Stangle, included in R’s utils package.

The implementation of SASweave documented here is inspired by an earlier version by Hgjs-
gaard (2006), which, like Sweave, was written in R. Both the old and the present SASweave
provide a means for incorporating both SAS and R code in a document. The present version
allows control (via the filename extension) over the order in which the SAS and R code is

Journal of Statistical Software

SASweave Demo

Russ Lenth
May 30, 2007

This illustrates how to use SASweave to integrate SAS code and output in a
ATEX document.

SAS> proc univariate data = sashelp.shoes;
SAS> var sales;
SAS> ods select moments;

The UNIVARIATE Procedure
Variable: Sales (Total Sales)

Moments
N 395 Sum Weights 395
Mean 85700.1671 Sum Observations 33851566
Std Deviation 129107.234 Variance 1.66687E10
Skewness 3.94185882 Kurtosis 24.5888987
Uncorrected SS 9.46854E12 Corrected SS 6.56746E12
Coeff Variation 150.649921 Std Error Mean 6496.08993

We can also easily include graphics. ..
SAS> proc gplot data=sashelp.shoes;
SAS> plot returns * sales;

lotal Returns
$60, 000

$50, 000 1

$40, 000 7

$30, 000 7

$20, 000

$10, 000 4

$0

$0 $500, 000 $1, 000, 000 $1, 500, 000

Total Sales

Figure 2: demo.pdf—produced by running sasweave on the file in Figure 1.

4 SASweave

executed. In tangling a source file containing both SAS and R code, two separate code files
are created.

SASweave code-chunk specifications are patterned after Sweave’s ITEX-like syntax for delim-
iting code chunks, similar to Sweave’s IATEX syntax. When a document contains both SAS
and R code chunks, either the noweb or N TEX syntax may be used for the R code. We did not
attempt to produce an exact equivalent of Sweave. There are some extensions, some things
that work differently, and some missing capabilities (e.g., in-text evaluation of expressions).

The present version of SASweave provides shell scripts sasweave and sastangle for Unix/Linux
or Windows. These scripts in turn execute several awk scripts; thus, it is necessary for a suit-
ably advanced awk implementation (gawk or nawk) to be installed on the system. These are
stadard on Unix systems, and an open-source version of gawk is available for Windows.

This article is organized as follows. Section 2 details how to prepare the source file, and
the various options for controlling how (and whether) code chunks, output, and graphics are
displayed. Section 3 describes how to run the shell scripts for SASweave. Section 4 provides
some examples to illustrate how to handle several typical situations. Finally, a description of
each of the shell scripts and awk scripts is provided in Section 5.

2. Preparing the source file

To use SASweave, prepare a text file (hereafter called the “source file”) containing standard
TEX markup, plus one or more SAScode environments. The SAScode environments contain
the SAS statements to be executed and incorporated in the document. Normally, the name
of the source file should have the extension .SAStex rather than .tex. The sasweave script
processes this file and creates a .tex file with the SAS output inserted. Optionally, sasweave
can also run pdflatex to produce a formatted document.

The source file may contain option specifications that control how code chunks are processed.
These options are detailed later in this section. A \SASweaveOpts{} command, which changes
the defaults for all subsequent code chunks, may appear (alone on a line) anywhere in the
source file. One-time options for a given code chunk may be given in braces following a
\begin{SAScode} statement. For example, to change the prompt for all code-chunk listings
and put them in a box, we could include this statement in the source file:

\SASweaveOpts{prompt=Example: , codefmt = frame=single}

To embed a code chunk that is executed but completely invisible in the document, we would
use

\begin{SAScode}{echo=FALSE, hide}
. SAS statements ...
\end{SAScode}

In order to be interpreted correctly, all \begin{SAScode}, \end{SAScode}, and \SASweaveOpts
statements must start at the beginning of a line of the source file.

The SAS code chunks are executed in the order they appear in the source file, and in the
context of a single sas run. However, because SASweave also passes the text chunks through
SAS statements, each code chunk must be intact. Errors will occur if the statements for a

Journal of Statistical Software

Table 1: Filename extensions for use by SASweave.

Extension(s) Description
.SAStex SAS code only
.Rtex or .Stex R code only (IATEX syntax)

.nw or .Row or .Snw R code only (noweb syntax)
.SRtex or .SASRtex Both SAS and R (I4TEX syntax), run sas first
.RStex or .RSAStex Both R (KTEX syntax) and SAS, run R first

.SASnw Both SAS and R (noweb syntax), run sas first
.nwSAS Both R (noweb syntax) and SAS, run R first
.tex Pass file to pdflatex

single SAS PROC or DATA step are split into two or more code chunks. There is one exception:
statements in PROC IML may be split among several code chunks, and results in one chunk will
be available to the next. (SASweave accomplishes this by monitoring when the code invokes
or leaves IML. If an IML run is ended by some other means than a QUIT statement, a DATA
step, or another PROC, there may be errors in subsequent code chunks.)

SASweave also supports supports source files that contain R code, with or without SAS code.
When both are present, it can matter whether sas or R is run first. For that reason, we have
defined standard filename extensions that determine how a file is processed; those extensions
are detailed in Table 1. All standard Sweave extensions are supported; files having those
extensions are passed directly to Sweave. Also, a file with a .tex extension is passed straight
to pdflatex. This makes it possible to use the same command to process a very wide variety
of IXTEX-based documents.

When the source file contains both SAS and R code, the tangling process produces two in-
dependent code files. If the code is interdependent so that it is important that one of those
code files be run before the other, it is up to the programmer to document that need.

Option details

Options are enclosed in braces at the end of a \begin{SAScode} or \SASweaveOpts statement,
and specified as a list of keyword=value pairs, separated by commas. Any whitespace in the
options list is ignored, except in a prompt option (see below). Generally, options will appear
on the same line with \begin{SAScode} or \SASweaveOpts; but to extend them to additional
lines, put an ampersand (&) at the end of the line. Anything after the closing brace is ignored.

Many options are boolean; these may be specified as TRUE or FALSE, or simply as T or F.
If a boolean option is specified but not given a value, it is taken as TRUE; for example,
\begin{SAScode}{fig} is equivalent to \begin{SAScode}{fig=TRUE}. All keywords and
values are case-sensitive. The following five characters are used in parsing options, and hence
cannot be used in other ways:

6 SASweave

2.1. Options for code and output listings

echo (Type: boolean Default value: TRUE)
Determines whether the code chunk is displayed in the document. If TRUE, each line is
displayed, preceded by the current prompt string.

hide (Type: boolean Default value: FALSE)
If TRUE, the listing output from SAS is not shown.

results (Type: text Default value: verbatim)
A setting of results=verbatim is equivalent to hide=FALSE; and results=hide is
equivalent to hide=TRUE. There is no results=tex option like there is in Sweave.

eval (Type: boolean Default value: TRUE)
If FALSE, the code chunk is not actually evaluated; it is simply displayed. This is
useful when one wants to display the commands only, and show the results elsewhere in
the document rather than immediately following the code listing. When evaluation is
suppressed, then obviously there will be no output, and thus hide is automatically set
to TRUE when eval=FALSE.

squeeze (Type: boolean Default value: TRUE)
When TRUE, SASweave will reduce the number of blank lines in the SAS output, thus
producing more compact results. The top two lines of each page are stripped off regard-
less of the value of squeeze.

codefmt (Type: Text Default value: (null))

This option is used specify how the listing of a code chunk is formatted. Code chunks are
put into a verbatim-like environment named SASinput derived from the KTEX package
fancyvrb (Van Zandt 1998). The value of codefmt may be any of the customization
commands available for that package. However, one must separate the commands with
semicolons instead of commas. Also, remember that braces are illegal within SASweave
options, so it may be necessary to work around them by defining macros. Here is an
example:

\newcommand{\red}{\color{red}}

\begin{SAScode}{codefmt += formatcom=\red;fontfamily=courier}
. SAS statements

\end{SAScode}

The “+=" operator (available only here and for outfmt) causes the given commands
to be appended to any formats already in existence (specified in a \SASweaveOpts
line). Using “=" instead would replace any existing codefmt. (The fancyvrb com-
mand \RecustomVerbatimEnvironment may be used to change the default formats for
SASinput to be used when codefmt is null.)

outfmt (Type: Text Default value: (null))
This is the same as codefmt, only it sets the format of the output listing environment
SASoutput.

codesize (Type: BTEX command Default value: \small)

Journal of Statistical Software

outsize (Type: BTEX command Default value: \small)
These provide less verbose ways to set the font size for code and output listings. They
are not true options, in that they just map into codefmt and outfmt specifications. For
example, codesize=\normalsize maps to codefmt+=fontsize=\normalsize.

prompt (Type: Text Default value: SAS>)
The string specified here is added to the beginning of each line of a code chunk. Do not
put it in quotation marks. Unlike other options, all whitespace between the “=” and the
next “,” or closing “}” is kept as part of the prompt string.

1s (Type: integer Default value: 80)
This specifies the limit on the number of characters in each line of SAS output (as in the
SAS statement options 1ls = 80;). The line size is set to this value before evaluating
each code chunk. (For technical reasons, SASweave must manage the line size; thus, any
options 1ls statement within a code chunk has no effect on subsequent code chunks.)

2.2. Graphics options

fig (Type: boolean or integer — Default value: FALSE)
If TRUE or positive, SASweave sets up a .pdf file to receive graphical output, and the
graph(s) are included in the document. An option of £ig=TRUE implies that one graph
will be created. If, say, £ig=3, then SASweave expects 3 graphs to be generated. The
code must produce at least the number of graphs specified, or an error will occur.
Moreover, use of fig requires graphics to be generated by SAS/GRAPH; the newer
experimental ODS graphics capabilities are not supported.

The remaining options in this section have an effect only if fig is not FALSE.

width (Type: number Default value: .6)
This specifies the actual width of the included graph, as a multiple of \linewidth,
similar to what is done using \setkeys{Gin} in Sweave. (This is completely different
from the width option in Sweave.)

hsize (Type: number Default value: 4.0)
vsize (Type: number Default value: 4.0)

These options specify the hsize and vsize values in the goptions statement generated
by SASweave. They set the width and height, in inches, of the plot in the .pdf output
file. Tt does not affect the displayed width of the graph in the document (use the width
option to change that). Changing hsize and/or vsize will affect the shape of the plot
and the apparent font size of labels and symbols.

striptitle (Type: boolean Default value: TRUE)
When TRUE, the top 30 points of the plot (relative to vsize) are clipped off. SAS tends
to put extra space at the top of plots, even when no title is given, and this tightens-up
the spacing around the plot.

plotname (Type: WTEX macro name Default value: (null))
If this is null, plots are displayed just below the SAS code and/or output listing. If a

8 SASweave

KTEX macro name is provided here, the plots are not automatically included; instead,
macros are defined to be the appropriate \includegraphics commands, and these
commands may be used later to manually include the graphs at a desired place in the
document. The given macro name as-is will produce the first graph. If multiple graphs
are created, they may be referenced by appending the macro name with letters A, B,
C, etc. For example, the options fig=3 and plotname=\myplot will create the macros
\myplot, \myplotA, \myplotB, and \myplotC; \myplot and \myplotA refer to the same
graph (the first one). Subsection 4.3 illustrates this feature.

Note that plotname creates ITEX macros. To control the name of the .pdf file where
the plot is saved, use the label option (see Subsection 2.4). Manual graphics inclusion
of such a file will prove frustrating, however, because SAS does not set the PDF page
size to be the same as that of the graph.

figdir (Type: string Default value: ./)
This specifies the directory where graphics files are to be stored and retrieved. The
directory must already exist; it is not created.

infigdir (Type: string Default value: figdir)
This allows the figures to be retrieved from a different directory from where they are
stored. This seems contradictory, but it becomes useful when the source file is to
be woven into a .tex file (using sasweave -t), for later inclusion into a main .tex
document in a different directory. Make infigdir match what it needs to be relative
to the location of the main document.

2.3. Options for file handling

split (Type: boolean Default value: FALSE)
If FALSE, the results of weaving the code chunks are all incorporated in the main .tex
file; if TRUE, these results are written to separate .tex files and read-in to the main file
with an \input statement.

prefix.string (Type: string Default value: base filename)

This sets the beginnings of the names of all graphics files, as well as of the .tex files gen-
erated if split is TRUE. It may include a directory path, delimited by slashes. A hyphen,
a code-chunk label, and the appropriate extension are appended to the prefix string.
For example, suppose that prefix.string is set to chunks/myprefix. If code chunk #3
produces graphics, the associated graphics file is named chunks/myprefix-swv-003. pdf
(it may have several pages if there are multiple figures); in addition, if split=TRUE, the
verbatim output for the chunk will be written to chunks/myprefix-swv-003.tex. If no
prefix.string is given and the source file is named myfile.SAStex, the defaults are
myfile-swv-003.pdf and myfile-swv-003.tex, respectively. If a label (see Subsec-
tion 2.4) is also specified, it is used in place of “swv-003” wherever it appears in these
illustrations.

Journal of Statistical Software

2.4. Options for code reuse

label (Type: name Default value: lastchunk)
This specifies a name under which the current code chunk is saved. In a subsequent
code chunk, the same code may be reused via the \SAScoderef command:

\SAScoderef{label }

where label is the label for the code to be reused. Unlike Sweave, the 1abel keyword
is required. The default label of lastchunk is handy when for reusing the previous code
chunk.

If specified, the label is also used in lieu of the chunk number in naming any files created
by that chunk. For example, if the third code chunk in the source file mysource.SAStex
produces a graph, the graph will be saved to a file named mysource-swv-003.pdf.
However, if it is given a label of foo, then the file name will be mysource-foo.pdf.

showref (Type: boolean Default value: FALSE)
If TRUE, any SAS code recalled using \SAScoderef will be displayed in the code listing
(as long as echo is TRUE). If FALSE, reused code will be excluded from the listing. This
makes it possible to prevent sections of SAS code (perhaps 0DS statements) from being
echoed. See Subsection 4.5 for an illustration.

The \SAScoderef command has a starred version \SAScoderef* that will force the
reused chunk to be displayed regardless of the value of showref. This allows one to
display some reused code while hiding other code within the same chunk.

2.5. Argument substitution

It is possible to define reusable chunks of SAS code that accept arguments to be provided
later in a \SAScoderef statement. This is done in much the same ways as a IATEX macro
definition: set up a code chunk that contains the symbols #1, #2, etc. as placeholders. First,
assign this chunk a label, and use options of eval=FALSE and (probably) echo=FALSE. Then
incorporate this chunk in later code chunks using

\SAScoderef{label }{argl }{arg2} ---

(or the same with \SAScoderefx), where label is the label of the previously defined code
chunk. The contents of arg? will be substituted for any appearances of #1, arg2 will be
substituted for any appearances of #2, and so forth. No careful checking is done by SASweave;
if too many arguments are provided, they’ll just have no effect, and if there are too few, the
code passed to sas will contain “#” characters, likely producing an error.

3. Running SASweave
The shell commands for tangling and weaving are as follows:

sastangle options filename [.SAStex]
sasweave options filename [.SAStex]

10

SASweave

where filename is the name of the source file (if an extension is not given, .SAStex is
assumed). The possible options can include flags from the list below.

Option for sastangle

-8

Run sas after the .sas file is created.

Treatment of intermediate files in sasweave (default is -g)

-C

-g

-1

Clean up the intermediate files that are generated. If errors occur, intermediate files
are left anyway. If the creation of the .tex file is successful, the .sas and .1st files are
deleted, and the SAS .log file is renamed with an extension of .saslog. If pdflatex
processing is requested and it is successful, the .1log and .saslog files and any interme-
diate graphics files are deleted. (However, only files with standard names are deleted;
so the label, figdir, or prefix.string options—see Section 2—may prevent graphics
files from being deleted.) The .tex and .aux files are not deleted.

Clean up intermediate files, but do not delete the graphics files.

Leave all the intermediate files in place.

Flags to specify the target of sasweave (default is -p)

P
-t

-n

Run pdflatex on the resulting .tex file.
Terminate after the .tex file is produced.

Rename the .tex file to an extension of .nw and stop. This and the -r option would
be needed only if the source file contains Sweave markup and one wants to manually
run Sweave. If this option is used, the source file should have a .SAStex extension;
otherwise, sasweave will run Sweave on its own.

Rename the .tex file to an extension of .Rtex and stop. See also the -n option.

4. Examples

The examples in this section illustrate how to use some of SASweave’s capabilities.

4.1.

Basic use of SASweave

The example in Section 1 illustrates the most basic use of SASweave when no options (other
than font size) are specified. The first code chunk in Figure 1 is a simple SAS program that
produces only listing output.

The second code chunk shows the simplest way to incorporate a figure. The default shape of
the plotting region is square, but SAS’s formatting of labels causes it to be rather tall because
the label for the vertical axis is so long.

Journal of Statistical Software

R> table(chickwts$feed)

casein horsebean linseed meatmeal soybean sunflower
12 10 12 11 14 12

R> write.table(chickwts, file = "chickwts.txt", row.names = FALSE,
+ quote = FALSE)

SAS> data sasuser.chickwts;

SAS> infile "chickwts.txt" firstobs = 2;
SAS> input weight feed $;

SAS> proc freq data=sasuser.chickwts;

SAS> table feed;

The FREQ Procedure

Cumulative Cumulative
feed Frequency Percent Frequency Percent
casein 12 16.90 12 16.90
horsebea 10 14.08 22 30.99
linseed 12 16.90 34 47.89
meatmeal 11 15.49 45 63.38
soybean 14 19.72 59 83.10
sunflowe 12 16.90 71 100.00

Figure 3: Results from code in Subsection 4.2

4.2. R and SAS together

Here is a simple example where both R and SAS code are incorporated in the same source file.
One of the standard datasets in R is summarized, and it is written to a text file, imported into
SAS, and summarized there as well. In this example, it is very important that the R code be
run first, as it creates the data needed by SAS; hence the filename extension used is .RSAStex.
By default, SAS statements are formatted in \small font. Font sizing is not provided among
the options in Sweave, so we do it manually. The results of running sasweave on the code
below are displayed in Figure 3.

{\small

\begin{Scode}

table(chickwts$feed)

write.table(chickwts, file="chickwts.txt", row.names=FALSE, quote=FALSE)

\end{Scode}

}

\begin{SAScode}

data sasuser.chickwts;
infile "chickwts.txt" firstobs = 2;
input weight feed $;

proc freq data=sasuser.chickwts;
table feed;

\end{SAScode}

11

12 SASweave

4.3. Multiple figures in a float

The following code segment illustrates the use of several options. First, we suppress the
code listing (echo=FALSE). We ask for two plots (fig=2) of reduced width (width=.45).
Rather than the default placement of plots, we specify that that they be saved as IXTEX
macros (plotname=\chickPlot) for later inclusion in a figure environment. Subsequently,
the macros \chickPlotA and \chickPlotB call up the two plots. Figure 4 shows the results
from the code below.

\begin{SAScode}{echo=FALSE, fig=2, width=.45, plotname=\chickPlot, &
outfmt = fontsize=\footnotesize}
proc glm data=sasuser.chickwts;
class feed;
model weight = feed / ssi;
output out=chickfit p=Predicted r=Residual;
means feed;
ods exclude NObs ClassLevels;
proc gplot data=chickfit;
plot weight * feed
Residual * Predicted;
\end{SAScode}
\renewcommand{\figurename}{Exhibit}
See Exhibit™\ref{chickfig} for some supplementary displays.
\begin{figure}
\caption{Plots of the \texttt{chickwts} data.}\label{chickfig}
\begin{center}
\begin{tabular}{11}
Observed weights for each diet & Residuals versus predicted \\
\chickPlotA & \chickPlotB
\end{tabular}
\end{center}
\end{figure}

4.4. Separating code and output; hiding code

Sometimes we want to put the results in a separate place from the code listing; for example,
in a float. The best way to do this is to reuse the same code, via labels. This example
shows two code chunks. Chunk 1 contains the code we want to run; but it is only listed, not
evaluated (eval=FALSE). Code chunk 2 recalls chunk 1 using its default label of lastchunk,
and adds an 0DS statement to restrict the output; this time it is executed, but the code listing
is suppressed (echo=FALSE). Figure 5 displays what is produced by the code below.

Here is the SAS code to perform a robust analysis of the chick-weights data.
The output is displayed in Exhibit™\ref{robust-out}.

% Chunk 1

\begin{SAScode}{prompt=, eval=FALSE}

proc robustreg data = sasuser.chickwts method = M (wf = bisquare);

Journal of Statistical Software

Exhibit 1: Plots of the chickwts data.

Observed weights for each diet

wel gnt
50

400 T

FF

300 7

+F

200

+

B R

+H O+

+

++

4 b

+ H-H-

o

100 1

casein horsebea |inseed neat meal soybean sunf| owe

The GLM Procedure

Dependent Variable: weight

Source
Model
Error
Corrected Total

R-Square Coeff Var
0.541685 20.99052
Source

feed

The GLM Procedure

Level of ——----
feed N

casein 12 323.
horsebea 10 160.
linseed 12 218.
meatmeal 11 276.
soybean 14 246.
sunflowe 12 328.

feed

Residuals versus predicted

Res| dua
20

1007

¥

o
TR

-100 7

-200 1

+

oA

B
oA
o
A + o+

+
i

160 180 200 220 240 260 280 300 320 340

Sum of
DF Squares Mean Square
5 231129.1621 46225.8324
65 195556.0210 3008.5542
70 426685.1831
Root MSE weight Mean
54.85029 261.3099
DF Type I SS Mean Square
5 231129.1621 46225.8324
—————— weight-----------
Mean Std Dev
583333 64.4338397
200000 38.6258405
750000 52.2356983
909091 64.9006233
428571 54.1290684
916667 48.8363842

See Exhibit 1 for some supplementary displays.

Predicted

F Value Pr > F
15.36 <.0001

F Value Pr > F
15.36 <.0001

Figure 4: Results from code in Subsection 4.3

14 SASweave

class feed;

model weight = feed;

Feed_overall: test feed;
\end{SAScode}
\begin{figure}
\caption{Results of \texttt{PROC ROBUSTREG}.}\label{robust-out}
% Chunk 2
\begin{SAScode}{echo=FALSE}
\SAScoderef{lastchunk}
ODS select ParameterEstimates TestsProfile;
\end{SAScode}
\end{figure}

4.5. Argument substitution; hiding code

In this example, we set up (but do not evaluate or echo) a code chunk named import; it
contains the strings #1, #2, and #3, which serve as placeholders for arguments to be supplied
later. In the second code chunk, we read a data file and run PROC REG; the file-reading part
is done by re-using the import chunk with appropriate arguments supplied. That part of the
code is not displayed in the listing, however, because showrefs is FALSE by default.

\SASweaveOpts{eval=FALSE} %%/ suppress all evaluation for this example

\begin{SAScode}{echo=FALSE, eval=FALSE, label=import}
proc import

datafile = "#1"

out = #2

dbms = #3

replace ;
\end{SAScode}
b
% Secretly read-in a file before an analysis ...
\begin{SAScode}{fig=2}
\SAScoderef{import}{c:\BPSdata\ta05-03.dat}{reactTime}{TAB}
proc reg data=reactTime;

model Time = Distance;

plot Timex*Distance Residual.*Predicted.;
\end{SAScode}

SAS> proc reg data=reactTime;
SAS> model Time = Distance;
SAS> plot Timex*Distance Residual.*Predicted.;

Note that import is effectively a macro for SASweave; and we can actually trick SASweave
into defining new macros based on it. The first code chunk below simply calls up import and

Journal of Statistical Software

Exhibit 2: Results of PROC ROBUSTREG.

The ROBUSTREG Procedure
Parameter Estimates

Standard 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq
Intercept 1 329.0835 16.8600 296.0384 362.1286 380.97 <.0001
feed casein 1 -0.0836 23.8437 -46.8163 46.6492 0.00 0.9972
feed horsebea 1 -169.863 25.0075 -218.877 -120.850 46.14 <.0001
feed linseed 1 -110.343 23.8437 -157.076 -63.6106 21.42 <.0001
feed meatmeal 1 -49.5349 24.3796 -97.3180 -1.7518 4.13 0.0422
feed soybean 1 -82.8402 22.9764 -127.873 -37.8074 13.00 0.0003
feed sunflowe O 0.0000
Scale 1 52.5603

Robust Linear Tests

FEED_OVERALL

Test Chi-
Test Statistic Lambda DF Square Pr > ChiSq
Rho 12.4562 0.7977 5 15.61 0.0080
Rn2 71.1819 5 71.18 <.0001

Here is the SAS code to perform a robust analysis of the chick-weights data.
The output is displayed in Exhibit 2.

proc robustreg data = sasuser.chickwts method = M (wf = bisquare);
class feed;
model weight = feed;
Feed_overall: test feed;

Figure 5: Results from code in Subsection 4.4

substitutes appropriate arguments so that it becomes a simplified SASweave macro suitable
for importing comma-delimited files. It is then used and displayed.

% Create a new "macro"

\begin{SAScode}{echo=FALSE, eval=FALSE, label=importCSV}
\SAScoderef{import}{#1.csv{#1}{CSV}

\end{SAScode}

% Test rumn...

\begin{SAScode}{showref}

\SAScoderef{importCSV}{newFile}

\end{SAScode}

16 SASweave

SAS> proc import

SAS> datafile = "newFile.csv"
SAS> out = newFile

SAS> dbms = CSV

SAS> replace ;

5. Implementation

This section gives an overview of how the SASweave software is structured, and a description
of the main tasks of each body of code.

The basic approach in this SASweave implementation is rather brute-force in nature: a single
SAS program is created that contains everything needed for the final .tex file—both code
and text chunks. The text chunks and code listings are simply inserted in the right places
in the SAS output. The output file is then post-processed and saved as a .tex file, which,
optionally, is passed to pdflatex to produce a .pdf file with the formatted document.

For the verbatim listing of code and output, we provide a IXTEX package named SasWeave.sty
that defines verbatim-like environments SASinput and SASoutput; these are based on the
standard IATEX package fancyvrb. SasWeave.sty is similar to the package Sweave.sty that
is part of Sweave. (Originally, it was named SASweave.sty, but this had the effect of tricking
Sweave into thinking that Sweave.sty was already loaded.)

The pre- and post-sas operations are done as much as possible by means of awk scripts. awk
is an ideal scripting language for this purpose, because its design focuses on pattern-matching,
and there is an implied loop where we go through a file line-by-line. That is exactly what
is needed here. Moreover, awk is quite forgiving (we leave error-checking to sas and IATEX),
and an implementation of awk is available for virtually any platform.

The main workhorse among the awk scripts is the one named saswvl.awk (henceforth called
just saswvl), which reads the source file and writes the .sas file. This script looks for
five main conditions: lines that start with “\begin{SASweaveOpts},” “\begin{SAScode},”
and “\end{SAScode}”, and processing of cases where a flag named sas is zero (meaning the
current source-file line is in a text chunk) or 1 (it is in a code chunk). By doing appropriate
things in response to these five conditions, the script arranges things so that if we are weaving
the source file, the output .sas file will be organized as follows (and in the order described).

1. Text chunks go into put statements within PROC IML. (This includes inserting judicious
linefeeds to keep these statements from exceeding the line-width limit. For this reason,
SASweave must control SAS’s LS option.)

2. If code is to be echoed, the appropriate verbatim environment SASinput is set up and
included at the end of the preceding text chunk.

3. If output is to be displayed, a \begin{SASoutput} statement is added to the text chunk.

4. Appropriate setup code is added to the SAS program. These include setting up the
desired line size at 1s, and if a figure is to be saved, some goptions statements to setup
an output .pdf file.

Journal of Statistical Software 17

5. The SAS code itself is added to the SAS program.

6. At the end of a code chunk, PROC IML is started (if necessary), and the string \end{SASoutput}
is added before the subsequent text chunk. (The script monitors whether PROC IML is
invoked in a code chunk and is still active; if so, IML is not restarted. This monitoring
allows one to break-up IML code into multiple chunks, if desired.)

7. If there are any figures, the needed \includegraphics statements are generated. If
there is no plotname, these are added to the text chunk; otherwise, they are wrapped
in KTEXmacro definitions before adding them to the text chunk.

8. We are now ready for more text from the source file (step 1).

(One can see exactly how the .sas file is structured by weaving a file with the -1 option.)

The saswvl script also contains some startup and ending code and a few functions to ease
in processing options. It also calls other functions defined in a different awk script that is
loaded at the same time. These externally-supplied functions determine the actions taken at
the beginning of the run, at the beginning and end of a text chunk, setting up a graph, and
outputting the lines of a text chunk. There are two versions of these functions. The ones in the
file saswsetup.awk are used for weaving the source file (for eventual creation of a .tex file).
The alternative functions in sastsetup.awk are suitable for tangling. The sastsetup.awk
function for outputting text chunks does nothing at all, and the others there do very little
(for example, graphics are set up with the dimensions specified in the SASweave options, but
they go to the default device rather than a .pdf file). The design decision to provide different
output routines for tangling and weaving, while keeping the same basic saswv1 script, helps
with maintainability and consistency; a change made to saswvl.awk will appropriately affect
both tangling and weaving operations.

In sasweave, the script saswv2.awk handles post-processing of the .1st file generated by
sas, and creates a .tex file. This script is shorter and simpler than saswvi1, but there are
more patterns that need handling. What complexity exists there is due to looking for empty
SASinput and SASoutput environments so that they are not added to the .tex file. Beyond
that, the main operations are stripping off the top two lines of each page, outputting only one
blank line whenever two consecutive blank lines are encountered (when squeeze is true), and
diverting chunks to other files when split is true. Communication of information for split
and squeeze options is done by checking for certain signal lines that saswvl outputs.

The same maintainability and portability considerations as described for saswvl motivate
the design of the command-line interface. For each operating system, we need a shell script
that serves as a front end to the awk scripts. The unix/linux shell scripts sastangle and
sasweave, and the Windows scripts sastangle.bat and sasweave.bat, are all as minimal as
possible. They simply identify and change to the directory where the source file resides, and
then call one of the awk scripts saswmain.awk (for weaving) or sastmain.awk (for tangling).
These two scripts parse the command line for flags and determine the source file’s extension.
Based on the extension and flags, the source file or one of its derivatives is passed to saswvli,
sas, saswv2, Sweave, and pdflatex as is appropriate and in the correct sequence. The scripts
call the awk system function with appropriate arguments to invoke a shell and run sas, R,
and pdflatex as needed.

A certain amount of file copying and renaming takes place when both R and SAS code needs
processing. For example, with a .RSAStex source file, we first copy it to another file with

18 SASweave

an extension of .Rtex, then run Sweave; the resulting .tex file is renamed with a .SAStex
extension before passing it to SASweave. This management is also done using the system
function.

The saswmain and sastmain scripts each require a common script named saswcfg.awk,
which defines certain variables with system-specific values. This configuration file gives the
path where the awk scripts are installed, and the commands to run sas, R, pdflatex, Stangle,
and Sweave. The Windows installer for SASweave creates this file. The one for unix/linux is
simply copied and edited, but typically only the awk-script path needs modification.

6. Discussion

SASweave provides a simple and reliable way of presenting and documenting SAS analyses.
We have used it to great benefit in consulting, research and teaching. In research and con-
sulting, one or more SASweave source files provide a useful foundation for preparing analyses,
simulation studies, etc. One can document the methods used and the associated SAS code;
then, when the source file is processed, there is a reliable record of exactly what was done,
along with the results.

In teaching how to use SAS, SASweave streamlines the preparation of class handouts. Also,
if “live” SAS analyses are done in class, it is an easy matter for the instructor to save the
.sas file, add SAScode environments and possibly comments, and use sasweave to make a
documented form of the class examples with output included.

We have tried to make SASweave behave similarly to Sweave where that is appropriate and
practical. One notable difference between the two arises from the fact that Sweave uses R to
parse the input statements and simulate an interactive mode, while SASweave does not. One
code chunk in Sweave might produce several sets of code listings interspersed with output
listings. In SASweave, one code chunk always produces one code listing, followed by one
output listing containing all the results. (There is a small up side to this: unlike Sweave,
the code listing is displayed with exactly the same spacing and line breaks as in the source
file.) Other Sweave features not present in SASweave at this time include non-availability of
PostScript graphs, no equivalent to Sweave’s \Seval{} capability for incorporating computed
results in a text chunk, and no support for the emerging “ODS graphics” provisions in certain
SAS procedures.

However, SASweave does offer some nice extensions (we think) of Sweave. The main ones
include control of formatting, support for multiple figures in one code chunk, the provision
to assign macro names to plots, argument substitution, and the ability to hide reused code.
Those go on our wish list for future releases of Sweave. Future development contemplated for
SASweave includes extending the same capability to Open Document Format files (used by
OpenOffice), similar to the way odfWeave (Kuhn and Coulter 2007) extends Sweave.

Acknowledgments

The authors wish to thank two referees, as well as both Editors. Their careful reading, helpful
comments, and suggestions have greatly improved the article.

Journal of Statistical Software 19

References

Hgjsgaard S (2006). “SASRweave: An R Package for Literate Programming with SAS and
R at the Same Time.” Accessed October 30, 2006, URL http://genetics.agrsci.dk/
“sorenh/misc/software/.

Knuth DE (1992). “Literate Programming.” CSLI Lecture Notes 27, Center for the Study of
Language and Information, Stanford, California.

Kuhn M, Coulter N (2007). The odfWeave Package. R package version 0.4.9, URL http:
//cran.r-project.org/src/contrib/Descriptions/odfWeave.html.

)

Leisch F (2002). “Dynamic Generation of Statistical Reports Using Literate Data Analysis.’
In W Hérdle, B Ronz (eds.), “Compstat 2002—Proceedings in Computational Statistics,”
pp- 575-580. Physika Verlag, Heidelberg, Germany. ISBN 3-7908-1517-9.

R Development Core Team (2006). R: A Language and Environment for Statistical Computing,
Version 2.4.1. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-
07-0, URL http://www.R-project.org.

SAS Institute Inc (2003). SAS/STAT Software, Version 9.1. Cary, NC. URL http://wuw.

sas.com/.

Van Zandt T (1998). “The fancyvrb Package: Fancy Verbatims in INTEX.” IWTEX package ver-
sion 2.6, URL http://www.ctan.org/tex-archive/macros/latex/contrib/fancyvrb/.

http://genetics.agrsci.dk/~sorenh/misc/software/
http://genetics.agrsci.dk/~sorenh/misc/software/
http://cran.r-project.org/src/contrib/Descriptions/odfWeave.html
http://cran.r-project.org/src/contrib/Descriptions/odfWeave.html
http://www.R-project.org
http://www.sas.com/
http://www.sas.com/
http://www.ctan.org/tex-archive/macros/latex/contrib/fancyvrb/

20 SASweave

Affiliation:

Russell V. Lenth

Department of Statistics and Actuarial Science
The University of lTowa

Iowa City, Iowa 52242, USA

E-mail: russell-lenth@uiowa.edu

URL: http://www.stat.uiowa.edu/ rlenth

Seren Hgjsgaard

University of Aarhus

Faculty of Agricultural Sciences
Research Centre Foulum

Institute of Genetics and Biotechnology
Blichers Allé 20, P.O. Box 50

DK-8830 Tjele

E-mail: Soren.Hojsgaard@agrsci.dk
URL: www.agrsci.dk

Journal of Statistical Software
published by the American Statistical Association

Volume VV, Issue II
MMMMMM YYYY

http://www. jstatsoft.org/
http://www.amstat.org/

Submitted: yyyy-mm-dd
Accepted: yyyy-mm-dd

mailto:russell-lenth@uiowa.edu
http://www.stat.uiowa.edu/~rlenth
mailto:Soren.Hojsgaard@agrsci.dk
www.agrsci.dk
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Preparing the source file
	Options for code and output listings
	Graphics options
	Options for file handling
	Options for code reuse
	Argument substitution

	Running SASweave
	Examples
	Basic use of SASweave
	R and SAS together
	Multiple figures in a float
	Separating code and output; hiding code
	Argument substitution; hiding code

	Implementation
	Discussion

