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Abstract

Hierarchical matrices (H-matrices) approximate matrices in a data-sparse way, and the approximate arith-
metic for H-matrices is almost optimal. In this paper we present an algebraic approach for constructing
H-matrices which combines multilevel clustering methods with H-matrix arithmetic to compute the
H-inverse, H-LU, and the H-Cholesky factors of a matrix. Then the H-inverse, H-LU or H-Cholesky
factors can be used as preconditioners in iterative methods to solve systems of linear equations. The
numerical results show that this method is efficient and greatly speeds up convergence compared to other
approaches, such as JOR or AMG, for solving some large, sparse linear systems, and is comparable to
other H-matrix constructions based on Nested Dissection.

AMS Subject Classifications: 65F10.

Keywords: Preconditioners, multilevel methods, hierarchical matrices.

1. Introduction

The basic concept of hierarchical-matrices (H-matrices) was introduced by
Hackbusch [4]. Following this, much work has been done on the theory and applica-
tions of H-matrices [2], [1], [6], [7], [3]. The basic idea of H-matrix representation is to
use a block cluster tree TI×I to store a multilevel block partitioning of a matrix. The
nodes of TI×I represent Cartesian products of the corresponding row and column
index sets of the matrix blocks. The leaves of TI×I represent the smallest blocks that
are not partitioned further. These blocks are either rank k approximations or full
matrices. H-matrices are very suitable for describing certain sparse matrices arising
from partial differential equations or full matrices arising from integral operators.
The advantage of H-matrix representation is that it can reduce the required storage,
as well as the computational complexity of approximate H-matrix operations, such
as matrix-vector multiplication, matrix-matrix multiplication, matrix addition and
inversion, to almost linear complexity (O(n logα n)) [2], [3].

The classic methods to construct H-matrices rely on the geometric information
related to the problems, and approximation is used to represent the blocks by rank
k matrices [3]. A new method to build H-matrices is proposed in [7] which uses
the graph of the matrix and Nested Dissection. Its advantage is that the H-matrices
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constructed in this way are very suitable for H-LU decomposition, which keeps large
off-diagonal blocks zero.

We present an algebraic method to build H-matrices, which uses the information of
a matrix itself and multilevel clustering methods based on Heavy Edge Matching
(HEM). In this way a sparse matrix can be reordered and represented exactly in
the format of H-matrices. We can compute not only the approximate H-LU and
H-Cholesky factors but also H-inverses by using the H-matrix arithmetic. They can
then be used as preconditioners in iterative methods, such as GMRES. The experi-
mental results show that our method provides an effective method for H construction
and is competitive with the method in [7].

This paper is organized as follows. In the next section, we first review multilevel
clustering methods and then show the way to apply them to the index set partition-
ing. The process to construct an H-matrix using multilevel clustering methods is
discussed in Sect. 3. Section 4 is a brief introduction to H-matrices and H-matrix
arithmetic. Finally in Sect. 5, we present the numerical results of applying these
methods to several problems and compare them with other methods and precondi-
tioners.

2. Multilevel clustering methods

To build a H-matrix for a sparse matrix, we first need to build a cluster tree TI over
the matrix index set I . TI describes the partitioning over I from the finest to the
coarsest level. The way to build TI is based on multilevel clustering methods which
are widely used in graph partitioning.

The basic idea of multilevel clustering is: starting from the finest graph, build clusters
over its nodes, then build a coarse graph by merging the nodes in the same cluster
as one coarse node, and continue this coarsening process on the coarse graphs until
the graph obtained is small enough.

2.1. Coarsening process

The finest graph G0 for the coarsening process is constructed from a matrix. Given a
sparse matrixM, its corresponding weighted undirected graphG0 = (V (G0), E(G0))

is defined as follows: V (G0), the set of nodes in G0, corresponds to the matrix index
set I ; node i ∈ V (G0) represents an index i ∈ I ; there is an edge eij ∈ E(G0) if and
only if matrix entry mij �= 0; and the edge weight wij = |mij |.
An algorithm based on Heavy Edge Matching (HEM) [5] is used to build clusters
over the nodes in Gi = (V (Gi), E(Gi)) and construct a coarser graph Gi+1 =
(V (Gi+1), E(Gi+1)).

The basic idea of HEM is: randomly pick up an unmatched node; find another un-
matched node such that these two nodes are connected by an edge with the heaviest
weight and mark them as matched; repeat this process until all nodes are matched.
Pseudocode is shown in Fig. 1. As we continue marking nodes as matched, the
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Fig. 1. Basic heavy-edge matching algorithm
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Fig. 2. An example of unbalanced cluster tree TI

unmatched nodes will have higher chance to stay isolated, i.e., they have no un-
matched neighbors. If a node or its corresponding cluster remains isolated as we
continue the coarsening process, then the corresponding cluster tree TI , as discussed
in Sect. 2.2 may be unbalanced, as shown in Fig 2.

To make TI more balanced, we need a less random approach. Instead we divide the
set of nodes V into two groups V1 and V2. The nodes in V1 have a higher priority
than nodes in V2. This modifies the matching algorithm in Fig. 1 to the algorithm
in Fig. 3.

Priority goes to the nodes in a coarsened graph that consist of a single node at the
previous (finer) level: thus if #C

(i)
k = 1 then node k is put into the higher priority

group V1 at level i + 1. This usually avoids the problem of isolated nodes causing
unbalanced trees.

Once the clusters C
(i)
k for level i are computed, the weights for the next level i + 1

can be computed by the formula

w
(i+1)
kl =

∑

r∈C(i)
k

∑

s∈C(i)
l

w(i)
rs . (1)

Recursively applying the above coarsening process gives a sequence of coarse graphs
G1, G2, . . . , Gh. We end this sequence with Gh, when #V (Gh) is sufficiently small.
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Fig. 3. Modified heavy-edge matching algorithm
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Fig. 4. An example of the multilevel graph coarsening process

Figure 4 illustrates the coarsening process with 2 levels for a graph defined by the
following matrix:

M̃ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∗ 4 0 1 0 0
4 ∗ 0 1 1 2
0 0 ∗ 3 0 1
1 1 3 ∗ 0 0
0 1 0 0 ∗ 3
0 2 1 0 3 ∗

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

2.2. Cluster tree TI and matrix permutation

The cluster tree TI describes the multilevel partitioning of the list of indices I =
(0, 1, 2, . . . , n). Note that (0, 1, 2) �= (0, 2, 1); that is, order is significant. To build

TI we first build a tree T̃I based on the multilevel graphs G0, G1, G2, . . . , Gh. The

nodes of T̃I are the nodes of Gi , i = 0, 1, . . . , h together with a root node.

T̃I is constructed by making the all the nodes j ∈ V (Gh) children of the root, and
make the node k ∈ V (Gi) the parent of all the nodes j ∈ C

(i−1)
k ⊂ V (Gi−1). The
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leaves of T̃I correspond to the indices of the original matrix M̃. For the example in
Fig. 4, T̃I is shown in Fig. 5a.

We create another list Ĩ by listing the leaves of T̃I from left to right. Ĩ and I have
the same index elements but their elements may be in different order because of the

clustering process. So we map the indices of Ĩ to the indices in I , for our example

Ĩ = (0, 1, 4, 5, 2, 3) → I = (0, 1, 2, 3, 4, 5). The leaves of T̃I are mapped to the
new indices in the same way (see Fig. 5b). A permutation matrix P is constructed

based on this index mapping, and applied symmetrically to the original matrix M̃:
M = P T M̃P . M is the reordered matrix.

Then we replace each node in T̃I from the leaves to the root by a set of indices Lj ⊂ I :
if a node j is a leaf then Lj = {j}; else if a node j of the level i has children t and k

at the level i − 1 then L
(i)
j = L

(i−1)
t

⋃
L

(i−1)
k . This new tree is TI (shown in Fig. 5c).

TI satisfies the conditions of a cluster tree for a H-matrix and has following proper-
ties:

(1) TI has a total of h + 1 levels, where h is the number of levels in the HEM
coarsening algorithm.

(2) The root of TI is set I = {0, 1, 2, . . . , n}, whose elements are the indices of the
permuted matrix M.

(3) The sets L
(i)
k , k ∈ V (Gi) at each level of TI form a partition over the index set I .

(4) The elements inside L
(i)
k are in increasing order.

Figure 5 shows T̃I and TI built form the multilevel graphs in Fig. 4. The correspond-
ing index mapping is shown in Fig. 6. The corresponding permuted matrix from
Eq. (2), based on the index mapping of Fig. 6 is

M =

⎡

⎢⎢⎢⎢⎢⎢⎣

∗ 4 0 0 0 1
4 ∗ 1 2 0 1
0 1 ∗ 3 0 0
0 2 3 ∗ 1 0
0 0 0 1 ∗ 3
1 1 0 0 3 ∗

⎤

⎥⎥⎥⎥⎥⎥⎦
. (3)

2.3. Block cluster tree TI×I

A block cluster tree TI×I describes a multilevel block partitioning of the reordered
matrix M. We use the cluster tree TI and the multilevel graphs G0, G1, G2, . . . , Gh

to build TI×I from top to bottom. In the remainder of this paper, #A denotes the
number of elements in the set A.

A constant Ns is used to control the size of the smallest blocks in order to maintain
the efficiency of the H-matrix arithmetic. The basic steps for building TI×I are as
follows:
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Fig. 5. Cluster trees for the graphs shown in Fig. 4. (a) T̃I (before the index mapping), (b) T̃I (after the
index mapping), and (c) TI
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Fig. 6. Index mapping built for TI

(1) The root of TI×I = I × I since I is the root of TI .

(2) If L
(i)
r ×L

(i)
s is a node of TI×I , r is connected to s in Gi , and #L

(i)
r , #L

(i)
s > Ns ,

then the children of L
(i)
r ×L

(i)
s are L

(i−1)
v ×L

(i−1)
w where L

(i−1)
v is a child of L

(i)
r ,

and L
(i−1)
w is a child of L

(i)
s in TI .

(3) If L
(i)
r ×L

(i)
s is a node of TI×I , r is not connected to s in Gi , and #L

(i)
r , #L

(i)
s >

Ns , then L
(i)
r × L

(i)
s is a rank-k leaf node in TI×I .

(4) If L
(i)
r × L

(i)
s is a node of TI×I , and #L

(i)
r ≤ Ns or #L

(i)
s ≤ Ns , then L

(i)
r × L

(i)
s

is a dense leaf node in TI×I .

This process is illustrated in Fig. 9, which is based on the multilevel graphs in Fig. 7
and the cluster tree TI in Fig. 8. Notice that in our example we used Ns = 1 for the
minimal block size. However the process is similar for other values of Ns except that
we stop sooner (higher) in the tree.

The difference between our method and the classic methods for building TI×I [2,
1, 3] is that they use geometric conditions (admissibility conditions) to determine
whether or not a block L

(t)
i × L

(t)
j in TI×I will be partitioned further. If a block
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is admissible, then it can be approximated by an Rk-matrix. Each internal node
has exactly two children. In our algebraic method we use the edge weights from

the coarse graphs to decide how to build TI×I . Particularly, if w
(i)
kt = 0 the block

L
(i)
k × L

(i)
t is represented in the format of an Rk-matrix; w

(i)
kt �= 0 implies that the

block L
(i)
k × L

(i)
t is partitioned into smaller blocks at the next level. In this way the

original sparse matrix can be expressed exactly as an H-matrix and no approxima-
tion is needed. The number of children for the internal nodes can be either 1 or 2.
More about this is discussed in the next section.

2.4. H-matrices

A block partition tree TI×I , is a format to represent and store a matrix. The H-
matrix representation has the same tree structure as TI×I , and the matrix entries are
actually stored in its leaves. If a leaf is an Rk-matrix, then its corresponding block
is stored as an Rk-matrix (or rank-k) format; otherwise it is a full matrix.

We can recursively define the H matrices induced by TI×I as follows:

For r, s ∈ V (Gi), connected in Gi and #L
(i)
r , #L

(i)
s > Ns , define an Hr,s as

Hr,s =
{[

Hv,w | v ∈ C(i)
r , w ∈ C(i)

s

]
| Hv,w ∈ Hv,w

}
.

For r, s ∈ V (Gi), but not connected in Gi , and #L
(i)
r , #L

(i)
s > Ns , define an Hr,s to

be a Rk-matrix. For r, s ∈ V (Gi) and #L
(i)
r , #L

(i)
s ≤ Ns define Hr,s matrix to be an

ordinary dense #L
(i)
r × #L

(i)
s matrix.

As an example, the (hierarchical) structure of an H-matrix with Ns = 1 based on
the block cluster tree of Fig. 9 is shown in Fig. 10.
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Rk
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Fig. 10. The hierarchical structure of the H-matrix with the block cluster tree in Fig. 9
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3. H-matrix arithmetic

Because of the special tree structure of a H-matrix, the H-matrix arithmetic is defined
for H-matrices. Its computation complexity, which depends on the tree structures
of H-matrices, is analyzed in [2], [6], [3]. In this section, we will give a brief review
of some basic operations that are defined by H-matrix arithmetic.

3.1. Properties of rank k-matrices

The basic building blocks of H-matrices are low rank matrices (called Rk-matrices).
A m × n matrix M is called an Rk-matrix if its rank ≤ k and is represented in the
form of matrix product:

M = ABT , (4)

where M is m× n, A is m× k and B is n× k.

If k is much smaller than m and n, by representing M in Rk-matrix format we can
save storage and reduce the computational complexity of the operators such as
matrix-vector multiplication and matrix-matrix multiplication.

The computational complexity of Rk-matrix-Rk-matrix addition can also be re-
duced to O(k2(n + m) + k3) by using the truncated singular value decomposition
[2], which approximates the exact sum by an Rk-matrix.

Let M1 = A1B
T
1 , M2 = A2B

T
2 be Rk-matrices. The truncated SVD which truncates

M = M1 +M2 to an Rk-matrix M̃ is defined as shown in Fig. 11.

3.2. Hierarchical truncation

Sometimes it is necessary to approximate an H-matrix by an Rk-matrix; this is
needed occasionally for H-matrix-matrix multiplication as described in Sect. 3.5.

If the given H-matrix is already an Rk-matrix, there is nothing to be done. If the given
H-matrix is a full matrix, then we apply the above SVD algorithm for approximating
general matrices by Rk-matrices. Otherwise, we first apply hierarchical truncation
recursively to the blocks of the H-matrix, as shown in Fig. 12. Then we need to
truncate the 2×2 block matrix (with Rk-matrix blocks) to a single Rk-matrix. Since
the 2× 2 block matrix is a rank-4k matrix, we can reduce the problem to finding the
SVD of a single 4k× 4k matrix. This provides the final truncation shown in Fig. 12.

Fig. 11. Pseudocode for approximate sum of Rk-matrices
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Fig. 12. The process of the hierarchical multiplication and truncation

3.3. H-matrix-vector multiplication

The product Hv of an H-matrix times a vector is computed recursively by the multi-
plication of the subblocks of a H-matrix with the corresponding segments of v: if H

is a full matrix then use standard matrix-vector multiplication; if H is an Rk-matrix
then Rk-matrix-vector multiplication is called; else if H has children, then for each
child Hi use H-matrix vector multiplication. Note that this is an exact operation.

3.4. H-matrix addition

H-matrix addition is defined by adding the corresponding subblocks of two H-
matrices with the same block partition tree TI×I and its result is also a H-matrix
with the same tree structure: if the subblocks are full matrices then use exact matrix
addition to add them and generate a block in the full matrix format; otherwise if they
are Rk-matrices then use truncated Rk-matrix addition defined in the Sect. 3.1 to
truncate the sum to an Rk-matrix. H-matrix subtraction can be defined in a similar
way.

3.5. H-matrix multiplication

The multiplication of two H-matrices (H ← H +H H1 ∗H H2) (H1 with TI×J and
H2 with TJ×K ) gives a H-matrix H with TI×K . So depending on the cluster tree
structures there can be four cases:

(1) H1, H2 and H all have subblocks. Then multiplication is done recursively on the
subblocks.

(2) If H has subblocks but H1 or H2 does not, then the product, which is an Rk-
matrix or full matrix, is partitioned and added to H .

(3) If H is a full matrix, then the product is added to the target directly.
(4) If H is an Rk-matrix, then the hierarchical multiplication and truncation is

called to get a product in Rk-matrix format, as described in Sect. 3.2.

3.6. H-matrix inversion

Let +H and ∗H be H-matrix addition and multiplication as defined in Sect. 3.4
and 3.5. H-matrix inversion is based on the block Gauss-Jordan elimination; the
exact matrix operators are replaced by the H-matrix arithmetic which computes

the approximate inverse in a cheaper way. Let H =
[

H11 H12
H21 H22

]
be a 2× 2 block on
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the top level and invH denote H-matrix inversion. The process of H-matrix inversion
is defined recursively as

invH(H) =
[

H ′11 H ′12
H ′21 H ′22

]
, where (5)

S = H22 −H H21 ∗H invH(H11) ∗H H21,

H ′11 = invH(H11)+H invH(H11) ∗H H12 ∗H invH(S) ∗H H21 ∗H invH(H11),

H ′12 = −invH(H11) ∗H H12invH(S),

H ′21 = −invH(S) ∗H H21 ∗H invH(H11),

H ′22 = invH(S). (6)

3.7. H-matrix LU factorization and Cholesky factorization

We also can factor a H-matrix by H-LU factorization or H-Cholesky factorization,
which generates approximate factors in the H-matrix format.

The complexity of H-LU with respect to TI×I is O(n log2 n k2) [6]. Note that [6] also
shows the recursive way to compute H-LU factors step by step. An approximate
H-matrix triangular solve algorithm can be developed recursively provided all diag-
onal leaf blocks are nonsingular full matrices. An upper triangular H-matrix U

is either an upper triangular full matrix (if it is a leaf node), or has the recursive
structure

U =
[

U11 U12
0 U22

]
(7)

with U11 and U22 upper triangular H-matrices. A lower triangular H-matrix is a
matrix whose transpose is an upper triangular H-matrix. Solving (approximately)
U X = B for X where B is a consistently structured H-matrix can then be done
recursively using blockwise back-substitution. Then the H-LU factorization of

[
A11 A12
A21 A22

]
=

[
L11 0
L21 L22

] [
U11 U12

0 U22

]
(8)

is computed by the pseudocode shown in Fig. 13.

Using triangular solves, H-Cholesky factorization can also be defined in a similar
way.

The H-matrix inverse, H-LU factors and H-Cholesky factors can be used as precon-
ditioners in iterative methods. Since the complexity of H-matrix inversion involves
large constants and H-LU and H-Cholesky are cheaper to perform, instead of using
a H-inverse, we use H-LU or H-Cholesky factors as preconditioners in iterative
methods to solve systems of linear equations.
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Fig. 13. H-matrix LU factorization

4. Experimental results

In this section, we show the experimental results of applying our algebraic H-matrix
construction approach combined with H-matrix arithmetic to solve two kinds of
systems of linear equations, both arising from two different discretization methods
to construct approximate solutions to partial differential equations.

To show the performance of our approach, which is based on HEM, we compare it
with the domain decomposition clustering algorithm using Nested Dissection (ND)
[7]. We also compared H-preconditioners obtained by the algebraic approaches
with other preconditioners when used with GMRES. The preconditioners are: H-
inverse based on HEM (HEM-H-INV), H-LU factors based on HEM (HEM-H-
LU), H-Cholesky factors based on HEM (HEM-H-CH), H-LU factors based on
ND (ND-H-LU), H-Cholesky factors based on ND (ND-H-CH), as well as Jacobi
Over-Relaxation (JOR) and smoothed aggregation AMG [8].

GMRES did not converge for the H-inverse based on Nested Dissection (ND-H-
INV) (k = 4) used as a preconditioner for our test problems. Increasing the rank of
the Rk matrices to k = 8 or higher did result in convergence; however, the cost of
this approach greatly exceeded the cost of using the H-inverse based on HEM.

The iteration stops when the original residual was reduced by the factor of 10−12

as measured by the 2-norm. The convergence rate a, defined as the average decreas-
ing speed of residuals in each iteration, can be obtained by solving the equation:
at = 10−12, where t is the number of iterations.

To compute H-LU and H-Cholesky factors, we used H-matrix arithmetic with adap-
tive ranks: the rank of each Rk-matrix block MLi×Lj

approximating a matrix A in
a H-matrix satisfies rank(MLi×Lj

) = min{ k | �k ≤ α�1 }, where �i is ith largest
singular value of A, and α is a parameter to control the accuracy. In this paper we
choose α = 0.0625.

But to compute H-inverses, we used the H-matrix arithmetic with fixed ranks: the
rank of each Rk-matrix block MLi×Lj

is less than k, since the fixed rank H-matrix
arithmetic had better speed and convergence rates than the adaptive rank. Here we
set k = 4.
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We also set the sizes of all the leaf blocks in a H-matrix to be smaller than Ns = 40.

The Meschach library [10] was used for the data structures and functions related to
full matrices and vectors.

4.1. H-matrix preconditioners for finite element method

The first problem is to solve a system

Kb = f, (9)

where K is a stiffness matrix. The experiments in this section were carried out on a
dual processor computer with 64-bit Athlon 4200++ CPU’s and 3GB of memory.

K is constructed by using the grid generator of Persson and Strang [9] and apply-
ing the piecewise linear finite element method for ∇2u = f in � and u(x, y) =
e2x cos(2y)+ x3− 3xy2 on ∂�. Note that K is sparse, symmetric, and positive defi-
nite. Figure 14 shows an example of a mesh with the element size h0 ≈ 0.2, and the
distribution of the nonzero entries in K based on the mesh.

In our test, we chose h0 ≈ 0.020, 0.015, 0.012, 0.010, 0.007, and 0.005. The cor-
responding number of unknowns are: n = 8753, 15697, 24657, 35632, 73131, and
143834, respectively.

Figure 15 shows the time required for HEM and ND to build a cluster tree and to
build the corresponding H-matrix over K. Figure 16 compares the time taken to
compute H-LU factors, H-Cholesky factors and H-inverses based on the H-matri-
ces built in the previous stage. Figure 17 compares their corresponding memory
storage. Figure 18 shows the time taken by preconditioned GMRES for the given
preconditioners.

0 10 20 30 40 50

0

10

20

30

40

50

nz = 345

Fig. 14. The left side is a roughly uniform mesh on a unit circle with the element size h0 ≈ 0.2. The right
side is the distribution of the nonzero entries (black dots) in the stiffness matrix K based on the left mesh
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Fig. 15. Comparison of the times for HEM and ND to build a cluster tree TI×I (left) and the time to
build a H-matrix using TI×I (right) for the finite element problem

Figure 19 compares the total running time (the time to construct precondition-
ers plus the time for preconditioned GMRES) and Fig. 20 shows the convergence
rates of JOR and H-matrix preconditioners. Based on the above figures, we can see
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Fig. 16. Comparison of the times to construct H-matrix preconditioners (FEM problem)
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Fig. 17. Comparison of the storage of different H matrix preconditioners
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Fig. 18. Comparison of the times for GMRES with various preconditioners (FEM problem)

10
4

10
5

10
0

10
1

10
2

10
3

10
4

Total time (time of building precodioners + time of GMRES iterations)

T
im

e(
se

c.
)

Problem size

HEM−H−LU
ND−H−LU
HEM−H−Cholesky
ND−H−Cholesky
JOR
HEM−H−INV

Fig. 19. Comparison of the total running time of GMRES with different preconditioners (FEM problem)



An algebraic approach for H-matrix preconditioners 185

10
4

10
5

10
−2

10
−1

10
0

Convergence rates of various preconditioners

C
on

ve
rg

en
ce

 r
at

e

Problem size

HEM−H−LU
ND−H−LU
HEM−H−CH
ND−H−CH
JOR
HEM−H−INV

Fig. 20. Comparison of the convergence rates of GMRES with different preconditioners (FEM problem)

that with respect to the convergence rate, all the H-matrix preconditioners outper-
form JOR; as to the total running time, H-LU and H-Cholesky factors are better
and increase more slowly with problem size than JOR. H-inverses outperform JOR
when the problem size is bigger than 105. H-LU and H-Cholesky factors are cheaper
to compute than H-inverses. HEM and ND are comparable with each other as to
the total running time and the convergence rates.

4.2. H-matrix preconditioners for saddle point systems

The second problem is the saddle point system, generated by meshfree discretiza-
tions to a second-order partial differential equation defined on a domain � ∈ R2 [8]:

⎧
⎨

⎩

−∇2u(x) = f (x), x ∈ �

u(x) = g(x), x ∈ �D

(∂u/∂n)(x) = h(x), x ∈ �N,

(10)

where �D ∪ �N is the boundary of � and the domain � is (0, 1)× (0, 1).

A Meshfree scheme, the Reproducing Kernel Particle Method (RKPM), is used
to discretize the continuous problem (10). The generated meshfree linear system
Kx = F is

[
A BT

B 0

] [
u

λ

]
=

[
c

d

]
. (11)
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Ω
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ΓD

ΓN ΓN

The stiffness matrix K :=
[

A BT

B 0

]
in (11) is symmetric but indefinite. But the subm-

atrix A is symmetric positive semi-definite. To avoid preconditioning an indefinite
system, we solve the following equivalent system:

[
A BT

−B 0

] [
u

λ

]
=

[
c

−d

]
. (12)

To construct preconditioners, one option is to compute the approximate H-inverse
over K (HEM-H-INV) and use it as a preconditioner. Another option is to factorize
K. Since K is indefinite we can not directly apply Cholesky factorization to it, but
we can factorize K in the following way:

[
A BT

B 0

]
=

[
L1 0

L2 L3

] [
I 0

0 −I

] [
LT

1 0

LT
2 LT

3

]
=

[
L1 0

L2 −L3

] [
LT

1 LT
2

0 LT
3

]
, (13)

where L =
[

L1 0
L2 L3

]
is a lower triangular matrix and U =

[
LT

1 LT
2

0 LT
3

]
is an upper

triangular matrix. We can use them as preconditioners in GMRES.

To approximate the submatrices L1, L2 and L3 we use the following approach:

(1) Since A is symmetric positive semi-definite and A = L1L
T
1 , we approximate A

by an H-matrix AH; then apply H-Cholesky factorization to AH and we obtain
L1 which is represented in the H-matrix format.

(2) Since B = L1L
T
2 , by solving an H-matrix lower triangular system L1L

T
2 = B we

can get L2. To save storage and to speed up the computation, L2 is represented
by the Meschach sparse matrix format [10].

(3) Since L3L
T
3 = L2L

T
2 and L2L

T
2 is relative small, we apply the ordinary Cholesky

factorization to the product and get L3 in the full matrix format.

We use HEM-H-CH or ND-H-CH to indicate the above factorization according to
the method used to build the cluster tree.
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Fig. 21. Comparison of HEM-H-Cholesky and ND-H-Cholesky factorization of A in the saddle point
systems

In our test set, the number of the basis functions for the domain � is N� =
1600, 6400, 25600, 102400 and the corresponding number of the boundary basis
functions is N� = 80, 160, 320, 640. Thus the problem sizes are n = 1680, 6560,
25920, and 103040 respectively. The experiments in this section were carried out on
a dual processor Dell computer wint Intel Xeon CPU’s running at 2.4GHz.

Figure 21 compares HEM and ND based H-Cholesky factorization of A. The upper
left figure shows the time to build a cluster tree TI ; the upper right shows the time
to build AH based on TI ; the lower left shows the time to factor AH; and the lower
right shows the required storage of L1 in megabytes (MB). Based on Fig. 21, the
overall performance of HEM and ND are very close to each other.

Figure 22 compares the times and convergence rates of the following precondi-
tioners: JOR, smoothed aggregation AMG [8], H-Cholesky based factors (13) and
HEM-H-INV. The time in the figure includes the time to build the preconditioners
and the time of GMRES iterations.

As to JOR and AMG, we did not have enough memory for n = 103, 040. Based on
Fig. 22, we can see that the approach we described above to factor K (13) works
really well, while both HEM and ND outperform JOR and AMG with respect to the
total running time and convergence rates. ND is the best among the preconditioners
and HEM is comparable.
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[1] Börm, S., Grasedyck, L., Hackbusch, W.: Hierarchical matrices. Technical report, Max-Planck-
Institut für Mathematik in den Naturwissenschaften, Leipzig, Germany 2003. Lecture Notes No.
21. Available online at www.mis.mpg.de/preprints/ln/
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