
A Multi-level Approach for Document
Clustering

S. Oliveira1 and S. C. Seok1

The University of Iowa, Iowa City IA 52242, USA

Abstract. The divisive MinMaxCut algorithm of Ding et al. [3] pro-
duces more accurate clustering results than existing document cluster
methods. Multilevel algorithms [4, 1, 5, 7] have been used to boost the
speed of graph partitioning algorithms. We combine these two algorithms
to construct faster and more accurate algorithm. In this new algorithm,
the original graph is coarsened, partitioned by the divisive MinMaxCut
algorithm and then decoarsened. A refining algorithm is also applied to
improve the accuracy at each level.

1 Introduction

Clustering is the task of classifying a collection of objects, such as documents,
into natural categories. Diagnostic tasks in medicine involve classifying a set
of symptoms according to the cause and treatment methods. Data mining fre-
quently involves separating documents into different categories so as to provide
only relevant information for a user’s query. We do not expect that classification
or clustering algorithms will ever be 100% accurate, and the related optimiza-
tion problems are frequently NP-hard. However, we do expect to find algorithms
which are highly accurate that are nevertheless very efficient for practical clus-
tering problems.

A variety of algorithms have been proposed and are in widespread use, includ-
ing the K-means method and its variants [9], the Ratio Cut method [4], and the
Normalized Cut method [12]. A recent method that has been proposed is based
on the computation of eigenvectors which is called the MinMaxCut algorithm
proposed by Ding et al. [3].

The MinMaxCut algorithm proposed by Ding et al. [3] outperformed the
existing document clustering methods in accuracy. The algorithm leads to better
accuracies because it aims to satisfy both the following desirable properties of a
clustering of objects: (P1) nodes in the same cluster are similar, and (P2) nodes in
the different clusters are dissimilar. The K-means method mainly achieves (P1),
while RatioCut and NormalizedCut mainly achieve (P2). Two-way MinMaxCut
is a clustering method which splits the whole cluster into two smaller clusters
while divisive MinMaxCut is a K-way MinMaxCut which has as many as K
clusters by splitting one of the current clusters repeatedly. A different version of
K-way MinMaxCut may have a certain stopping criterion to decide how many
clusters it has. The two key algorithms in this divisive method are how to select a

cluster to split and how to split the cluster. Two-way MinMaxCut is used to split
one cluster into two clusters for divisive MinMaxCut algorithm. Ding et al. [3]
presents an efficient way to select one cluster using the sum of similarities of
all pairs of each cluster. The two-way MinMaxCut algorithm they use is closely
related to the spectral graph partitioning algorithm, which is finding the Fiedler
vector [11], the second smallest eigenvector of the Graph Laplacian associated
with a graph. Finding this eigenvector is, however, expensive and spends the
majority of the time required by spectral partitioning techniques.

A class of graph partitioning algorithms [4, 1, 5, 7] coarsen the graph by col-
lapsing vertices and edges, partition the smaller graph, and then decoarsening
the partition on the coarsened graph. These methods are called multilevel graph
partitioning schemes. These speed up the execution time. Later papers [1] use
refining steps to achieve more accurate partitions Hendrickson and Leland [5]
presented an improved algorithm for coarsening step by using edge and ver-
tex weights to capture the collapsing of the vertex and edges. The coarsening
algorithm of Karypis and Kumar [7] has much smaller coarsened graphs than
other multilevel algorithms. They also present a variant of Kernigan-Lin (KL)
refinement method which is faster than the original KL algorithm.

In this paper we present a divisive MinMaxCut algorithm to which a mul-
tilevel scheme, that is, coarsening, clustering and decoarsening, is applied. Our
algorithm take advantage of both fast multilevel algorithm and accurate divisive
MinMaxCut algorithm. This method uses edge weights to match 80% to 90% of
the nodes by using edges with the highest weights. The other nodes with smaller
edge weights, are grouped randomly. The coarsest graphs have less than one
hundred nodes. The K-way MinMaxCut method produces a fairly good cut for
this coarsest graph. Then during the decoarsening step, the cut for the coars-
est graph is decoarsened and refined for all level-ups. The initial cut from the
coarsest graph is getting more accurate as the level goes up and finally becomes
a very accurate cut for the original graph. The major advantage of multilevel
scheme is speed. Furthermore the cut which is decoarsened and refined at last for
the original graph is more accurate than that of Ding et al’s version of divisive
MinMaxCut algorithm.

Our algorithm was tested on newsgroup articles in 20 newsgroups. The accu-
racy is mostly increasing first and then decreasing and the speed slowly improves
as the number of levels increases. With more than 2 levels our algorithm takes
less than half the time of Ding et al.’s algorithm. Like other multilevel algo-
rithms, constructing the coarsened graphs takes most of the execution time. So
for further improvement, a more efficient coarsening method is highly desirable.

2 K-way MinMaxCut and related issues

In this section we first of all introduce the divisive MinMaxCut algorithm. Then
we discuss some issues related to Multilevel approach.

2.1 Two-way and K-way MinMaxCut

Divisive MinMaxCut algorithm is based on the two-way MinMaxCut. It starts
with a similarity matrix S = (sij), where sij ≥ 0 stands for the similarity
between node i and j. The more two nodes are similar the bigger sij is. Similarly,
the less two nodes are related the smaller sij is. It aims to maximize the sum
of similarities in a cluster and to minimize the sum of similarities of two nodes
in different clusters. We define the sum of similarities between two clusters A
and B as s(A,B) =

∑
i∈A,j∈B sij , and the sum of similarities of a cluster A

as s(A,A) =
∑

i∈A,j∈A sij . The two-way MinMaxCut aims to minimize the
objective function

JMMC =
s(A,B)
s(A,A)

+
s(A,B)
s(B,B)

=
s(A, Ā)
s(A,A)

+
s(B, B̄)
s(B,B)

(1)

Note that there are many objective functions that satisfy both (P1) and (P2).
However, a solution to a continuous relaxation of JMMC can be computed ef-
ficiently [2, 3]. An indicator vector q is used as the clustering solution. Each
component of q gets one of two discrete numbers (qi = a if i ∈ A, otherwise
qi = b). Instead, if we relax the condition that qi = a or b to qi ∈ R, it is well
known [3] that the optimal solution of (1) is the eigenvector q2 associated with
the second smallest eigenvalue of the system below with D = diag(d1, d2, · · · , dn)
and di =

∑
j sij :

(D − S)q = λDq. (2)

After searching an optimal dividing point icut, the final cut is computed

A = {i | q2(i) ≤ q2(icut)}, B = {i | q2(i) > q2(icut)}. (3)

The optimal dividing point icut is the minimizer of the objective function. The
dividing point can be computed in O(N2) time with a linear search. Note that,
however, this does not guarantee that the cut after this linear search has no
room to be more accurate. We talk about the refinement method in section 2.3.

A good generalization of the two-way MinMaxCut objective function (1) is:

JMMC(C1, ..., CK) =
K∑

k=1

s(Ck, C̄k)
s(Ck, Ck)

=
∑

1≤p≤q

JMMC(Cp, Cq). (4)

where C̄i =
⋃

j 6=i Cj .

2.2 Divisive MinMaxCut

Divisive MinMaxCut algorithm repeatedly performs two main steps. One is se-
lecting a cluster to split and the other is applying the two-way MinMaxCut
algorithm. We discussed the two-way MinMaxCut algorithm which is how to
split one cluster into two clusters in section 2.1. So we now talk about the way
to select the next cluster to split. Ding et al. [3] suggests 5 plans:

Size-priority cluster split: Choose the biggest current cluster.
Average similarity: Select the cluster with smallest s̄kk := s(Ck, Ck)/|Ck|2.
Cluster cohesion: Select the cluster which has the smallest cohesion.
Similarity-cohesion: Select the cluster with the smallest s̄kk × cohesion.
Greedy: Select the cluster which leads to the minimum objective function value.

The best results are obtained by average similarity cluster selection [3]. For
the stopping criterion, we use a user-selected number K; that is, the algorithm
selects and splits clusters until there are K clusters. Another criterion is using a
threshold on the objective function value which increases monotonically as the
number of leaf clusters increase. For details, see [3].

2.3 Refinement

The Kernighan-Lin (KL) refinement [8] method was successfully applied for re-
fining partitions of graphs in a multilevel algorithm [7]. We use the KL algorithm
for our refining scheme. KL starts with an initial partition. It iteratively searches
for nodes from each cluster of the graph if swapping of a node to one of the other
K − 1 clusters leads to a better partition. For each node, there would be more
than one cluster to give smaller objective function value than the current cut. So
the node moves to the cluster that give the biggest improvement. The compu-
tation for each node takes only O(N) complexity. So the overall complexity per
round does not exceed O(N2). The iteration terminates when it does not find
any node to improve the partition or it finds the predefined number of nodes
which lead to a better result. We may apply several iterations of KL to find a
better partition.

2.4 Multi-level approach: coarsening and decoarsening

The basic concept is that when we have a big graph G0 = (V0, E0) to cluster, then
we construct a smaller graph G1 = (V1, E1) each of whose vertices is a group of
several vertices from G0. We can apply a clustering method to this smaller graph,
and transfer this partition to the original graph. This idea is very useful because
smaller matrices requires much less time. The process we construct the smaller
matrix is called coarsening, and the reverse process is called decoarsening. We
can recursively coarsen Gi = (Vi, Ei) to get Gi+1 = (Vi+1, Ei+1).

The decoarsening step is the way back to the original graph by going through
the graphs Gi, Gi−1, · · · , G0. Note that even if the cluster in Gi is a local opti-
mum, the cluster in the next finer level Gi−1 might not be a local optimum. So
we need to check if there is any room to improve the partition in this finer level.
Refinement methods are used as the level goes up by one. For more details in
the context of graph partitioning, refer to [6, 7].

3 Specific Algorithm and Computational Experiments

3.1 Description

The algorithm consists of three main steps. (1) Coarsening; (2) Clustering the
coarsest graph into K subgraphs with the divisive method; (3) Decoarsening and
refinement.

The Coarsening and Decoarsening steps are implemented by multiplying spe-
cial matrices E1, · · · , Elevel. We select two nodes to collapse by checking edges
from the highest edge weight. Then one column of E is filled with two 1’s for the
two nodes and 0’s for the rest. We collapse less than 90% of nodes by checking the
edge weights. The rest of nodes which are not grouped are collapsed randomly.
We finally construct S0, S1, · · · , Sl and E1, · · · , El such as Si = E′

i ∗Si−1 ∗Ei and
i = 1, · · · , l. The coarsest similarity matrix is used to get the initial partition
Cut. During the Decoarsening step the Cut in the current level is multiplied by
the proper E for the partition in the next finer level.

We use Divisive MinMaxCut algorithm with average similarity selection
scheme. In this algorithm we don’t use any specific stopping criterion but prede-
fined number of clusters, let us say K. That is the divisive method stops when
we have K clusters in it.

3.2 Source of data and preprocessing

The experiments is performed on newsgroup articles in 20 newsgroups (datasets
available online [10]). We focus on two sets of 5-clusters cases. The choice of
K = 4, 8 where the clustering results are less sensitive to cluster section is
avoided. The newsgroups chosen are listed in Table 3.2.

Dataset M5 Dataset L5
NG2: comp.graphics NG2: comp.graphics
NG9: rec.motorcycles NG3: comp.os.ms-windows
NG10: rec.sport.baseball NG8: rec.autos
NG15: sci.spaces NG13: sci.electronics
NG18: talk.politics.mideast NG19: talk.politics.misc

Table 1. 10 newsgroups at different overlapping levels

Clusters in M5 overlap at medium level. Meanwhile, clusters in L5 overlap
at large. From each set of the newsgroups, we construct two datasets of differ-
ent sizes: (B) randomly select 100 articles from each newsgroup. (U) randomly
select 200, 140, 120, 100, 60 articles from each of the 5 newsgroups, respectively.
Dataset(B) has clusters of equal sizes, which is presumably easier to cluster.
Dataset(U) has clusters of significantly varying sizes, which is presumably dif-
ficult to cluster. Therefore we have 4 newsgroup- cluster size combination cate-
gories.

After documents from each category are extracted, we construct a word-
document matrix W = (x1, · · · , xN) using standard tf.idf scheme. After each
document of W is normalized to 1 using L2 norm, document-document similar-
ities are calculated as S = WT W .

3.3 Result and Analysis: accuracy, time, objective function

This section has two main parts. One is comparison of two methods, Divisive
MinMaxCut and Multilevel divisive MinMaxCut. The other is some important
issues regarding the multi level approach. We constructed 2 different randomly
sampled datasets from each category. The average of the time and accuracy are
compared with the result from [3]. Their results come from the average of 5
different datasets from each category. For both cases the selection algorithm for
the next cluster to split is average similarity selection.

We compare accuracies, time consuming and saturation for Divisive MinMax-
Cut and Multilevel divisive MinMaxCut in Table2. I/F stands for ’initial’ and
’final’ accuracies. D and MD mean divisive MinMaxCut and Multilevel divisive
MinMaxCut respectively. Initial accuracy of D is the accuracy for the clustering
generated by the eigenvector without any refinement. Initial accuracy of MD is
the accuracy measured just after clustering the coarsest graph and decoarsening
the partition without refinement. The number of levels used for MD is 4. We will
see the results with different levels after this. All time consumings are in second
and all accuracies are in percent.
Accuracy We see the initial accuracy of D is mostly better than that of MD
but the final accuracy of MD is mostly better than that of M. The reason is
that the initial partition of D comes from the whole graph while the initial
partition of MD comes from much smaller graph, the coarsest graph. Instead,
MD is refining at each level up of decoarsening step.The final result is much
different and improved from the initial partition.
Time MD finishes clustering much faster. MD spends most time for coarsening.
For example, it takes 1.63 seconds to go through the first two steps for a dataset
of M5B and coarsening takes 1.62 of 1.63 and partitioning takes the rest, 0.01.
And 0.19 second is spent for decoarsening and refinement. Note that refinement
step for D takes various time consuming depending on the refining scheme and
the number of rounds it has.
Saturation comparison: Improvement of accuracy does not exceed some point
even though refining step is applied repeatedly. This upper bound is called the
saturation of objective function. Saturation of D comes from [3] and that of MD
comes from the best result among all levels of each category. This shows MD
provides more accurate result than D.

Now we focus on MD itself. We will see how different results MD gives us
depending on the various levels. The main focuses here are (a) the relation
between time and number of levels and (b) accuracy and the number of levels.
(a) time and level: Table 3 shows how much time is spent for each of three
steps. We used two datasets. One is balanced and the other is unbalanced. Time
for each of all three steps is measured. As we see the first step, coarsening,

D Accuracy I/F MD Accuracy I/F D time I/F MD time I/F D sat MD sat

M5B 83.5/91.7 77.2/98.4 2.91/28.53 1.63/1.82 92.5 99.2
M5U 69.3/72.4 70.5/87.5 3.83/55.48 2.99/3.17 91.7 97.42
L5B 88.4/91.7 62.6/81.4 2.01/28.82 1.60/1.71 81.4 95.0
L5U 74.8/74.1 58.5/83.2 3.72/54.94 3.04/3.18 79.0 93.39

Table 2. Comparison of plain divisive(D) and multidivisive(MD) methods for different
categories. Time and accuracy are measured for with/without refinement(I/F) cases.
Upper bound of accuracy, saturation(sat), for both cases D and MD are experimented.

takes the most time. Partitioning step takes less time as the number of levels
increases. When the number of nodes in the level is less than 100 it takes at most
one hundredth second. In both cases the total time consumed decreases slowly
as the number of levels increases.

level 1 2 3 4

B 1.43/0.33/0.19 1.59/0.05/0.18 1.58/0.00/0.18 1.57/0.01/0.19
UB 2.65/0.53/0.22 2.98/0.08/0.27 3.02/0.01/0.38 2.96/0.00/0.18

Table 3. Time consuming of all three steps (coarsening/partitioning/decoarsening) of
MD for balanced(B) and unbalanced(UB) cases with various levels.

(b) accuracy and level: As you see in Table 4, the accuracy and the number
of levels curve kind of upside down parabola on average. All 8 dataset are listed,
where each 2 datasets are from one of 4 categories. The best accuracy comes
from level 3 or 4 where the number of nodes in the coarsest graph is around 50.

level 1 2 3 4 5 6

M5Ba 80.4 98.2 98.2 99.2 96.2 68.2
M5Bb 91.8 94.8 95.8 97.6 92.6 60.2
L5Ba 93.4 80.5 95.0 71.2 89.2 82.0
L5Bb 85.6 88.8 54.6 91.6 62.8 65.4
M5Ua 76.0 86.8 79.4 97.3 80.6 91.26
M5Ub 94.3 76.6 97.4 77.7 88.2 78.9
L5Ua 75.5 69.4 82.9 78.9 66.1 54.8
L5Ub 72.3 64.7 93.4 87.6 72.3 59.4

Table 4. Relationship between accuracy and level for MD.

We conclude that Multilevel divisive MinMaxCut works very well when com-
pared to the existing cut-based document clustering methods in time and accu-
racy. More research may be necessary on the relationship between the number

of levels and accuracy; that is, how we can decide the optimal number of levels
depending the size of the original graph.

Acknowledgments

We would like to acknowledge the support of the National Science Foundation for
this work through grant DMS-02-13305 and the help from Dr. David Eichmann
for generating the similarity matrices.

References

1. T. Bui and C. Jones. A heuristic for reducing fill in sparse matrix factorization.
In 6th SIAM Conf. Parallel Processing for Scientific Computing, pages 445–452,
1993.

2. C. Ding, X. He, H. Zha, M. Gu, and H. Simon. A min-max cut algorithm for
graph partitioning data clustering. In ICDM 2001, Proceedings IEEE International
Conference on Data Mining, 2001, pages 107–114. IEEE, 2001.

3. C. Ding, X. He, H. Zha, M. Gu, and H. Simon. A minmaxcut spectral method for
data clustering and graph partitioning. Technical Report 54111, LBNL, December
2003.

4. L. Hagen and A. Kahng. Fast spectral methods for ratio cut partitioning and
clustering. In Proceedings of IEEE International Conference on Computer Aided
Design, pages 10–13. IEEE, 1991.

5. B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs.
Technical Report SAND93-1301, Sandia National Laboratories, 1993.

6. M. Holzrichter and S. Oliveira. A graph based davidson algorithm for the graph
partitioning problem. International Journal of Foundations of Computer Science,
10:225–246, 1999.

7. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partition-
ing irregular graphs. Technical Report 95-035, Department of Computer Science,
University of Minnesota, Minneapolis, MN, 1998.

8. B.W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. The Bell System Technical Journal, 1970.

9. J. MacQueen. Some methods for classification and analysis of multivariate obser-
vations. Proc. Fifth Berkeley Symp. Math. Statistics and Probability, 1:281–296,
1967.

10. A. McCallum. A toolkit for statistical language modeling, text re-
trieval, classification and clustering., 1996. Available on WWW at URL
http://www.cs.cmu.edu/~mccallum/bow.

11. A. Pothen, H. D. Simon, and Kang-Pu K. Liou. Partitioning sparse matrices with
eigenvectors of graphs. SIAM J. Matrix Anal. Appl., 11(3):430–452, 1990.

12. J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 22(8):888–905, Aug 2000.

