Communicators and Topologies

A communicator is a collection of processors that can send messages to
each other. A topology is a structure imposed on the processors in a com-
municator that allows the processors to be addressed in different ways. The
most basic approach consists of building a group, and then having the system
associate a context with a group using MPI_Comm_group, MPI_Group_incl,
and MPI_Comm _create.

1. MPI_Comm_group

int MPI_Comm_group(
MPI_Comm old_comm /* in */,
MPI_Group* group /* out */)

It simply returns the group underlying the communicator comm.
2. MPI_Group_incl

int MPI_Group_incl(

MPI_Group old_group /* in x/,
int new_group_size /* in */,
int ranks_in_old_group[] /* in x/,
MPI_Group* new_group /* out */)

It creates a new group from a list of processors in the existing group,

old_group. The number of processors in the new group is new_group_size,
and the processors to be included are listed in rank_in_old_group.
Processor 0 in new_group has rank ranks_in_old_group|[0] in old_group,
processor 1 in new_group has rank ranks_in_old_group(1] in old_group,
etc.

Parallel Algorithms (S. Oliveira)

3. MPI_Comm_create

int MPI_Comm_create(
MPI_Comm
MPI_Group
MPI_Commx

old_comm
new_group
new_comm

/* in *x/,
/* in */,
/* out */)

It associates a context with the group new_group and creates the
communicator new_comm. All of the processors in new_group be-
long to the group underlying old_comm.

4. MPI_Cart_create

int MPI_Cart_create(
MPI_Comm
int
int
int
int
MPI_Comm*

old_comm
number_of_dims
dim_sizes[]
wrap_around[]
reorder
cart_comm

/%
/*
/%
/*
/%
/*

in
in
in
in
in
out

*/,
*/,
*/,
*/
*/,
*/)

This creates a new communicator, cart_comm, by caching a cartesian
topology with old_comm. Information used on the construction of the

cartesian topology are:

e number_of dim(the number of dimensions in the cartesian co-

ordinate system)

e the array dim _sizes(the order of each dimension)

e the array wrap_around
(each dimension is circular: wrap_around[i]=1,
or linear: wrap_around|i]=0)

e reorder(own position in cartesian coordinates).

Parallel Algorithms (S. Oliveira)

5. MPI_Comm _split

int MPI_Comm_split(
MPI_Comm
int
int
MPI_Comm*

0ld_comm /*
split_key /*
rank_key /*
new_comm /*

in
in
in
out

*/,
*/,
*/,
*/)

It partitions the group associated with old_comm into subgroups, one
for each value of split_key. The rank in the new group is determined

by the value of rank _key.
MPI_Cart_coords

int MPI_Cart_coords(
MPI_Comm
int
int
int

cart_comm
rank
number_of_dims
coordinates[]

/*
/*
/*
/*

in =/,
in %/,
in */,
out */)

It takes the rank of a processor in cart_comm and returns its coor-
dinates coordinates in the grid.

MPI_Cart_rank

int MPI_Cart_rank(
MPI_Comm
int
intx*

cart_comm
coordinates[]
rank

/*
/*
/*

It returns a processor’s rank given its coordinates.

in =/,
in */,
out */)

