
1

Communicators and Topologies

A communicator is a collection of processors that can send messages to
each other. A topology is a structure imposed on the processors in a com-
municator that allows the processors to be addressed in different ways. The
most basic approach consists of building a group, and then having the system
associate a context with a group using MPI Comm group, MPI Group incl,
and MPI Comm create.

1. MPI Comm group

int MPI_Comm_group(
MPI_Comm old_comm /* in */,
MPI_Group* group /* out */)

It simply returns the group underlying the communicator comm.

2. MPI Group incl

int MPI_Group_incl(
MPI_Group old_group /* in */,
int new_group_size /* in */,
int ranks_in_old_group[] /* in */,
MPI_Group* new_group /* out */)

It creates a new group from a list of processors in the existing group,
old group. The number of processors in the new group is new group size,
and the processors to be included are listed in rank in old group.
Processor 0 in new group has rank ranks in old group[0] in old group,
processor 1 in new group has rank ranks in old group[1] in old group,
etc.



Parallel Algorithms (S. Oliveira) 2

3. MPI Comm create

int MPI_Comm_create(
MPI_Comm old_comm /* in */,
MPI_Group new_group /* in */,
MPI_Comm* new_comm /* out */)

It associates a context with the group new group and creates the
communicator new comm. All of the processors in new group be-
long to the group underlying old comm.

4. MPI Cart create

int MPI_Cart_create(
MPI_Comm old_comm /* in */,
int number_of_dims /* in */,
int dim_sizes[] /* in */,
int wrap_around[] /* in */,
int reorder /* in */,
MPI_Comm* cart_comm /* out */)

This creates a new communicator, cart comm, by caching a cartesian
topology with old comm. Information used on the construction of the
cartesian topology are:

• number of dim(the number of dimensions in the cartesian co-
ordinate system)

• the array dim sizes(the order of each dimension)

• the array wrap around
(each dimension is circular: wrap around[i]=1,
or linear: wrap around[i]=0)

• reorder(own position in cartesian coordinates).



Parallel Algorithms (S. Oliveira) 3

5. MPI Comm split

int MPI_Comm_split(
MPI_Comm old_comm /* in */,
int split_key /* in */,
int rank_key /* in */,
MPI_Comm* new_comm /* out */)

It partitions the group associated with old comm into subgroups, one
for each value of split key. The rank in the new group is determined
by the value of rank key.

6. MPI Cart coords

int MPI_Cart_coords(
MPI_Comm cart_comm /* in */,
int rank /* in */,
int number_of_dims /* in */,
int coordinates[] /* out */)

It takes the rank of a processor in cart comm and returns its coor-
dinates coordinates in the grid.

7. MPI Cart rank

int MPI_Cart_rank(
MPI_Comm cart_comm /* in */,
int coordinates[] /* in */,
int* rank /* out */)

It returns a processor’s rank given its coordinates.


