Evaluating Auditory Contexts and Their Impacts on Hearing Aid Outcomes with Mobile Phones

Syed Shabih Hasan, Octav Chipara Department of Computer Science/Aging Mind and Brain Initiative (AMBI) Yu-Hsiang Wu Department of Communication Sciences and Disorders Nazan Aksan Department of Neurology

THE UNIVERSITY OF LOWA

Hearing Loss in US

- 35 million people in the US have hearing loss
 - untreated → communication difficulties, depression, dementia etc.
- Primary intervention is hearing aid
 - $\simeq 50\%$ users satisfied with their performance in noise

Hearing Loss in US

- 35 million people in the US have hearing loss
 - untreated → communication difficulties, depression, dementia etc.
- Primary intervention is hearing aid
 - $\approx 50\%$ users satisfied with their performance in noise

Underlying causes of user dissatisfaction are poorly understood

Auditory Context

social interaction

Auditory Context

social interaction

activity

Auditory Context

social interaction

acoustic environment

activity

- Speech-in-noise tests: assess aspects of hearing aid technology
 - not representative of real-world auditory contexts

- Speech-in-noise tests: assess aspects of hearing aid technology
 - not representative of real-world auditory contexts
- Manual data collection: self-reports or diary methods
 - subjective, memory bias, scalability

- Speech-in-noise tests: assess aspects of hearing aid technology
 - not representative of real-world auditory contexts
- Manual data collection: self-reports or diary methods
 - subjective, memory bias, scalability

Existing evaluation methods are poor predictors of real-world performance

AudioSense

- Provides clinicians with subjective and objective measures of hearing aid outcomes and auditory contexts
 - subjective: Ecological Momentary Assessment (EMA)
 - objective: derived from audio and GPS
 - data is collected in real-time and in-situ
- EMA has been previous used by Henry et. al. and Galvez et al.
 - we collect sensor data, track subject compliance in real-time

S.S.Hasan, F. Lai, O. Chipara, Y-H. Wu

AudioSense : Enabling real-time evaluation of hearing-aid technology in-situ CBMS 2013

5

What are the typical auditory contexts?

What are the typical auditory contexts?

Are the hearing aid outcomes correlated?

What are the typical auditory contexts?

Are the hearing aid outcomes correlated?

Can the hearing aid outcomes be predicted?

Field Study

- 19 older adults
 - mild-to-moderate hearing loss
 - age range: 65 87
- 2 hearing aids
 - Phonak Bolero Q50 : low cost, low-end adaptive directional microphone (DM) and digital noise reduction (DNR)
 - Phonak Bolero Q90 : premium level, advanced DM and DNR
- 6 sessions
 - one unaided, one application practice
 - two allotted to each hearing aid
 - DM, DNR turned on/off

social interaction

acoustic environment

activity

social interaction

acoustic environment

Could you see the talker's face?

social interaction

acoustic environment

Could you see the talker's face?

What were you listening to?

Measuring the auditory context How noisy was it? acoustic environment Where were social interaction Could you you? see the activity talker's face? What were you listening to?

Measuring the outcomes

What are the typical auditory contexts?

Are the hearing aid outcomes correlated?

Can the hearing aid outcomes be predicted?

What are the typical auditory contexts?

Are the hearing aid outcomes correlated?

Can the hearing aid outcomes be predicted?

Noise level distribution

Noise level distribution

Noise level distribution

Noise level distribution

Location context distribution

Location context distribution

Importance of activity context

Importance of location context

Importance of location context

On evaluating auditory contexts

Auditory contexts:

• conversations and listening to media are most prevalent

• social engagement necessitates hearing well

Are the hearing aid outcomes correlated?

Remainder of the talk

Auditory contexts:

• conversations and listening to media are most prevalent

• social engagement necessitates hearing well

Are the hearing aid outcomes correlated?

Remainder of the talk

Auditory contexts:

• conversations and listening to media are most prevalent

social engagement necessitates hearing well

Are the hearing aid outcomes correlated?

Hearing aid outcome measurement

- Several dimensions are measured:
 - speech perception (SP), listening effort (LE), loudness (LD2), activity participation (AP), satisfaction (ST), and sound localization (LCL)
- Multiple dimensions help in understanding the underlying factors affecting the assessment
- Combining correlated outcomes can
 - reduce inherent noise
 - ease prediction

	\mathbf{SP}	\mathbf{LE}	\mathbf{ST}	LCL	LD2	AP
\mathbf{SP}	1.0000	0.6178	0.6562	0.5847	0.4785	0.5126
\mathbf{LE}	0.6178	1.0000	0.5963	0.5029	0.4732	0.6431
\mathbf{ST}	0.6562	0.5963	1.0000	0.5477	0.5429	0.5693
\mathbf{LCL}	0.5847	0.5029	0.5477	1.0000	0.3451	0.4030
LD2	0.4785	0.4732	0.5429	0.3451	1.0000	0.4989
AP	0.5126	0.6431	0.5693	0.4030	0.4989	1.0000

	\mathbf{SP}	\mathbf{LE}	\mathbf{ST}	LCL	LD2	AP
SP	1.0000	0.6178	0.6562	0.5847	0.4785	0.5126
\mathbf{LE}	0.6178	1.0000	0.5963	0.5029	0.4732	0.6431
\mathbf{ST}	0.6562	0.5963	1.0000	0.5477	0.5429	0.5693
\mathbf{LCL}	0.5847	0.5029	0.5477	1.0000	0.3451	0.4030
LD2	0.4785	0.4732	0.5429	0.3451	1.0000	0.4989
AP	0.5126	0.6431	0.5693	0.4030	0.4989	1.0000

• Spearman's rank correlation

	\mathbf{SP}	\mathbf{LE}	\mathbf{ST}	\mathbf{LCL}	LD2	AP
SP	1.0000	0.6178	0.6562	0.5847	0.4785	0.5126
\mathbf{LE}	0.6178	1.0000	0.5963	0.5029	0.4732	0.6431
\mathbf{ST}	0.6562	0.5963	1.0000	0.5477	0.5429	0.5693
\mathbf{LCL}	0.5847	0.5029	0.5477	1.0000	0.3451	0.4030
LD2	0.4785	0.4732	0.5429	0.3451	1.0000	0.4989
AP	0.5126	0.6431	0.5693	0.4030	0.4989	1.0000

- Spearman's rank correlation
- Moderate correlation (0.34 0.65)

	SP	\mathbf{LE}	ST	LCL	LD2	AP
SP	1.0000	0.6178	0.6562	0.5847	0.4785	0.5126
\mathbf{LE}	0.6178	1.0000	0.5963	0.5029	0.4732	0.6431
\mathbf{ST}	0.6562	0.5963	1.0000	0.5477	0.5429	0.5693
\mathbf{LCL}	0.5847	0.5029	0.5477	1.0000	0.3451	0.4030
LD2	0.4785	0.4732	0.5429	0.3451	1.0000	0.4989
AP	0.5126	0.6431	0.5693	0.4030	0.4989	1.0000

- Spearman's rank correlation
- Moderate correlation (0.34 0.65)
- Consider the four most correlated outcomes to compute the combined score

AuditoryContexts - May 23, 2014

Mapping to LE as it has the widest

80

100

- better discrimination
- f_1, f_2 , and f_3 fit a polynomial
- Combined score (**CB**) = $avg(LE, f_1, f_2, f_3)$

Scores divided into bins, curve fitted through median scores in each bin

- Mapping to LE as it has the widest distribution
 - better discrimination
- f_1, f_2 , and f_3 fit a polynomial
- Combined score (**CB**) = $avg(LE, f_1, f_2, f_3)$

On correlation between outcomes

Auditory contexts:

• conversations and listening to media are most prevalent

social engagement necessitates hearing well

Correlation between outcomes:

hearing aid outcomes are moderately correlated
calculated a combined score

Remainder of the talk

Auditory contexts:

• conversations and listening to media are most prevalent

social engagement necessitates hearing well

Correlation between outcomes:

hearing aid outcomes are moderately correlated
calculated a combined score

Remainder of the talk

Auditory contexts:

• conversations and listening to media are most prevalent

• social engagement necessitates hearing well

Correlation between outcomes:

hearing aid outcomes are moderately correlated

• calculated a combined score

• Challenges

- incorporate data from all subjects while accounting for individual differences
- should be able to capture interplay between contexts and outcomes

- Challenges
 - incorporate data from all subjects while accounting for individual differences
 - should be able to capture interplay between contexts and outcomes
- We created a linear model

$$Y = \beta + subject \cdot \sum_{x \in D} x + session \cdot \sum_{x \in D} x$$

• Challenges

combined

score

- incorporate data from all subjects while accounting for individual differences
- should be able to capture interplay between contexts and outcomes
- We created a linear model

$$Y = \beta + subject \cdot \sum_{x \in D} x + session \cdot \sum_{x \in D} x$$

- Challenges
 - incorporate data from all subjects while accounting for individual differences
 - should be able to capture interplay between contexts and outcomes

- Challenges
 - incorporate data from all subjects while accounting for individual differences
 - should be able to capture interplay between contexts and outcomes
- We created a linear model $Y \neq \beta$ + subject $\cdot \sum_{x \in D} x$ + session $\cdot \sum_{x \in D} x$ combined score intercept variations by subject

- Challenges
 - incorporate data from all subjects while accounting for individual differences
 - should be able to capture interplay between contexts and outcomes

- Challenges
 - incorporate data from all subjects while accounting for individual differences
 - should be able to capture interplay between contexts and outcomes

- Challenges
 - incorporate data from all subjects while accounting for individual differences
 - should be able to capture interplay between contexts and outcomes

Evaluating the prediction

24

On prediction of outcomes

Auditory contexts:

• conversations and listening to media are most prevalent

social engagement necessitates hearing well

Correlation between outcomes:

hearing aid outcomes are moderately correlated
 calculated a combined score

Outcome prediction: • auditory contexts + hearing aid features help in understanding outcomes

Conclusion

- Hearing aid outcomes depend on auditory contexts
 - AudioSense characterizes auditory contexts and outcomes accurately using subjective and objective data captured in-situ
- The proposed methodology enables new insights
 - prevalence of auditory contexts
 - highlighting the dependence of outcomes on contexts
- Future work
 - extend study to 55 users (largest study to date)
 - use audio data to characterize auditory contexts
 - novel sampling techniques to reduce the evaluation burden

Acknowledgement

- Audiology collaborator: Elizabeth Stangl
- National Science Foundation (1144664)
- Roy J. Carver Foundation (14-43555)
- National Institutes of Deafness and Other Communication Disorders - National Institutes of Health (R03 DC012551)

Support slides follow

THE UNIVERSITY OF IOWA

AuditoryContexts - May 23, 2014

Distribution of outcomes

Distribution of outcomes

Distribution of outcomes

AudioSense application

- Iterative design
 - based on feedback from users
 - larger buttons, contrasting colors

Per day reliability

High reliability except in cases of server failures

Reliability of data delivery

Subject demographics

Variable		Statistics
Gender	Male	35%
	Female	65%
Age(years)	Median: 70.5, Range: 65 – 87	
Hearing loss onset(years)	Median:12, Range: 1–54	
Employment	Full-time	1
	Part-time	1
	Retired	18
Duration of HA use (years)	Median: 8.5, Range : 0 - 40	