AudioSense:

Enabling Real-time Evaluation of Hearing Aid Technology In-Situ

Syed Shabih Hasan, Farley Lai, Octav Chipara Department of Computer Science/Aging Mind and Brain Initiative (AMBI)

Yu-Hsiang Wu Department of Communication Sciences and Disorders

THE UNIVERSITY OF LOWA

Hearing Loss in US

- 35 million people in the US have hearing loss ^[1]
 - \Rightarrow leads to communication difficulties, depression & dementia
- Primary intervention is hearing aid amplification
 - only $\approx 50\%$ of hearing aid users are satisfied with performance in noisy environments

Hearing Loss in US

- 35 million people in the US have hearing loss ^[1]
 - \Rightarrow leads to communication difficulties, depression & dementia
- Primary intervention is hearing aid amplification
 - only $\approx 50\%$ of hearing aid users are satisfied with performance in noisy environments

Underlining causes of user dissatisfaction are poorly understood

[1] K.S. Marketrak VIII: 25-year trends in the hearing health market, Hearing Review '09

Challenge of evaluating hearing aids

• Listening contexts

social context: speaker familiarity, number of speakers, visual cues

acoustic context: indoors vs. outdoors, noise/reverberation levels

Existing Evaluation Methodologies

- Manual data collection: self-reports or diary methods
 - subjective, memory bias, scalability
- Speech-in-noise tests: assess aspects of hearing aid technology
 - not representative of real-world listening contexts

Existing Evaluation Methodologies

- Manual data collection: self-reports or diary methods
 - subjective, memory bias, scalability
- Speech-in-noise tests: assess aspects of hearing aid technology
 - not representative of real-world listening contexts

Existing evaluation methods are poor predictors of real-world performance

AudioSense

- Provides clinicians with subjective and objective measures of hearing aid performance and listening contexts
 - data is collected in real-time and in-situ
 - subjective: Ecological Momentary Assessment (EMA)
 - objective: measures derived from audio and GPS
- EMA has been previous used by Henry et. al.^[1] and Galvez^[2]
 - do not collect sensor data or track patients in real-time

[1] Henry et.al., Pilot study to evaluate ecological momentary assessment of tinnitus, *Ear Hear* '12
[2] Galvez et.al., Feasibility of ecological momentary assessment of hearing difficulties encountered by hearing aid users, *Ear Hear* '12

Web Interface

Web Server

Condition	Last user survey	Last timer survey	Last log time	User count	Timer count	Compliance
<u>55</u>	June 12, 2013, 10:54 a.m.	June 11, 2013, 8:09 p.m.	June 12, 2013, 11:19 a.m.	7	7 / 63 (3 snooze)	11.67
<u>33</u>	June 12, 2013, 11:29 a.m.	June 12, 2013, 1:10 p.m.	June 12, 2013, 1:10 p.m.	1	2 / 5 (0 snooze)	40.00

• EMA

- Extensible user interface and effective alarms
- Energy efficient data collection, high reliability

Web Server

Android Phones

- Real-time compliance information
- Extensible data analysis environment
- Scales to support multiple concurrent users

• EMA

- Extensible user interface and effective alarms
- Energy efficient data collection, high reliability

Web Server

Android Phones

- Real-time compliance information
- Extensible data analysis environment
- Scales to support multiple concurrent users

Android Phones

• EMA

- Extensible user interface and effective alarms
- Energy efficient data collection, high reliability

Web Server

- Real-time compliance information
- Extensible data analysis environment
- Scales to support multiple concurrent users

- Surveys are alarm-triggered or user-initiated
- Alarm-triggered
 - randomized ($T_{offset} + [0, T_{rand}]$)
 - fixed (T_{offset})
- Delivery parameters are customized by clinicians

Collection Alarm, data collection starts

- Alarm-triggered
 - randomized ($T_{offset}+[0, T_{rand}]$)
 - fixed (T_{offset})
- Delivery parameters are customized by clinicians

- Surveys are alarm-triggered or user-initiated
- Alarm-triggered
 - randomized ($T_{offset}+[0, T_{rand}]$)
 - fixed (T_{offset})
- Delivery parameters are customized by clinicians

- Surveys are alarm-triggered or user-initiated
- Alarm-triggered
 - randomized ($T_{offset}+[0, T_{rand}]$)
 - fixed (T_{offset})
- Delivery parameters are customized by clinicians

- Surveys are alarm-triggered or user-initiated
- Alarm-triggered
 - randomized ($T_{offset}+[0, T_{rand}]$)
 - fixed (T_{offset})
- Delivery parameters are customized by clinicians

- Surveys are alarm-triggered or user-initiated
- Alarm-triggered
 - randomized ($T_{offset}+[0, T_{rand}]$)
 - fixed (T_{offset})
- Delivery parameters are customized by clinicians

• EMA

- Extensible user interface and effective alarms
- Energy efficient data collection, high reliability

Web Server

Android Phones

- Real-time compliance information
- Extensible data analysis environment
- Scales to support multiple concurrent users

User Interface Design

- Iterative design based on patient feedback
 - patients of hearing loss tend to be older, may have impaired vision ⇒ larger fonts, bigger buttons, contrasting colors
- Surveys are adaptive

• EMA

- Extensible user interface and effective alarms
- Energy efficient data collection, high reliability

Web Server

Android Phones

- Real-time compliance information
- Extensible data analysis environment
- Scales to support multiple concurrent users

Alarms

- Design refined over several iterations based on patient feedback
- Challenge: find sweet-spot between invasiveness and compliance

Alarms

- Design refined over several iterations based on patient feedback
- Challenge: find sweet-spot between invasiveness and compliance

Alarms not noticed by the subjects

Alarms

- Design refined over several iterations based on patient feedback
- Challenge: find sweet-spot between invasiveness and compliance

Alarms not noticed by the subjects

- loud ringtones, screen and camera flash blinking
- subjects can switch to vibration mode

Android Phones • EMA

- Extensible user interface and effective alarms
- Energy efficient data collection, high reliability

Web Server

- Real-time compliance information
- Extensible data analysis environment
- Scales to support multiple concurrent users

Energy Efficiency

- Independent pipelines for processing sound, GPS, and uploading
- Shared buffering to mitigate impact of Garbage Collection

Energy Efficiency

- Independent pipelines for processing sound, GPS, and uploading
- Shared buffering to mitigate impact of Garbage Collection

Energy Efficiency

- Independent pipelines for processing sound, GPS, and uploading
- Shared buffering to mitigate impact of Garbage Collection

- Reliability in terms of uploading the data
- Issue: unreliable network connections
 - caching data locally until a connection is available
 - vast amounts of memory available
 - store several days worth of data

Performance Analysis

- Testing environment
 - surveys delivered every 5 min, sensors sampled for 3 min.
 - tested using WiFi at home to simulate natural environment
 - test run for 70 minutes

Achieved 100% reliability in spite of network disconnections!

Lasted for 3 days without recharging

Recent Results for Reliability

98.7% reliable even in a clinical deployment

Conclusions and Future Directions

- AudioSense a new evaluation mechanism for hearing aids combines EMA and sensor data (audio + GPS)
 - in-situ, just-in-time, and scalable
 - patient compliance: real-time tracking, alarms design, and energy efficient
 - reliable and real-time data collection
- Future work:
 - evaluated through a 50 user clinical study
 - study correlations between:
 - listening contexts and patient compliance
 - measures listening context and hearing aid performance

Acknowledgements

- Audiology collaborator: Elizabeth Stangl
- National Science Foundation (grant # 1144664)
- National Institutes of Deafness and Other Communication Disorders - National Institutes of Health (grant # IR03DC012551-01)

Questions?

THE UNIVERSITY OF IOWA

Server Backend

- Provides three components
 - web portal, database, and audio analysis environment
- Web portal + database
 - provides secure access to real-time data via web interface
 - built on Django+SQLite
 - serves multiple concurrent clients
- Audio analysis environment
 - invoked on each audio file submission
 - uses MATLAB \Rightarrow extensible
 - e.g. SNR calculation

Server Backend

• e.g. SNR calculation

Clinician's options

			⊿ 💈 11:51	1				
ျား) Audiology EMA								
Patient ID								
Enter session number								
Survey offset (mins)								
Survey random (mins)								
Survey timeout (mins)								
Survey delay (mins)								
Snooze								
Start tim	ne							
	9	35						
	10	: 36	AM					
	11	37	PM					
	\leftarrow							