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Abstract—Audiologists have devised a battery of clinical tests
to measure auditory abilities. While these tests can help deter-
mine the candidacy of patients for amplification intervention,
they do not accurately predict the degree to which a patient
would benefit from using a hearing aid (i.e., the hearing aid
outcome). Measuring hearing aid outcomes in the real-world is
challenging as it not only depends on a patient’s auditory abili-
ties, but also on auditory contexts that include characteristics of
the listening activity, social context, and acoustic environment.
This paper explores the problem of creating predictive models
for hearing aid outcomes that incorporate information about
auditory abilities, hearing-aid features, and auditory contexts.
Our models are built on a dataset collected using a mobile
phone application that measures auditory contexts and hearing
aid outcomes using Ecological Momentary Assessments. The
use of a mobile application allowed us to collect fine-grained
hearing aid outcome measures in different auditory contexts.
The dataset includes 5671 surveys from 34 patients collected
over two years. Our analysis focuses on identifying the features
necessary for predicting hearing aid outcomes in different
clinical scenarios. Most importantly, we show that models
that only included measures of auditory ability as features
are cannot predict the hearing aid outcome of a patient with
accuracy better than chance. Incorporating information about
auditory contexts increases the prediction accuracy to 68%.
More excitingly, accuracies as high as 90% can be achieved
when a small amount of training data is collected from a patient
in-situ. These results suggest that audiologists could prescribe a
mobile phone application at the time of dispensing the hearing
aid in order to accurately predict a patient’s likelihood of
becoming a successful and satisfied hearing aid user.

I. INTRODUCTION

Hearing aids (HAs) are the primary method for treating
the 11.3% of Americans [1] who suffer from sensorineural
hearing loss. Regular use of HAs has been shown to improve
communication and avoid the negative effects of hearing loss
that include anxiety, isolation, paranoia, and depression [2],
[3]. Patients that are candidates for amplification interven-
tion, however, experience different levels of satisfaction with
the use of HA in daily life. Patients who are dissatisfied tend
to use HAs less frequently limiting their effectiveness [4].
A recent survey indicates that only 59% of HA users are
satisfied and regularly use their HAs [5].

Providing audiologists with the ability to identify patients
at risk of having poor HA outcomes would help improve
the low satisfaction rates of HA users. In the best case,
HA outcomes should be predicted from standard measures
that are already collected during the battery of tests a
patient undergoes to determine his/her candidacy for hearing
amplification. Such an approach would be reasonable if a
strong relation between measures of auditory ability and HA
outcomes existed. Unfortunately, this remains an elusive goal
as most of the existing literature points towards the existence
of only a weak relationship between auditory ability and HA
outcomes [6].

Measuring HA outcomes in the real world is particularly
challenging since aside from a patient’s auditory abilities
other factors contribute to a successful HA outcome. HA
outcomes are known to depend on auditory contexts, which
include the type of listening activity, social context, acoustic
environment, and HA configuration. Unfortunately, a major-
ity of existing studies do not capture the auditory contexts
in which HAs are used since it would be impractical to
do so using retrospective self-reports. A key novelty of this
work is the improved methodology that we use to assess
HA outcomes. We used a mobile phone application called
AudioSense to collect data in-situ [7]. AudioSense period-
ically prompts a patient to describe the auditory context in
which he/she is and the perceived performance of the HA in
that context. Our dataset includes 5671 surveys completed
by 34 patients using four HA configurations collected over
the past two years. Additionally, the auditory abilities of
each study participant are evaluated using two standard
hearing assessments —Pure Tone Audiometry (PTA) and
QuickSIN — at the time of enrolling in the study. To the
best of our knowledge, this is the first study that predicts HA
outcomes based on EMA data that includes auditory context
information.

Using the collected data, we analyze the accuracy of pre-
dicting HA outcomes based on a patient’s auditory abilities,
HA configuration, and auditory contexts. We show that a
successful HA outcome for a new patient cannot be predicted
with odds better than chance based on the results of the



PTA and QuickSIN tests. Incorporating information about
auditory contexts, however, increases prediction accuracy
to 68%. Collecting a small number of surveys from the
patient further improves the prediction accuracy to 90%.
Additionally, we have also considered the scenario of a
patient switching hearing aids. Specifically, we are interested
in predicting the HA outcome for the new HA when data
from the previous HA is available. In this case, a successful
outcome for the new HA can be predicted with an accuracy
of 86%.

The above results highlight the importance of collecting
patient information in-situ to predict HA outcomes. More
importantly, this points to the feasibility of prescribing a
mobile phone application along with the HA. Such an ap-
plication would allow audiologists to accurately predict the
likelihood of a patient becoming a successful and satisfied
HA user. Based on the feedback from our application, an
audiologist may take some remedial actions to improve the
likelihood of success including spending additional time to
council patients, suggesting HA that include more advanced
features to improve HA benefit, or encouraging participation
in aural rehabilitation/training programs. We note that the
efficacy of these interventions has not been studied in
literature as methods for assessing the patient’s likelihood
of becoming a HA successful user are still in their infancy.

II. RELATED WORK

Historically, studies of HA performance have been either
performed exclusively in the laboratory or combined labo-
ratory tests with survey methods. However, several recent
clinical studies indicate that the benefit of HA technology
(i.e., HA outcome) measured in the lab does not translate to
the real world [8], [9], [10], [11]. A potential explanation for
the observed differences is that the benefit of HA technology
is highly contextual. For example, the presence or absence of
visual queues during a conversation can significantly affect
the perceived benefit of HAs [10]. Since it is impractical
to capture such details accurately using traditional survey
methods, some audiologists are increasingly interested in
Ecological Momentary Assessment (EMA) [12]. EMA is an
established alternative to retrospective self-reporting meth-
ods that reduces the problem of memory-bias by collecting
data in the moment. Computer scientists have developed
a number of EMA systems [13], [14], [15]. In previous
work, we have developed AudioSense [7] – a system that
provides similar capabilities to existing EMA systems but
emphasizes collecting data relevant to audiologists such as
descriptions of auditory environments and sensor data (e.g.,
audio, GPS). The use of computerized EMA in Audiology is
in its infancy – aside from our prior work, only three other
studies have used computer-based EMA methods. Henry
et al. [16] and Wilson et al. [17] evaluated the impact of
tinnitus on daily lives of people and Galvez et al. [18]
assessed patient satisfaction with hearing aids.

Audiologists have evaluated the associations between a
number of HA performance indices and HA outcomes. A
primary focus has been on evaluating the association be-
tween measures that audiologists collect as part of standard
practice (e.g., PTA, QuickSin, or Acceptable Noise Level
(ANL)) and patient satisfaction. Recent studies show that
there is no or weak correlation between auditory ability and
HA outcomes [6], [19].

In [19] it was shown that PTA had virtually no corre-
lation with the measured HA outcomes and while a sta-
tistically significant correlation existed between outcomes
and QuickSIN, it was likely attributed to participant age.
Additionally, while ANL has been shown by some studies
to be an indicator of real world HA success [20], [21], others
have found no link [6]. Our analysis further validates that
HA outcomes cannot be predicted accurately based on PTA
and QuickSIN test scores.

In previous work [22], we characterized the auditory
contexts patients encounter in the real-world and made a
preliminary analysis of the relationship between contexts
and HA outcomes. Since the focus of the prior work was
to show the importance of auditory contexts, the models we
considered included patient and HA identifiers as features.
As a result, these prior models are not applicable to the
important clinical scenarios considered in this paper (when
one or both of the identifiers are not available). In this paper,
we consider for the first time the use of auditory contexts
to predict the HA outcomes of novel patients, novel hearing
aids, and novel conditions. Moreover, we show that it is
possible to achieve prediction accuracies as high as 90%
when a small amount of data in-situ is used. In the broader
context, our work points to the feasibility of incorporating
computer-based EMA as part of standard practice to improve
the successful use of HA.

III. FIELD STUDY

Participants for the study are recruited in three ways: (1)
the Department of Communication Sciences and Disorders
maintains a pool of potential participants and those who
match the study criteria are invited to participate, (2) through
word of mouth from participants of other studies, and
(3) hearing screenings. We recruit adults who are native
English speakers and at least 65 years old. The hearing
loss of participants is mild to moderate. Our participants
are further screened for adult-onset, bilateral, and symmetric
sensorineural hearing loss. At the time of analysis, 36
participants completed the study. The demographic details
are included in Table I.

Each participant completes six one-week sessions as in-
dicated in Table II. The order in which the participants
complete the session is randomized. Each participant started
by completing a weeklong training session (condition 99) to
get accustomed with reporting data using the mobile phone.
For hearing aided conditions (conditions 1 – 4), subjects



Variable Statistics
Gender Male 50%

Female 50%
Age(years) Median: 73, Range: 65 – 88
Hearing loss onset(years) Median:8, Range: 1– 54
Duration of HA use (years) Median: 7, Range : 0 - 40

Table I: Demographic information of subjects

Condition HA use DM/DMR usage
0 Unaided –
1 Entry level Off
2 Entry level On
3 Premium Off
4 Premium On
99 Training

Table II: Study sessions

wore a HA for 1 month, followed by a one-week EMA.
After the EMA week, they start wearing the next HA (i.e.,
started the next condition). The participants wore either an
entry-level model or a premium level model. Both HAs have
adaptive directional microphones (DN) and digital noise
reduction (DNR) features. In the remainder of the paper, we
will refer to the combination of a patient and HA, or lack
of HA, as a condition. A subset of the patients volunteered
not to use their HAs for a week either in the beginning or
end of the study. The study was single blinded: participants
did not know which HA they used.

Hearing Assessments: The auditory abilities of each
participant were assessed using PTA and the QuickSIN tests.
The PTA test is designed to assess the hearing loss of study
participants. The test consists of presenting pure tones at dif-
ferent frequencies and amplitudes to determine the hearing
threshold for a selected set of frequencies. The participants
in our study suffer from mild to moderate hearing loss.
Accordingly, using PTA we found that patients had a hearing
loss of 25 – 60 dB HL in the speech frequency range
(0.5KHz – 4.0KHz). In addition to PTA, the participant’s
ability to discriminate speech in noise was evaluated using
the QuickSIN test. QuickSIN measures the SNR loss of
a patient compared to a normal hearing person. The test
works by presenting a set of standardized sentences that are
corrupted by varying degrees of noise. The test identifies
the SNR threshold at which the study participant is able to
identify 50% of the keywords in the presented sentence.

Auditory Contexts: The participants used the mobile
phone application to record the auditory contexts and asso-
ciated HA performance. The delivery of electronic surveys
is either alarm triggered or subject-initiated. Alarm-triggered
surveys are delivered using randomized schedules. After an
alarm is delivered, the time to deliver the next survey is
determined by adding a constant time offset Toffset to a
random number picked uniformly from the time interval
[0, Trand]. The time to deliver the first survey is determined

by the first time the application is started. The surveys in
our field study are delivered on average every 1.5 hours and
consecutive surveys were separated by at least 1 hour (i.e.,
Toffset = 1 hr and Trand = 1 hr). Moreover, in order to
minimize the burden of subjects, clinicians could select the
time interval during a day when surveys could be delivered.
To further mitigate the effects of the survey appearing at an
undesired time during the aforementioned interval, a Snooze
button was provided to delay the alarm by 30 minutes. An
alarm outside the delivery interval is postponed until the next
day. Additional details on AudioSense may be found in [7].

The mobile phone application characterized environments
in an exhaustive manner along three dimensions: activity
context, acoustic context, and social context. Each of the
various characteristics of the environment has been previ-
ously shown to impact HA performance either in the labo-
ratory or the real-world. Table III summarizes the questions
AudioSense asks the user. We note that in order to minimize
the reporting burden of our participants, the application only
presents the questions relevant to current auditory context of
the participant.

HA Outcomes: The application asked participants to eval-
uate the HA performance in the last 5 — 10 minutes prior
to the delivery of the survey. The evaluation is performed
across multiple dimensions. In Section IV-A, we show that
scores of each dimension may be combined to create a single
combined score that characterizes the HA outcome for a
given context. We will refer to this HA outcome measure as
the momentary HA outcome. The aggregate HA outcome
(or simply the HA outcome) of a condition is measured
by the average of the momentary HA outcomes. Existing
studies indicate that the relationship between aggregate
EMA measures and HA satisfaction obtained via surveys
to be inconsistent and variable [12]. The agreement among
researchers is that aggregate measures captured via EMA are
indicative of the actual experience whereas surveys measure
the participant’s perception [23].

Data Included: The data analyzed includes only the
conditions when the HA were used, excluding data from
the training and the unaided conditions. Additionally, as
part of every survey (including those delivered during aided
conditions) the patient is asked to confirm that they are using
their HAs. The surveys in which participants indicated that
they did not use a HA are excluded from the analysis. Two
participants out the 36 were excluded due to low response
rates. The resulting dataset includes 34 patients using four
different hearing configurations for a total of 136 conditions.
The dataset includes a total of 5671 surveys, each condition
including 41.7 surveys on average (range: 7 – 121).

IV. RESULTS

In this section, we characterize the accuracy of predicting
HA outcomes based on laboratory test scores, HA config-
urations, and information about auditory contexts. We are



Dimension Variable Question
Activity
context

Activity type What were you listening to?
Location Where were you?

Acoustic
context

Noise level How noisy was it?
Noise location Where was the noise coming

from?
Talker location Where was the talker?
Room size How larger was the room?
Carpeting Was there carpeting?

Social
context

Visual cues Could you see the talker’s
face?

Familiarity Are you familiar with the
talker(s)?

Table III: Features included as part of auditory contexts

Dimension Variable Question
Perception Speech

perception (SP)
How much speech did you un-
derstand?

Listening effort
(LE)

How much effort was required
to listen?

HA satisfaction
(ST)

How satisfied were your with
the hearing aid?

Sound localiza-
tion (LCL)

Could you tell where sounds
were coming from?

Loudness (LD2) Were you satisfied with the
loudness?

Activity partici-
pation (AP)

How your hearing affected
what you wanted to do?

Importance Importance How important was it to hear
well?

Table IV: Measured outcome dimensions

interested in assessing both the performance of different
machine learning algorithms and understanding what are the
features that are necessary for making accurate predictions.
We consider the following clinically relevant scenarios that
differ in the information available for training and predicting
HA outcomes:
• Novel patient: A new patient is considered for hearing

amplification and her/his likelihood of becoming a
successful HA user is assessed using data from other
patients that use the same or a different HA.

• Novel HA: A patient is prescribed a new HA and
his/her HA outcome is predicted using the data col-
lected while using the old device. We consider the cases
when there are and when there are no other patients that
have used the newly prescribed HA.

• Novel auditory context: The momentary HA outcome
in a novel auditory context is predicted when there is
information about the patient’s use of her HA. This may
help clinicians identify the auditory contexts in which
a patient has a difficulty hearing.

The remainder of the section is organized as follows. In
Section IV-A, we consider the problem of creating a single
combined score from multiple HA performance measures.
The score is then used to determine whether a patient will
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Figure 1: Statistics of CB and CB scores

SP LE ST AP LCL CB
SP 1.00 0.62 0.57 0.47 0.47 0.77
LE 0.62 1.00 0.61 0.64 0.51 0.89
ST 0.57 0.61 1.00 0.64 0.40 0.84
AP 0.47 0.64 0.64 1.00 0.32 0.83
LCL 0.47 0.51 0.40 0.32 1.00 0.48
CB 0.77 0.89 0.84 0.83 0.48 1.00

Table V: Spearman’s rank correlation between different
domains of HA performance

become successful a HA user or not. The different models
used for predicting HA outcomes are described in Section
IV-B. The results of applying the models in the context of
the above scenarios are presented and discussed in Section
IV-C.

A. Measuring HA Outcomes

HA outcomes are typically assessed across multiple do-
mains to better understand what factors have a negative
impact on the subject’s assessment of the HA. Our sur-
veys measure HA outcomes along six dimensions: speech
perception, listening effort, loudness, sound localization,



HA satisfaction, and activity participation (see Table IV).
The correlations between performance domains are included
in Table V. Most performance domains have moderate
correlation indicating that they may be combined to create
a single momentary HA outcome score. An advantage of
this approach is that by combining scores the inherent noise
associated with measuring each dimension is reduced.

In prior work [7], we have proposed a method for creating
a combined score (CB). CB is computed in two steps using
the most correlated measures: SP, LE, ST, and AP. The
first step in creating a combined score is to construct the
following three mappings: f1 : SP 7→ LE, f2 : ST 7→ LE,
and f3 : AP 7→ LE. We map SP, ST, and AP onto LE
because it has the widest score distribution, which allows for
better discrimination between HA outcomes. The combined
score (CB) is computed by taking the average of the LE
score and f1(SP), f2(ST), and f3(AP). The functions f1,
f2, and f3 are third degree polynomials whose coefficients
are determined using robust fitting.

Audiologists do not have an objective standard for dif-
ferentiating between successful and unsuccessful HA users.
Different methods have been used in the field such as
defining a minimum HA usage period per day [24], [25]
or using a threshold over an aggregate score [6]. CB is
a measure of the momentary HA outcome of a patient,
wearing a HA, in a specific auditory context. We consider
a condition (i.e., a patient using a given HA configuration)
to be successful if the mean CB scores of that condition
is higher than a threshold that is determined such that the
top-half of conditions are successful while the bottom-half
unsuccessful. We will use the notation CB to denote the
mean CB score of a condition.

A key challenge to accurately predicting the HA outcome
is the high variability of CB scores. Figure 1a plots the
distribution of CB scores per patient for condition 1. The
boxplots clearly indicate that the distribution of CB scores
varies significantly between patients, many patients having a
wide distribution of scores. The significant variability in HA
outcome scores may be partially explained by the differences
in the auditory context. Figure 1b plots the distribution of CB
scores (mean 73.2, standard deviation 12.3). The distribution
suggests that it might be easy to discriminate the outcome
of conditions at opposite ends of the scale, but this task
would be particularly challenging close to the threshold CB
≈ 76 (indicated in the Figure 1b as a black vertical bar) that
separates successful and unsuccessful conditions.

B. Models and Algorithms

We have evaluated the use of linear models, mixed mod-
els, and bagged trees to predict HA outcomes. The choice
of model is motivated by our desire to explore models of
different complexity and modeling assumptions.

The linear models that we use have the general form:

CBi = β0 +
∑
f∈F

βfI[f ] + εi

where i is the index of observation, F represents the set
of features included in the model, and I is the indicator
function. The residuals εi are normally distributed with zero
mean and variance σ2 (εi ∼ N (0, σ2)). The fitting process
determines the β parameters. A key challenge to fitting the
linear model is to determine what features to include in the
model. The set of features F is determined through step-wise
regression by incrementally adding features to the model
until no further improvement is possible. The quality of the
models is evaluated using t-tests.

Mixed models have been successfully applied to charac-
terize multi-level data. We may view the dataset as having
two levels that cluster data within patients and patients
within conditions. Mixed effect models allow us to construct
models that reflect the dependencies of the data associated
within the same statistical unit. The model has the general
form:

CBi,p,h =
∑
f∈F

βfI[f ] +
∑
p∈P

apΠp +
∑

(p,h)∈C

bp,hΓp,h + εi

where i is the observation index and indices p and h repre-
sent the patient and HA configuration of the ith observation.
The sets P and C include the patients and conditions of the
study, respectively. In addition to the fixed effects coeffi-
cients βf that are fitted similarly to the linear regression,
a mixed model also includes random effects. The matrix
Π represents the patients and matrix Γ the conditions that
have patient p nested in HA configuration h. The fitting
procedure determines the random effect coefficients ap and
bp,h. The procedure constrains the parameter vectors ap and
bp,h to be normally distributed such that ap ∼ N (0, σ2

p) and
bp,c ∼ N (0, σ2

p,c). A similar procedure to the one described
for linear models is used to select the features that will be
included in the model. Specifically, new features are added
to F as long as the model is improved while the random
structure of the model is fixed. For a review of linear mixed
models, we refer the reader to [26].

The last learning algorithm considered is bagged ensemble
of regression trees. An advantage of bagged regression trees
is that unlike the linear models they have built-in feature
selection. The bagging algorithm improves the overall per-
formance of regression trees by repeatedly sampling the
training data and constructing multiple regression trees. We
iteratively add more trees to the model until the improvement
of out-of-bag error falls below 1%. The out-of-bag error has
been shown to be a good indicator of the generalization error
of the algorithm.

The three algorithms predict the CB score as a continuous
response variable. To simplify the interpretation of results, in
the case of novel patients and HA, the continuous predictions



T=d
T=x

T=x,d

L=d
L=x

L=x,d

M
=x

M
=d,x

A
c
c
u

ra
c
y
 (

%
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4
6
.3

%

6
1
.0

%

5
8
.1

%

5
3
.7

%

6
6
.2

%

6
8
.4

%

6
4
.7

%

6
5
.4

%

(a) Classification accuracy for novel patients

Holdout fraction (%)
0.5 0.6 0.7 0.8 0.9 1

A
c
c
u

ra
c
y
 (

%
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T=d
T=x
T=x,d
L=d
L=x
L=x,d
M=x
M=d,x

(b) Accuracy improvements when some novel patient
surveys are used for training. Holdout fraction of 1 is
equivalent to 2a.

Figure 2: Accuracy of predicting HA outcomes for a novel patient using data collected from other patients

are discretized. This is accomplished by computing the mean
of all predictions associated with a condition (i.e., the pre-
dicted CB). The condition is predicted to be successful if the
predicted CB ≥ 76; otherwise the condition is unsuccessful.
The reader may refer to Section IV-A for the methodology
used to determine the threshold value.

Each model is fit using different information to assess
which features must be included to achieve high accuracy.
Laboratory tests include the results from the PTA and
QuickSIN tests. The contextual information includes all
the survey information collected using AudioSense (see
Table III). We note that both the laboratory tests and
the auditory contexts include 6 continuous variables and
40 dummy variables that encode contextual information,
respectively. Additionally, some models include statistically
relevant interaction terms to capture the interaction between
pairs of features. Models are labeled using the convention
model=features, where the model may be linear L,
mixed model M, or bagged regression tree T. The features
may include laboratory tests (d), auditory context features
(x), or both. Baseline models may also include the patient
(p) and condition (c) identifiers when predicting novel
context.

C. Empirical Results

In the following, we present the results of applying the
models to the three previously discussed scenarios.

1) Novel patient: The most common scenario is that
of predicting the HA outcome of a novel patient based
on historical information collected from other patients. We
evaluate the performance of the machine learning algorithms
and models using leave-one-patient-out cross-validation. Ac-
cordingly, we consider a patient p and train the model
on all the data that does not involve patient p. Using the

constructed model, we predict the aggregate HA outcome
of patient p using the four HA configurations available
in the dataset. This process is repeated for all patients
in the dataset. During training, there are N − 1 patients
having information for each of the conditions. We note that
the models cannot include features that depend on patient
identifiers since directly estimating these features for the
novel patient is impossible (as none of its data is included
in the training set).

Figure 2a plots the accuracy of predicting the outcome
of patients for the different models. The worst performing
models are T=d and L=d that achieve prediction accuracies
of 46.3% and 53.7%, respectively. These models include
only the results of PTA and QuickSIN tests along with
potential interactions between these variables. For these two
models, we can predict with odds close to chance whether or
not a condition is successful. This result shows that measures
of auditory abilities are not predictive of real-world outcome
measures of HA success adding to the growing body of
evidence that support this conclusion.

Including information about the different contexts a pa-
tient experiences during her/his daily routine significantly
improves the prediction accuracy. The prediction accuracy
of models T=X, L=X, and M=X is in the range 61% – 66%.
A slight increase in prediction accuracy of 1 – 3% may be
achieved by combining lab results and context information.
These results highlight that HA outcomes cannot be eval-
uated without understanding the auditory context in which
they are measured. Accordingly, audiologists must transition
from retrospective surveys measurements to using comput-
erized EMA to capture such information. Furthermore, from
a clinical perspective, there is a significant benefit to collect
data from a patient in-situ to accurately predict her HA
outcome.



To understand the importance of collecting data from a
patient, we allowed a small fraction of the patient’s data to
be used for training the models. The results are shown in
Figure 2b. The amount of data withheld for testing varies
from 50 – 100%; when the holdout fraction is 100%, the
results are the same as the ones discussed above and are
shown in Figure 2a. The graph clearly indicates that even a
small fraction of patient information can significant increase
performance. By moving from including no patient data to
including a mere 5% of the data for that patient, the best
prediction accuracy jumps from 68.4% to 85%. 5% of the
data translates to an average of 2 surveys (range: 1 – 6)
that must be completed by the patient. This highlights the
importance of collecting personalized information.

The models that perform best in the case when no patient
information is available are the simple linear regression
models. However, the performance of these models re-
mains relatively flat as more patient information is used for
training. This is because the linear models compute global
parameters that ignore grouping the data per patient or per
condition. The linear mixed models perform the same as
linear mixed models when making predictions for groups
that have no data included in the training set. This explains
the similar performance of linear and mixed models when
the all data of a patient withheld. However, as additional
information about patients becomes available, mixed models
may incorporate this information to make increasingly accu-
rate predictions. Similarly, bagged tree models can increase
the number of trees used in the model to achieve slightly
worse performance than mixed models.

2) Novel HA: Another important clinical case is what
happens when a patient changes their HA device. We
consider both the case when there is and when there is
no information associated with the new HA device in the
training set. The case when no information is available is
evaluated through leave-one-HA-out cross-validation. Ac-
cordingly, the data associated with a HA configuration is
retained for testing while the remaining data is used for
testing.

Figure 3a plots the accuracy of predicting HA outcomes
when no patient information is available for that patient. We
note that this case differs from the novel patient scenario in
that the training set includes some data for the considered
patient (i.e., when they used the other conditions). As
previously observed, the worst performance is that of models
that rely solely on laboratory test information. Their best
accuracy is 66.8%. Models that include auditory context
information perform overall better with a best accuracy of
85.3%. Including the both contextual and demographic infor-
mation results in increases in accuracy for all three models.
However, this increase can be significant: the trees models
have an increase of 16.1% to achieve the best accuracy of
88.2%. The higher accuracy in predicting novel HA than
novel patients may be attributed to the fact the training set
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(a) Novel HA, without other patients using the HA
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(b) Novel HA, with the other patients having used the
HA

Figure 3: Accuracy of predicting HA outcomes when using
a novel HA

includes patient information that characterizes the auditory
style of the patient irrespective of the HA they use. An
alternative explanation is that the better accuracy is the
result of lower variability induced by different hearing aids
compared to the variability induced by different patients.

Figure 3b plots the accuracy of predicting the outcomes
for a patient and HA combination. In each experiment,
a patient and HA pair is withheld for testing while the
remaining data is used for training. Somewhat surprising,
the differences in the performance of the models between
Figures 3a and 3b are very small. This suggests that in our
study there is little that can be gained by considering the
scores of other patients that have used the same HA. This
result further bolsters the theme that there are significant
differences between patients.

3) Novel Contexts: The previous two sections focused on
predicting the aggregated HA outcomes (CB) for a condition
for novel patients or conditions. In this section we turn
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Figure 4: Accuracy of predicting the momentary HA out-
comes in novel contexts

our attention to the problem of predicting the momentary
rating (CB) that a patient would give to a HA used in an
auditory context. For this learning task, it is not sufficient to
accurately predict the mean CB score but instead to explain
the variability across different auditory contexts. We evaluate
the performance of different models and algorithms by using
5-fold cross validation. Each fold is constructed to ensure
that data from 4/5 of data of each condition is used for
training while the remaining 1/5 is used for testing.

Figure 4a plots the root mean squared error (RMS) for
different models. The results indicate that the models that
include just information about the patient and condition
performs the worst. This is because these models can only
predict accurately the average CB scores and are included
in the graph as baselines. The models that include only the
results of laboratory tests have similar performance to the
baselines since they do not characterize the contexts in which
HAs were assessed. The models that include contextual

information overall achieve better performance showing that
it essential to include contextual information if we want to
accurately predict momentary HA outcomes. The models
that combine both laboratory tests and auditory context
information achieve the lowest RMS error.

To get a better understanding of the size of the errors
observed for a given patient and condition, we standard-
ize the errors with the respect to the mean and standard
deviation of the samples associated with that patient and
condition. This is necessary to allow us to aggregate the
results across different patients and conditions since these
distributions differ significantly in their means and standard
deviations. Figure 4b plots the distribution of z-scores for
each mixed effect model. Consistent with the RMS errors,
the worst performance is observed when only demographic
information is included. In this case, the median z-score
error is 1 indicating that on average the model makes an
error equal to one standard deviation. In contrast, the best
performing model that includes information from both lab
tests and auditory contexts reduces almost in half. This
highlights the need to integrate both features from lab tests
and contextual information to achieve high performance.

V. CONCLUSIONS

This paper considers the problem of measuring and pre-
dicting HA outcomes in the real-world in order to provide
audiologists a new method to improve the low satisfaction
rates of HA users. Measuring HA outcomes in the real-world
is particularly challenging as it is affected by multiple factors
including a patient’s auditory capabilities, HA configuration,
and auditory context. This is the first audiology dataset that
jointly measures the auditory context and the associated
HA outcomes. Computerized EMA enables us collect fine-
grained information about auditory contexts including the
type of listening activity, characteristics of the acoustic
environment, and their social context. The collected dataset
includes 5671 surveys collected from 34 patients using four
different HA configurations. The surveys are complemented
by laboratory assessments of hearing loss for each patient.

We have analyzed the ability to predict HA outcomes in
three clinically relevant scenarios: novel patient, novel HA,
and novel contexts. In order to identify the features that
are important to achieve high prediction accuracy, we built
models with different features and fit them using linear mod-
els, mixed models, and bagged trees. Our analysis indicates
that we cannot predict the HA outcome of a novel patient
with likelihood better than chance using only laboratory
measurements of hearing loss. In contrast, incorporating
information about the auditory contexts that characterize the
auditory lifestyle of the patient increase prediction accuracy
to 68.4%. It is possible, however, to achieve accuracy rates
as high as 90% when some information about a patient
is collected in-situ. We can predict the HA outcome of a
patient using a novel HA with an accuracy of 85% leveraging



information about her auditory lifestyle collected using the
previous HA. We also provide results for predicting the
momentary HA outcome after collecting some data from
the user. Our best model can predict the combined HA score
with a median error of a half a standard deviation from the
condition’s mean.

The presented results demonstrate the feasibility of pre-
dicting HA outcomes with high accuracy. However, this
requires that patients collect in-situ information about their
auditory lifestyle (i.e., the auditory contexts) and the asso-
ciated HA performance. This suggests that a mobile phone
application should be prescribed to HA users to determine
whether they will become successful HA users. AudioSense
is designed for research and, as a result, it introduces a
significant data collection burden that cannot be justified
outside this setting. In the future, we will explore methods
of reducing the data collection burden to enable the devel-
opment of an application that clinicians may use.
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