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ABSTRACT
Memory management is a crucial aspect of mobile sensing
applications that must process high-rate data streams in
an energy-efficient manner. Our work is done in the con-
text of synchronous data-flow models in which applications
are implemented as a graph of components that exchange
data at fixed and known rates over FIFO channels. In
this paper, we show that it is feasible to leverage the re-
stricted semantics of synchronous data-flow models to opti-
mize memory management. Our memory optimization ap-
proach includes two components: (1) We use abstract in-
terpretation to analyze the complete memory behavior of
a mobile sensing application and identify data sharing op-
portunities across components according to the live ranges
of exchanged samples. Experiments indicate that the static
analysis is precise for a majority of considered stream appli-
cations whose control logic does not depend on input data.
(2) We propose novel heuristics for memory allocation that
leverage the graph structure of applications to optimize data
exchanges between application components to achieve not
only significantly lower memory footprints but also increased
stream processing throughput. We incorporate code gener-
ation techniques that transform a stream program into effi-
cient C code. The memory optimizations are implemented
as a new compiler for the StreamIt programming language.
Experiments show that our memory optimizations reduce
memory footprint by as much as 96% while matching or im-
proving the performance of the StreamIt compiler with cache
optimizations enabled. These results suggest that highly ef-
ficient stream processing engines may be built using syn-
chronous data-flow languages.

1. INTRODUCTION
The advancing capabilities of smartphones have enabled

the development of a new generation of mobile sensing appli-
cations such as those for context monitoring [1], user identi-
fication [2], personal health [3], and environmental monitor-
ing [4]. At the heart of these applications, there are sophis-

.

ticated stream engines that must process high-rate sensor
data efficiently.

Memory management is a key challenge in the develop-
ment of stream engines. Previous studies have shown that
poor memory management leads to applications with large
memory footprints and excessive memory accesses that re-
duce stream processing rates [5, 6, 7]. Stream operations
such as windowing, splitting, appending, and downsampling
have been traditionally implemented using memory copy-
ing and, as a result, are a common source of inefficiency.
Avoiding copying requires the memory management to sup-
port data sharing among the components of an application.
Data sharing typically reduces both memory usage and the
number of memory accesses. However, in order to improve
processing rates, we must also ensure that data sharing does
not reduce cache locality or increase code complexity.

The problem of effective memory management for stream-
processing may be addressed through dynamic or static mem-
ory management. Dynamic memory management relies on
specialized data structures for manipulating streams. A rep-
resentative example is the SigSeg [6, 8]. A SigSeg is orga-
nized as a list of buffers containing data samples; each buffer
may be shared between components using reference coun-
ters. While the SigSeg is a clever data structure, dynamic
memory management suffers from two intrinsic limitations:
(1) Dynamic memory management can exploit only a frac-
tion of data reuse opportunities as only limited run-time
overhead may be introduced for analyzing an application’s
behavior. (2) The data structure unavoidably adds a level
of indirection in accessing streams of samples, which reduces
the performance of stream engines.

Compile-time solutions may be used to determine mem-
ory allocations without introducing run-time overhead. The
key is to develop a static analysis technique that may pre-
cisely identify location and temporal sharing opportunities.
Unfortunately, static analysis of general purpose languages
such as C or Java quickly becomes imprecise due to lan-
guage features such as pointer aliasing or function pointers.
We avoid these difficulties by focusing on a domain-specific
stream-processing language called StreamIt [9]. We show
that it is feasible to leverage the constrained semantics of
stream programs to implement stream operations efficiently
through static memory allocation. Since StreamIt is a rep-
resentative example of a synchronous data-flow (SDF) lan-
guage, we expect that the results presented in this paper
will translate to other SDF-based systems and languages.

We propose Efficient Static Memory management for
Streaming (ESMS) that addresses the above challenges. In



this paper, we make the following contributions: (1) We de-
velop a novel static analysis that characterizes the global
memory behavior of a complete stream application. The
static analysis can precisely identify the location and tem-
poral reuse opportunities in most applications. The analysis
is imprecise for a fraction of components whose control logic
depends on the input data. In these cases, we provide a
conservative, but safe, approximation of the application’s
memory behavior. (2) We propose a novel layout algorithm
that leverages the identified location and temporal reuse op-
portunities along with the application’s structure to opti-
mize the memory layout. We incorporate code generation
techniques that transform a stream program into efficient
C code that effectively uses the generated memory layouts.
(3) The memory optimizations are implemented as a new
compiler for the StreamIt language. We evaluate the mem-
ory optimization on both Intel and ARM platforms using
14 benchmarks including three realistic mobile sensing ap-
plications. We compare our compiler against the standard
StreamIt compiler with and without the cache optimization
enabled [10]. We find that our optimizations reduce the
memory footprint up to 96% while matching or improving
the performance of the StreamIt compiler with cache opti-
mizations enabled.

2. STREAMIT OVERVIEW
Language Overview. Our work builds on the StreamIt
programming language and compiler infrastructure (see [9]
for a detailed description). The basic computation unit of
StreamIt is a filter that may interact with other compo-
nents by consuming data from the input channel, perform-
ing computations that may affect the state of the filter,
and producing data on the output channel. StreamIt defines
three basic memory operations: pop, peek, and push. The
peek reads a sample at a given index in the input chan-
nel without consuming it, pop consumes a sample from the
input, and push appends an item to the output channel.
The pop and push access a channel sequentially while peek
provides (limited) random access. Consistent with the SDF
model, the number of items peek-ed, pop-ed, or push-ed
during an execution is fixed and known at compile time.
A filter has a work function that is executed each time the
component is invoked. The work function specifies the rates
rpeek, rpop, and rpush for the peek, pop, and push instruc-
tions. A component may include states that are initialized
using an init function.

StreamIt programs are written by hierarchically com-
posing filters using pipeline, split-join, and
feedback constructs into a Stream Flow Graph (SFG).
The pipeline construct composes filters in sequence
by connecting their inputs and outputs. The split-join
construct distributes a stream to a parallel set of streams
that are joined later. A split has a single input channel
but multiple output channels. The split may either du-
plicate its input so that each parallel stream works on the
same data or distribute it in a round-robin fashion. The
join performs the opposite operation by taking data from
multiple input channels and merging them into a single out-
put channel in a round-robin fashion. The programmer may
specify the number of elements to be produced by splitters
and consumed by joiners during each invocation by provid-
ing a set of weights. The feedback construct is used for
specifying feedback loops.

Execution Model. The problem of scheduling SDF com-
ponents has been widely explored [11, 12, 13]. It is well
understood that scheduling can have a significant impact on
the program performance and memory utilization. A key
advantage of SDF models is that they may be executed ac-
cording to cyclo-static schedules. A cyclo-static schedule
includes an initialization phase that is executed once and
a steady phase that is executed repeatedly forever. The
scheduling ensures that a filter is executed only if there
is enough data on its input channel. In this paper, we as-
sume a fixed schedule and do not consider the interaction
between scheduling and memory optimization, which we will
investigate in future work. We adopt the single appearance
schedules (SASs) in [12], where a filter’s work function ap-
pears only once in the schedule to reduce the code size.

The StreamIt language is tailored for stream program-
ming. StreamIt follows SDF and adopts copy-by-value se-
mantics and does not support pointers. These restrictions
simplify the static analysis of stream programs and facilitate
reasoning about their memory behavior statically.

3. DESIGN
ESMS builds on the properties of stream programs to opti-

mize memory management. A key property of SDF systems
is that their components may be executed using a cyclo-
static schedule. Accordingly, the complete memory behavior
of a program can be observed during an execution of the ini-
tialization phase followed by a single execution of the steady
phase. This property is essential for providing a complete
description of the memory behavior of the program. Fur-
thermore, we propose a novel static analysis that leverages
the semantics of stream programs to identify location and
temporal sharing opportunities.

The layout algorithm uses the location and temporal shar-
ing opportunities to allocate memory efficiently. The layout
algorithm is based on two empirical insights regarding the
memory operations of stream programs: (1) data sharing
is often captured explicitly and may be exploited to reduce
the memory footprint and number of memory accesses and
(2) owing to the data flow structure, a filter may typically
reuse the memory freed by its predecessor in the SFG. These
insights coupled with three heuristics for handling memory
conflicts form the basis of our layout algorithm. Code gener-
ation techniques are then employed to efficiently implement
the derived layouts.

The subsequent sections detail the static analysis and lay-
out algorithm. Empirical evidence regarding the effective-
ness of our techniques is included in Section 4.

3.1 Static Analysis
The goal of our static analysis is to provide a sound ap-

proximation of the memory operations of a stream program
under all possible executions. The memory behavior of the
program is summarized as a hierarchical Memory Graph
(MG)1. The top level of the graph is represented by compo-
nents. Each component has one or more ordered input and
output elements that form a fragment. Each element repre-
sents a sample that may be consumed or produced during
the component execution. The grouped component inputs
and outputs form the middle hierarchy while the elements
constitute the bottom.

1An example memory graph is shown in Figure 2.



We distinguish two types of data reuse opportunities: loca-
tion sharing and temporal sharing. Location sharing is cap-
tured by adding edges between elements to indicate when
samples are passed without modification either within a
component or between components. A property of MG is
that the elements on any path can be stored at the same
memory location, exposing location sharing. Temporal shar-
ing is modeled separately by associating a live range L with
each element that captures the time interval when an ele-
ment is “live” given the fixed schedule. Obviously, elements
that have non-overlapping live ranges may be stored at the
same memory location.

The construction of MG proceeds in two steps:

• Component Analysis: Abstract interpretation (AI) is
used to analyze the code of each component. The anal-
ysis constructs a fragment that captures the location
and temporal sharing of a single component during an
invocation of its work function.

• Whole-program Simulation: The schedule is simulated
to stitch the previously constructed fragments and
compose a MG that characterizes the entire applica-
tion. The stitching process involves scaling component
fragments to account for multiple invocations during
the schedule, adjusting the live ranges of elements, and
adding edges to capture data sharing between compo-
nents.

The separation of the static analysis into two parts is moti-
vated by the need to minimize the compile time. AI is signif-
icantly more expensive than the stitching process. Limiting
the number of invocations of AI to one per filter allows us
to handle multiple invocations of components.

3.1.1 Component Analysis
In this subsection, we present a static analysis that iden-

tifies location and temporal sharing during the component
execution. Our analysis builds on AI initially developed by
Cousot et al. [14]. The abstract domain of program vari-
ables is the intervals which approximate their concrete val-
ues. The functions α and γ map concrete values to intervals
and vice-versa. The symbols ⊥ and > represent the bottom
(i.e., the empty set) and top (i.e., [−∞,+∞] interval) of the
real interval lattice. Aside from arithmetic operations, in-
terval approximations may be defined over a broad range of
functions [15] including those supported by StreamIt. Ad-
ditionally, we use operators t and u to represent union and
intersection of intervals respectively.

The work function of the component is represented as
a control flow graph (CFG). The CFG has distinguishable
entry and exit nodes, junction nodes with exactly two prede-
cessors, branch nodes with a true successor and an optional
false successor, and block nodes with one successor and pre-
decessor. The junction nodes may be either simple or loop
junctions. A block may contain multiple instructions, but
we constrain each block to include a single peek, pop, or
push. We will use Ii and Ok to denote the ith input and
kth output elements of the considered component.

The state of a component may include local variables,
global variables, and constant parameters known at compile
time. The value of a global variable is maintained across
component invocations. Since the derived results must hold
for any component execution, states and the values of input

elements are initialized to >. In contrast, local variables
are set to ⊥ prior to their first assignment. Before analyz-
ing the work function, constants including the component
parameters are propagated.

The pseudocode for the analysis is included in Algorithm
1. The line numbers included in this section refer to this al-
gorithm. The analysis extends the basic worklist algorithm,
which updates a mapping from CFG edges to data flow facts
until no new facts are derived. The notation INv[n] and
OUTv[n] refers to the data flow facts available immediately
before and after a node n regarding variable v. Variables are
interpreted over abstract intervals similar to the approach
in [16]. However, our approach differs in two important as-
pects. First, to reduce pessimism, loop junctions are han-
dled by unrolling loops rather than applying interval widen-
ing. We ensure termination by imposing an upper bound on
the number of unrollings and applying widening when this
bound is exceeded. The upper bound is set to the number
of iterations if loop bounds are available or a large constant
otherwise. Second, we handle function calls in a context-
sensitive manner. The remainder of the discussion focuses
on the unique aspects necessary for analyzing memory op-
erations.
Temporal sharing. The analysis creates a fragment that
includes rpeek input and rpush output elements. We deter-
mine the live range of each element to identify temporal
sharing opportunities. At a high level, this requires deter-
mining when and which elements are referenced by a peek,
pop, and push.

To keep track of the order of memory accesses, we add
memory counters (mc) to the propagated data flow facts.
The mc provides a time frame that captures the time when
a memory operation is performed relative to the beginning
of the component’s execution. The mc of the entry node
is initialized to zero. A memory operation increments the
mc of the previous block (lines 11, 17, and 22). MCs are
combined using the maximum at junctions (line 36).

To determine which elements are referenced by the mem-
ory instructions we define two sets – pop and push – that
include the elements referenced by pop, peek, and push.
The domain of the two counters is the concrete intervals.
The pop and push are initialized to zero at the entry node
and incremented after each block node that includes a pop
(line 12) and push (line 23), respectively. The values of
the pop and push counters are merged using interval union
(lines 37 – 38) to track all possible referenced elements over
all execution paths.

The derived live range facts of an element e are summa-
rized in an interval L[e]. L[e] is a global variable maintained
during the analysis. We initialize L[Ii] = [0, 0] since an input
element Ii is live in the beginning of the component execu-
tion. In contrast, we set L[Ok] = ∅, since an output element
Ok becomes live when it is first referenced by a push. For
pop, peek, and push, the set elem contains the elements
that are accessed by each instruction (lines 13, 18, and 24).
The concretization function γ is used in the computation of
elem to map an abstract interval representing these access
indexes (i.e., INpop and OUTpush) to concrete values. The
live range L[e] grows monotonically by extending its interval
to the current mc (lines 14, 19, and 25).
Location sharing. The analysis can also identify location
sharing opportunities. Location sharing happens when a
component reads an element Ii and passes it unmodified as



Input: CFG cfg
Output: Fragment f(V, E, L)
Data: worklist : queue

L – live ranges
A – pass or update
Γ – elements referenced in pop or push
P – potential edges

1 worklist = {cfg.entry()}
2 OUT{mc,pop,push}[cfg.entry()] = 0

3 foreach e ∈ input do L[e] = [0, 0]
4 foreach e ∈ output do L[e] = ∅; A[e] = true;
5 P =∅
6 while worklist 6= ∅ do
7 remove n from worklist
8 OUTv [n] = INv [n] ∀v
9 switch n do

10 case [x = pop() | pop()]
11 if n is x = pop() then OUTmc[n] = INmc[n] + 1
12 OUTpop[n] = INpop[n] + 1

// Live range computation
13 Let elem={ input[e] | e ∈ γ(INpop[n]) }
14 L[e] = L[e] t [INmc[n], INmc[n]] ∀ e ∈ elem

// Track location sharing
15 if n is x = pop() then OUTΓ[x] = elem

16 case x = peek(y)
17 OUTmc[n] = INmc[n] + 1

// Live range computation
18 Let elem={ input[e] | e ∈ γ(INpop[n] + y) }
19 L[e] = L[e] t [INmc[n], INmc[n]] ∀ e ∈ elem

// Track location sharing
20 OUTΓ[x] = elem

21 case push (x)
22 OUTmc[n] = INmc[n] + 1
23 OUTpush[n] = INpush[n] + 1

// Live range computation
24 Let elem={ output[e] | e ∈ γ(INpush[n]) }
25 L[e] = L[e] t [INmc[n], INmc[n]] ∀ e ∈ elem

// Track location sharing
26 A[e] = A[e] ∧(INΓ[x][n] 6= ∅) ∀e ∈ elem

27 P = P ∪{(e, f) | e ∈ INΓ[x][n] ∧ f ∈ elem }
28 case z = x ⊕ y
29 OUTΓ[z][n] = ∅
30 case x = y
31 OUTΓ[x][n] = OUTΓ[y][n]

32 case branch

33 OUTT
v [n] = INv [n] ∀v, if condition is true/undetermined

34 OUTF
v [n] = INv[n] ∀v, if condition is false/undetermined

35 case simple junction
36 OUTmc = maxp∈pred(n) OUTmc[p]

37 OUTpop[n] = tp∈pred(n)OUTpop[p]

38 OUTpush[n] = tp∈pred(n)OUTpush[p]

39 OUTΓ[x][n] = tp∈pred(n)OUTΓ[x][p] ∀ variables x

40 case loop junction
41 unroll the loop using widening if necessary

42 add the descendants whose facts have changed to the worklist

Algorithm 1: Component analysis

an output element Ok. Two constraints must be satisfied
for location sharing: (L1) the element Ii must be passed as
Ok in all executions, (L2) no other element Ij (i 6= j) is
passed to Ok in any execution. Next, we will discuss how to
determine whether these conditions hold.

Determining location sharing opportunities requires track-
ing how elements are passed from the input to the output.
Let x be a variable whose value is set as a result of a pop or
peek. Besides propagating facts regarding the value of x,
our analysis also propagates the input element referenced by
the pop or peek as Γ[x]. The values of Γ[x] are propagated
in assignments as long as x is not modified. Assignments
such as y = x are handled by setting Γ[y] = Γ[x] (line 31).

The analysis determines if the two location sharing con-
straints are satisfied during the interpretation of push (x).

pop push mc
a1,2 0 0 0
n2 L[I0] = [0, 0] t [0, 0] = [0, 0]

x = >
Γ[x] = {I0}

a2,3 1 0 1
a3,4 1 0 1
n4

a4,5 2 0 1
n5 L[O0] = ∅ t [1, 1] = [1, 1]

A[O0] = false
a5,8 2 1 2
a3,6 1 0 1
n6 L[I1] = [0, 1]

t1 = >
Γ[t1] = {I1}

a6,7 2 0 2
n7 L[O0] = ∅ t [2, 2] = [2, 2]

A[O0] = true
P = {I1, O0}

a7,8 2 1 3
n8 L[I0] = [0, 0]

L[I1] = [0, 1]
L[O0] = [1, 1] t [2, 2] = [1, 2]
A[O0]=false
P = {I1, O0}

a8,9 2 1 3
n9 L[I2] = [0, 0] t [3, 3] = [0, 3]

t2 = >
Γ[t2] = {I2}

a9,10 3 1 4
n10 L[O1] = ∅ t [4, 4] = [4, 4]

A[O1]=true
P = {(I1, O0), (I2, O1)}

a10,11 3 2 5

Entry

Exit

x = pop()

x == 0

pop()

push(0)

t1 =pop()

push(t1)

Join

t2 = pop()

push(t2)

1

2

3

6
4

5
7

8

9

10

Resulting fragment

I0 I1 I2

O0 O1

[0,0] [0,1] [0,3]

[1,2] [4,4]11

Figure 1: Abstract interpretation of a code fragment

The analysis determines whether the argument x is passed
(Γ[x] 6= ∅) or updated (Γ[x] = ∅) by inspecting Γ[x]. The
analysis ensures that this property holds across all paths by
associating a variable A[Ok] with each output element Ok.
A[Ok] is initialized to true and set to false if there exists
an execution where Ok is updated rather than passed. Con-
dition (L1) is satisfied for element Ok when A[Ok] is true.
Additionally, we keep track of all potential passes from in-
put element Ii to output element Ok during all executions
in variable P. Condition (L2) is satisfied for an pair (Ii, Ok)
if (Ii, Ok) ∈ P is the only edge. The edges that satisfy both
conditions are added as the final edges (E) of the fragment.

An example of AI on a CFG fragment is shown in Figure
1. The table shows the data flow facts available on each
arc before and after the interpretation of a node. Only the
updated or newly derived facts are shown in the table. Ini-
tially, the values of the mc, pop, and push are set to zero.
Interpreting the pop on node 2 updates the fact that I0 is
live in the interval L[I0] = [0, 0]. Since the value of I0 is
unknown during the analysis, x is set to > and Γ[x] is set to
I0. The truth-value of the condition at branch 3 cannot be
determined, so the analysis will execute both branches. The
pop in node 4 simply indicates that I1 is not in use anymore
and, as a result, no new facts are derived. The interpretation
of the push in node 5 results in increasing the push and mc
counters. Additionally, L[O0] that was initially ∅ is updated
to [1, 1]. The algorithm records that O0 was updated rather
than passed by setting A[O0] = false. I1 is saved in t1 in
node 6 and passed as O0 in node 7. Thus during the execu-
tion of node 7, the analysis checks for location sharing. Since
t1 = I1, the analysis sets A[O0] = true and adds (I1, O0) as
a potential location share. The pop and push in nodes 6
and 7 are handled similarly. The analysis handles join nodes
by using either the maximum, interval union, or “and” oper-
ator. There are two interesting cases. The live ranges L[O0]



are merged to be [1, 2] using the interval union. Similarly,
A[O0] has different values indicating that O0 was passed on
one path but updated on the other. Thus, the combined
value of A[O0] is set to false using the “and” operator. The
analysis continues producing the results shown in the figure.

3.1.2 Whole-program analysis
The component analysis constructs fragments that de-

scribe the memory optimization opportunities during a sin-
gle invocation of a component. The whole-program analysis
stitches these fragments to compose a MG that characterizes
the memory operations of the entire program. We remind
the reader that a stream schedule is composed of an ini-
tialization phase executed once and a steady phase that is
executed repeatedly forever. To characterize the entire pro-
gram it is sufficient to simulate the initialization phase and
a single execution of the steady phase.

The stitching algorithm considers the execution of com-
ponents in the schedule order. Consider the execution of a
component that is invoked n times during the schedule. For
each component, we add |I| = rpeek + rpop × (n − 1) input
elements and |O| = rpush × n elements in the MG.

The stitching algorithm must relate the indexes of in-
put/output elements in MG to those in the memory frag-
ment (F). The mapping must recognize that a component
may access its input over overlapping windows and produce
samples in overlapping windows. Accordingly, the memory
operations of Ii is the union of memory operations of input
elements IFj such that Ii ∈ IMG→F (Ii):

IMG→F (Ii) = {IFj ≥ 0 | IFj = Ii − k × rpop k ∈ N}

Similarly, the memory operations of Ok are the same as the
operations of OF

l such that:

OMG→F (Ok) = {OF
l |Ok = mod (OF

l , rpush)}

Location sharing opportunities are computed by itera-
tively considering each possible link (Ii, Ok). A link (Ii, Ok)
is added to MG if there exists a link (IFj , O

F
l ) in the frag-

ment such that IFj ∈ IMG→F (Ii) and OF
l ∈ OMG→F (Ok).

The construction does not introduce location sharing con-
flicts regardless of potentially overlapping output windows.

The next step in the construction of MG is to capture the
exchange of data between components. This process takes
advantage of the hierarchical nature of the stream graph.
The components connected in a pipeline are adjacent in
topological order and linked through their inputs and out-
puts. The split-join constructs are handled by adding split
and join components that internally implement either dupli-
cate data or round-robin policies.

The live ranges included in the fragment are the time when
each memory operation was performed relative to the be-
ginning of the component execution. A live range in MG is
represented as a triple (phase, step,mc) where the phase is
the phase of the schedule (0 for init, 1 for steady), step is
a counter that is incremented after each component invoca-
tion, and mc is the memory counter in the fragment. The
interval union operator can be easily extended to operate
over triples. To account for window overlaps, the live ranges
of an element Ii is set to equal

⊔
IFj ∈IMG→F (Ii)

L[IFj ]. Addi-

tionally, we also need to account that some elements may be
shared. An element e shares the same location with f if there
is a path between them. The live range of e is expanded to⊔

f∈sharedMG(e) L[f ] to account for location sharing.

3.2 Memory Layout
The layout algorithm operates on a single-appearance

schedule [12]. Generating a good layout is necessary for re-
ducing memory usage, improving performance by reducing
memory accesses, ensuring good cache locality, and gener-
ating efficient code. We propose three heuristics and our
empirical evaluation shows they effectively balance these re-
quirements. Our approach is driven by two empirical in-
sights into stream programs. (1) StreamIt and other data
flow languages include constructs such as split-joins that
share and reorder samples. Traditionally, memory copying
across channels are used to implement these constructs. We
opt for the alternative of changing the logical layout of sam-
ples without performing any copy operations. This leads to
significant reductions in both the memory size and number
of accesses. Samples are reordered using round-robin split-
joins can often be accessed efficiently using linear iterators
of the form base+step×i. Typically, step is a small constant
leading to reasonable cache locality. (2) A filter operates on
the input provided by the previous component in the SFG.
It is often possible for a filter to reuse the memory allocated
for the previous filter. This is because as a filter pops sam-
ples from the input, the memory locations where the samples
were located become available for reuse.

Prior work has considered different buffer management
strategies for storing samples due to sliding windows.
StreamIt filters process their input in sliding windows by
peeking more samples than rpop. The proposed techniques
include modulation [10, 17] and copy-shift [10]. The modula-
tion strategy stores samples in a circular buffer and requires
modulo operations for indexing. Copy-shift avoids poten-
tially expensive modulo operations by shifting the remaining
samples of sliding windows in the buffer from the previous
filter execution. When coupled with execution scaling, the
copy-shift approach can significantly outperform modulation
[10]. Execution scaling works by scaling the number of times
each component in a schedule is executed. This has the ef-
fect of reducing the number of copy operations relative to
the size of the input. Our memory management approach
uses the copy-shift buffer management.

We organize the memory M as cells, each cell having an
address and a size equal to the machine word (64 bits on
considered platforms). The memory supports two opera-
tions: memappend and meminsert. The memappend(w)
operation allocates w words at the end of current memory
allocation. The meminsert(addr, w) operation inserts w
words at location addr, reindexing the memory addresses
to account for the insertion. Additionally, meminsert en-
sures that the mapping between elements and cells is main-
tained after the insertion. A layout is defined as a mapping
Π : V →M that maps each element in MG to a memory lo-
cation. We also maintain the reverse mapping Φ : M → 2|V |

from an address to a set of elements stored at the address.
A valid mapping ensures that for any memory location m,
the intersection of the live ranges of the elements in Φ(m) is
empty. This is accomplished by inspecting the appropriate
live ranges in MG.

The layout algorithm generates the memory layout by sim-
ulating the execution of a component in scheduling order and
constructing Π incrementally. The pseudocode is included
in Algorithm 2 and the line numbers included in this sec-
tion refer to this algorithm. The input to the algorithm is
the MG and the SFG with appropriately defined successor



Input: MG(V, E, L) – memory graph
SFG - stream flow graph
R[c] – elements that are remainders of component c
store[c] – storage for the remainders of component c

Data: in[prev] – input windows from the prev component(s)
out[next] – output windows to the next component(s)

1 foreach (phase, n, c) in schedule.init do
2 if c is source then
3 out = newwindow(rpush[c]× n )
4 p = memappend (rpush[c]× n)
5 foreach i = 0 . . . n do Π[out(i)] = p(i)

6 else
7 switch c do
8 case duplicate-split
9 in = flatten (pred(c).out[c])

10 foreach next ∈ succ(c) do
11 out[next].append(in)

12 case round-robin-split
13 in = flatten (pred(c).out[c])
14 S = vector of weights of the splitter
15 start = 0
16 for 0 . . . n do
17 foreach next ∈ succ(c) do
18 out[next].append(in[start:start+S[next])
19 start = start + S[next]

20 case round-robin-join
21 J = vector of weights of the joiner
22 next = succ (c)
23 foreach prev ∈ pred(c) do start[prev] = 0
24 for 0 . . . n do
25 foreach prev ∈ pred(c) do
26 w = prev.out[c])
27 out[next].append(w[start[prev]:start[prev]+J[prev]])
28 start[prev] = start[prev] + J[prev]

29 case filter
30 windows = window(in, rpeek[c], rpop[c])
31 for e ∈ R[c] do
32 Φ[e] = store[c][e]

33 next = succ(c)
34 out = newwindow(rpush × n)
35 j = 0 // index of the output sample;
36 for w = 0. . .n do
37 U = sharedElements(windows[w])
38 for i ∈ U \ R[c] do
39 shared = Φ[Π[i]]
40 hasConflict =

⋂
e∈shared L(e)

41 if hasConflict = ∅ then
42 Π[j] = Π[i];
43 j++;

44 else
45 ... handle conflicts using described heuristics ...

46 Procedure sharedElements(window)
47 U = {Ii | Ii ∈ window}
48 for Ii in window do
49 L = {Ii|(Ii, Ok) ∈ E}
50 for eo in L do
51 Π[eo] = Π[Ii]
52 U = U \{eo}

53 return U

Algorithm 2: Layout algorithm

and predecessor functions. Components operate over win-
dows of input or output elements. We define two operations
for manipulating windows: flatten and window. The
window(w, size, overlap) transforms a single window into
a group of windows that overlap by overlap elements with
each window having size elements. Conversely, flatten
produces a single window from overlapped windows. If c is
a source, the algorithm creates a window of size rpush × n
that is mapped to the next available memory location (line

2). All other components will generate their layouts based
on the windows of the previous components in the SFG, the
details depending on whether the component is a split,
join, or a filter.

Split-joins are used to share and to reorder samples and
their behavior is captured as edges in MG. The first step in
handling both splits and joins is to flatten the output win-
dow(s) from the previous component(s) into a single window.
If c is a duplicate splitter, the layout algorithm will pass the
input window to the each of its successors (lines 10 – 11).
If c is a round-robin splitter, the layout algorithm passes
a subset of the elements in the input window to the out-
put window of each successor (lines 14 – 19). The number
of elements passed to each successor is part of the split-
ter specification in the program (stored in S). Round-robin
joiners are handled in an equivalent manner. The layout
generates an output window in which elements from each
one of the predecessor components are appended (lines 21 –
28). Samples are inserted by considering the predecessors in
order and adding the programmer specified number of sam-
ples (stored in J). Note that split and join operate in
the logical space and do not require changing the mapping
between logical space and memory.

The layout process for a filter starts by flattening the out-
put window of the previous component and windowing the
result according to the component’s peek and pop rates.
This generates n windows each containing rpeek samples that
the algorithm will manipulate. The algorithm will first con-
sider each element Ii in the input window, determining if
there is an edge (Ii, Ok) in MG, where Ok is an output el-
ement. The existence of the edge indicates that Ii and Ok

may share the same memory location. Accordingly, we map
Ok to Ii’s memory cell (i.e., Π[Ok] = Π[Ii]). These oper-
ations are performed as part of sharedElements proce-
dure in the pseudocode. Let U include the set of elements
whose mapping has not been determined. The elements
in U are updated by the component during its execution.
We consider three heuristics for laying out these conflicts:
always-append(AA), append-on-conflict(AoC), and insert-
in-place(IP). (1) The AA heuristic maps elements in U to
a group of contiguous memory cells at the end of the cur-
rent allocation. This approach has the advantage of ensur-
ing cache locality and simplifies the generated code. (2)
The AoC heuristic will first try to layout windows within
the memory region allocated for the previous component.
When this is not possible due to conflicts in the live ranges
of variables, then the window will be mapped to a contigu-
ous portion of memory at the end of current allocation. We
expect that this heuristic will reduce the size of memory
allocation over the previous heuristic albeit at the cost of
increased code complexity and execution time. (3) The IP
heuristic inserts a number of memory cells at the location
where a conflict is determined. This has the effect of allow-
ing the subsequent components to operate on a layout that
maps their input elements to proximate memory locations.

The layout algorithm must account for the fact that after
the initialization phase of the schedule and at the comple-
tion of each steady phase, components with rpeek > rpop
will have input elements that are used in subsequent exe-
cutions. The remainders of a component c are stored in
R[c]. Consistent with the copy-shift strategy, such com-
ponents are responsible for saving these remainders at the
completion of the initialization and steady phases. The re-



mainders are loaded in the beginning of the input window
of a component prior to the beginning its execution. Re-
mainders are treated as a special case since their live ranges
cover the entire phase, creating few opportunities for tem-
poral reuse. Accordingly, remainders are saved and loaded
from special remainder stores. Components that operate on
shared buffers also have shared remainders. We optimize
the loading and storing of data from shared stores to avoid
duplicate memory operations.

I0 I1 I2 I3
LowPassFilter0

LowPassFilter0
O0 O1

FloatSource
O0 O1 O2 O3

I0 I1
FloatPrinter
I0 I1

I0 I1 I2 I3
Splitter

Splitter
O0 O1 O2 O3 O4 O5 O6 O7

I0 I1 I2 I3
Subtracter

Subtracter
O0 O1

I0 I1 I2 I3
LowPassFilter1

LowPassFilter1
O0 O1

I0 I1 I2 I3
Joiner

Joiner
O0 O1 O2 O3

Schedule
Init: (FloatSource,3) (Splitter,3)
(LowPassFilter0,1) (LowPassFilter1,1)
(Joiner,1) (Subtractor,1) (FloatPrinter,1)
Steady: (FloatSource,1) (Splitter,1)

(LowPassFilter0,1) (LowPassFilter1,1)
(Joiner,1) (Subtractor,1) (FloatPrinter,1)

Live ranges:
Element Start End

FloatSource:O0 (0, 0, 0) (0, 7, 3)
FloatSource:O1 (0, 1, 0) (1, 3, 3)
FloatSource:O2 (0, 2, 0) (1, 6, 1)
FloatSource:O3 (1, 0, 0) (1, 6, 2)

LowPassFilter0:O0 (0, 6, 4) (0, 9, 3)
LowPassFilter0:O1 (1, 2, 4) (1, 5, 3)
LowPassFilter1:O0 (0, 7, 4) (0, 9, 4)
LowPassFilter1:O1 (1, 3, 4) (1, 5, 4)

Subtractor:O0 (0, 9, 2) (0, 10, 0)
Subtractor:O1 (1, 5, 2) (1, 6, 0)

Physical layout:
MEM Initialization Steady

0 FloatSource:O0 FloatSource:O1

LowPass1:O0 LowPass1:O1

1 FloatSource:O1 FloatSource:O2

2 FloatSource:O2 FloatSource:O3

3 LowPass0:O0 LowPass0:O1

4 Subtractor:O0 Subtractor:O1

Remainder store: 2 cells

Figure 2: Bandpass filter: memory graph, stream schedule,
and physical layout

Figure 2 shows the memory graph generated and stream
schedule for a bandpass filter. The figure also includes
the physical layout generated using the AoC heuristic. In
the initialization phase, the algorithm starts by creating a
window containing 3 elements that start at MEM[0]. The
duplicate splitter replicates this window to the input of
the low pass filters. LowPassFilter0 checks if it may
reuse the cell allocated for LowPassFilter0:I0 to store
its LowPassFilter0:O0. Since the intersection of the live
ranges [(0, 0, 0), (0, 7, 3)] and [(0, 6, 3), (0, 9, 3)] is not empty,
this is not possible. This is expected since this sample is also
an input to LowPassFilter1. Accordingly, it is mapped
to MEM[3]. LowPassFilter1 performs a similar check
to determine if the cell allocated for LowPassFilter1:I0
may be reused for LowPassFilter1:O0. In this case
where the intersection of the live ranges [(0, 0, 0), (0, 7, 3)]
and [(0, 7, 4), (0, 9, 4)] is empty, the cell may be reused. Ac-
cordingly, LowPassFilter1:O0 will reuse MEM[0]. In the
steady phase, FloatSource:O3 is pushed and shifted to
MEM[2] because FloatSource:O1 and FloatSource:O2

will be loaded to MEM[0:1]. The following filters produce
samples at the locations as in the initialization phase, prov-
ing the mapping allows to execute the steady schedule infi-
nite often. The resulting layout is shown in Figure 2. We
note that a naive memory management approach that uses

Benchmark Description
AutoCor autocorrelation computation
Bitonic Sort bitonic sort
MergeSort merge sort
Repeater repeats odd samples M times
FIR/FIRCourse finite impose response filters
FMRadio FM radio with 10-way equalizer
FFT2/FFT3 FFT computation
MatrixMult/MatrixMultBlock matrix multiplication
BeepBeep [18] acoustic localization
MFCC computation of MFCC coefficients
Crowd [1] estimation of number of

co-located speakers

Table 1: Benchmark suite

respective buffers for splits and joins (as it is the case for
the default StreamIt compiler) would require a total of 12
cells, one for each output element. In contrast, our layout
algorithm requires only (5+2) cells by taking advantage of
location and temporal sharing.
Code generation. The last step in ESMS is the genera-
tion of C code from a StreamIt program. Most of the details
of code generation are unsurprising. The only aspect that
requires careful handling is the generation of code for peek,
pop, and push. When the memory is accessed contigu-
ously, generating code for memory instructions is straight-
forward. However, handling a fragmented memory layout is
challenging when memory operations are nested in loops.
Our compiler implements two methods for handling this
case. In most cases, we opt for splitting the loop at the
boundary of contiguous memory locations. Obviously, this
trade-off increased code complexity for execution time im-
provements. The alternative is to apply indirect addressing
where the memory instructions operate in the logical space
and a static mapping between the logical and physical space
is concretized as a lookup table used at run-time. A tunable
constant is used to control between the two options.

4. EXPERIMENTS
In the following, we show the benefits of the proposed

static analysis and memory layout algorithm. Benchmarks
are made on a desktop machine that has a 3GHz Intel(R)
Xeon(R) CPU E5-1680 v2, and a Nexus 10 tablet that has a
Samsung Exynos 5250 SoC with 1.7 GHz Dual-core Cortex-
A15. The Xeon has 32KB L1 instruction and data caches,
256K L2, and shared 25MB L3 caches. The ARM has 32KB
L1 instruction and data caches, and a shared 1 MB L2 cache.
The system runs Android 5.1. Programs are compiled using
the native development kit (NDK) r10d that uses gcc 4.8.
A wrapper Java application is generated to invoke the gen-
erated code. All programs are compiled using the highest
optimization level (i.e., -O3).

The suite of benchmarks consists of 14 stream applications
(see Table 1). The majority of the benchmarks were devel-
oped as part of the StreamIt project. In addition, we im-
plemented three mobile sensing applications using StreamIt:
the BeepBeep app [18] performs sound-based localization,
the MFCC app implements the core of a speaker identification
app (e.g, [2]), and the Crowd app [1] estimates the number
of co-located speakers.

Static Analysis. We have evaluated the pessimism of
the static analysis proposed in Section 3.1. The static anal-
ysis was able to precisely characterize the memory behav-
iors of all benchmarks with the exception of the MergeSort
benchmark. It includes nondeterminism since the control
flow depends on the input data. This shows that for a wide
range of programs our analysis can precisely characterize the
complete memory behavior of a stream program. For the
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Figure 3: Data, code, and speedup improvements on Intel
Core i5-3550

MergeSort benchmark, the analysis derived a safe approxi-
mation of location and temporal sharing opportunities. We
note that even for these benchmarks, the nondeterminism
is confined to a single component and does not affect the
others in the application.

Intel Measurements. We have measured the impact of
memory optimizations on three dimensions: data size, code
size, and speedup. We report both absolute and relative
improvements in these dimensions. The relative improve-
ments are computed based on the performance of the de-
fault StreamIt compiler (labeled StreamIt). We have also
run the StreamIt in conjunction with the cache optimization
described in [10]. These results are reported as CacheOpt.
The compiler with cache optimizations failed to generate

code for MFCC and Crowd applications because it ran out
of memory. The performance of the always-append, append-
on-conflict, and insert-in-place heuristics are denoted by la-
bels AA, AoC, and IP respectively. The code and data size
results were obtained only on the Intel perform using the
size utility. The tool reports both the code and data sizes
in multiples of a page. The speedup results are based on the
CPU user time reported by the time utility.

Figure 3a shows the data size with StreamIt as the base-
line. The average reductions on memory footprint of AA,
AoC, and IP are 50KB, 55KB, and 98KB. These represent
reductions on data size between 45–96%. The AA heuris-
tic provides the smallest reductions on data size since it
always appends rather than attempts to resolve memory
conflicts. The AoC and IP heuristics achieved comparable
performance in terms of memory usage. In contrast, en-
abling the CacheOpt increased memory consumption by an
average of 627KB. This increase can be as large as 98% for
MergeSort or FFT2.

Figure 3b shows the code size with StreamIt as the base-
line. The average code reductions for AA, AoC, and IP are
130KB, 143KB, 136KB. In relative terms, the average re-
ductions are 69%, 72%, and 77% respectively. The ESMS
optimizations reduce the code size by not generating code for
split-join constructs and other components that reorder
(without modifying) the input data. Nevertheless, even with
these savings, there are cases when ESMS has larger code
size than StreamIt. CacheOpt typically has a minimal im-
pact on the code size. On average, it adds 14KB to the code
size of the considered benchmarks.

Figure 3c shows the speedup relative to StreamIt. The
average speedups of AA, AoC, and IP are 3, 3.1, and 3. In
contrast the average speedup of CacheOpt is merely 1.07.
All of ESMS heuristics outperformed CacheOpt with the
exception of the two FIR benchmarks on both platforms be-
cause the FIR pipeline is long enough to cause instruction
cache misses in one schedule iteration and the CacheOpt per-
forms better by reducing the cache miss rate with execution
scaling which is constrained by the data cache size. ESMS
with reduced data size is expected to support more execu-
tion scaling in the future. Otherwise, the reason for these
significant performance improvements is the fact that ESMS
uses less memory access by effectively sharing data across
components. We validated that this was the case by using
cachegrind to track the number of memory accesses (data
not included due to limited space). Moreover, the smaller
footprint leads to a smaller working set that fits within the
large cache of this platform. On the Intel platform, ESMS
managed to improve the stream processing throughput while
significantly reducing the memory consumption. The heuris-
tics that handle conflicts either by inserting or appending
achieve more memory savings than AA. Resolving conflicts
through insertion tends to achieve more reductions on data
size but slightly lower performance than appending.
ARM Measurements. We generate Android applications
that include the compiled code as a shared library. To quan-
tify the impact of memory optimizations on Android ap-
plications, we measure the maximum resident working set
size (RSS), which includes the total memory allocation at
run-time for both the Android application and the shared
library. Figure 4a shows the RSS relative to the baseline
StreamIt on ARM. The average reductions for AA, AoC, and
IP are 274KB, 247KB, and 261KB respectively. In contrast,
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Figure 4: RSS and speedup improvements for Samsung
Exynos 5250

CacheOpt increased the buffer size by 347KB in order to op-
erate on larger buffers. This shows ESMS facilitates effective
memory savings. Figure 4b shows the speedup on ARM. The
average speedups for AA, AoC, and IP are 2.18, 2.03, and 2.3,
respectively. CacheOpt achieved a comparable speedup of
2.18. The standard deviation for the speedup improvements
for AA, AoC, IP, and CacheOpt were 2.12, 2.16, 2.3, and
2.95. The lower standard deviation of AA indicates that it
performed the best. ESMS achieves similar performance but
significantly reduces the memory footprints.

5. RELATED WORK
The memory optimization problem is similar to the clas-

sical aggregate update [19] problem in functional program-
ming languages. The numerous solutions proposed to ad-
dress this problem can be broadly classified as either run-
time or static approaches. Run-time approaches typically
rely on either garbage collection or reference counting. In
contrast, static approaches require compiler analyses to de-
termine live ranges of variables in order to ensure safe data
sharing. Live range information may be extracted either
through heuristics [20] or abstract interpretation [21]. A dis-
tinguishing aspect of our analysis is that it takes advantage
of stream properties to characterize complete applications.

In [22], a greedy in-place reuse of memory allocations is
proposed for the data flow model of LabView. The heuristic
approach chooses variables using a cost metric to merge and
store them in the same location. In contrast, our layout al-
gorithm takes advantage of the structure of the data flow for

memory optimization. More recently, an annotation-based
approach has been proposed to address memory manage-
ment in the context of data flow languages [23]. We note
that StreamIt includes explicit data sharing information as
part of the split-join construct. Moreover, we show that
significant improvements in stream processing rates and re-
ductions on memory footprints may be achieved without re-
quiring annotations.

The problem of scheduling SDF graphs to optimize differ-
ent metrics has been studied extensively [11, 17]. The pre-
vious work of phased scheduling [12] shows a steady state
SDF schedule can be rearranged in phases to shorten the
output latency compared with SASs which have only one
phase at the expense of increasing code size. Since our goal
is to optimize memory usage and performance, ESMS may
support phased scheduling in the future.

On the other hand, several cache performance improve-
ments were proposed including the copy-shift buffering and
execution scaling for StreamIt in [10], and cache-aware op-
timizations for synchronous data flows [24] as part of the
Ptolemy project [25]. In contrast with [10] that trades space
for performance, our approach improves cache locality by
saving space while eliminating unnecessary memory opera-
tions to improve the performance. In [17], the memory reuse
is based on overlaying channel buffers in terms of their live
ranges while maintaining periodical modulo access. Com-
piler optimizations were also considered to generate instruc-
tions to avoid the modulo overhead selectively given the
static schedule. From this perspective, our compiler opti-
mizations allow for more aggressively reuse and even remap
non-contiguous memory accesses across filter invocations at
some cost of increasing code complexity.

In addition, the linear analysis in [26] is an effective alter-
native to improve the performance by reducing the number
of linear filters while saving memory usage accordingly. In-
stead, we consider filters only in terms of general memory
operations and are able to eliminate non-productive filters
such as split-joins or filters that reorder their input with-
out modifications. In this sense, our optimizations are not
limited to linear filters but more general.

Memory management can have a significant performance
impact on stream processing engines. XStream [6] and
WaveScript [8] use an abstract data structure called SigSeg
to merge and segment data streams efficiently. CSense [5]
proposes several memory management techniques to opti-
mize the exchange of frames between components. Stream-
Flex [27] is yet another stream processing toolkit written
in Java, aiming at avoiding the garbage collection overhead
while satisfying real-time constraints.

6. CONCLUSIONS
In this paper, we presented – ESMS – a novel approach

for optimizing the memory management of stream programs.
Our approach leverages the unique properties of stream pro-
grams for both static analysis and memory layout. We devel-
oped a novel static analysis technique that characterizes the
behavior of complete stream programs by identifying loca-
tion and temporal sharing opportunities. Our analysis scales
to handle large stream programs by separating the compo-
nents analysis from the creation of memory graphs through
stitching. An evaluation conducted on 14 benchmarks in-
cluding three for mobile sensing applications reveals that
the analysis is precise for a majority of stream applications.



Besides, sound approximations of the memory behavior are
provided for the other applications.

We developed a novel memory layout algorithm. The al-
gorithm recognizes that stream programs have significant
opportunities for location sharing. In StreamIt, these op-
portunities are often the result of constructing programs
using pipeline and split-join constructs. Addition-
ally, we observe that connected filters in a SFG may often
operate on the same memory since the live ranges of their
buffers usually do not overlap. Obviously, this is not always
possible. We introduced three simple heuristics to handle
conflicts when they arise during the memory layout process.
Our empirical evaluation indicates that ESMS may achieve
significant memory savings. On the Intel platform, these
memory savings are coupled with improvements in stream
processing rates over StreamIt with cache optimizations. On
the ARM platform, the stream processing improvements are
comparable to those achieved by StreamIt with cache opti-
mizations. These results show that ESMS is effective in de-
veloping efficient memory management for stream programs.
In the future, we plan to continue exploring compiler opti-
mization techniques to further improve the performance of
stream processing engines for mobile sensing applications.
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