
Efficient and Responsive: Satisfying Delay
Constraints in Energy-Efficient Mobile Applications

Nima Nikzad, Octav Chipara†, and William G. Griswold
Department of Computer Science and Engineering

University of California, San Diego, La Jolla, California 92093-0404
Email: {nnikzad, wgg}@cs.ucsd.edu
†Department of Computer Science

University of Iowa, Iowa City, Iowa 52242-1419
Email: octav-chipara@uiowa.edu

Abstract—A growing number of smartphone applications are
always on and must employ sophisticated power management to
avoid excessive battery drain. Previously we introduced APE, an
annotation language and runtime for Android that helps devel-
opers realize application-specific power-management policies by
delaying potentially power-hungry operations until a time when
their negative effects are minimized. However, a developer using
APE must have a deep understanding of their code’s component
interactions, such as how delaying an energy-intensive network
call might interfere with the timing of user interface calls. Our
investigations show that this can indeed happen.

To address this problem, we introduce a new annotation
paradigm that focuses on labeling timing-sensitive computa-
tions in lieu of choosing sites where it is safe to introduce
delays. Specifically, we introduce a new annotation primitive,
@APE DelayableUpTo, that allows developers to specify delay
bounds on computations. Static analysis determines both where
delay annotations should be inserted and where additional
instrumentation is required to ensure that no delayable execution
path exhausts the specified delay allowances at runtime. A wizard
guides the user in the formulation of power-saving guards for the
delays. Our experiments show that this new approach removes
delay problems while still achieving significant power savings.

I. INTRODUCTION

In recent years, a growing class of always-on mobile ap-
plications have helped turn smartphones into a critical part of
our everyday lives. For example, services like Dropbox [?]
and BitTorrent Sync [?] keep important documents synchro-
nized across multiple devices. Personal health and context-
monitoring applications, such as Fitbit [?], CitiSense [?],
AudioSense [?], BeWell+ [?], and Ohmage [?], often collect
sensor data that is periodically uploaded to a remote server.

However, these continuously-running mobile (CRM) appli-
cations often have a disproportionate impact on a device’s
battery life. While they may be operating at low duty cycles,
these applications often rely on power-hungry resources, such
as the cellular radio. To ensure their application does not
kill a user’s battery before the day is through, a developer
must ensure their application is as energy-efficient as possible
without compromising user experience. Unfortunately, power-
management code tends to be complex as it must actively
monitor device state and the availability of resources using
low-level interfaces.

To address the challenge of building energy-efficient CRM
applications, we previously developed and presented Anno-
tated Programming for Energy-efficiency, or APE [?]. APE
allows a developer to demarcate power-hungry segments of
their application with quality-of-service and device state re-
quirements using a simple, declarative annotation language.
A runtime service then uses this information to defer the
execution of costly operations until the device enters a state
that minimizes their energy consumption. For example, a CRM
application can reduce the cost of networking operations by
deferring their data uploads until another application turns on
the radio. If no connection is established within a developer-
defined period of time, the application turns on the radio and
proceeds with the data uploads. A brief overview of the APE
language and runtime is provided in Section II-A.

Although APE dramatically simplifies power-management
code while achieving significant power savings, a major un-
addressed challenge is that the developer had to deftly place
the delay annotations in order to preserve the expected user
experience. As a simple example, a developer may not realize
that their application has an execution path from a delayed
operation to an UI operation. Such a path may cause the UI
thread to be blocked while waiting on a delayed operation.
Mentally reasoning about such execution paths in a large,
object-oriented, multi-threaded application is taxing, at best.

To overcome this problem, we introduce a new paradigm
for introducing power-saving delays into applications that
separates the concerns of managing power consumption and
user experience. Specifically, we introduce a new annotation
into the APE language that allows a developer to mark delay-
sensitive and delay-intolerant code, and then let the APE
compiler and runtime perform the complex tasks of inserting
appropriate delays and regulating the delays at runtime to
ensure delay-sensitive code is not adversely impacted. The
developer still needs to specify the conditions and length of
delays, but not where it is safe or effective to insert those
delays. This new approach comprises four contributions:
• We present a new power-management annotation

paradigm and associated language primitive,
@APE_DelayableUpTo(t), that enables developers
to specify that an operation cannot be delayed more than



t seconds (Section II).
• We present compile-time and runtime support that en-

forces the delay constraints specified by the developer
(Section IV). A static analysis identifies all paths to
operations that have been marked by the developer as
delay-sensitive. Code is then generated along these paths
to keep track of the delays introduced by postponing the
execution of power-hungry operation. When the delay
allowance of a path is exhausted, power-management
delays are suspended along that path until the delay-
limited resource is reached and executed.

• We present an analysis and tool that automatically iden-
tifies operations in a CRM application that (a) make
use of power-hungry resources, (b) generates APE-based
power-management policies for them, and (c) provides
feedback to the developer regarding available options for
customization of the policies (Section V).

• We present a study of six CRM applications that demon-
strates that (a) the straightforward instrumentation of
CRM applications introduces behavioral problems, (b) the
use of our new annotation and the associated analysis
solves these problems, and (c) this new paradigm of
introducing power management into a CRM application
still provides significant power savings (Section VI).

In addition to the above, we discuss related work in Section
VII, and conclude in Section VIII.

II. BACKGROUND AND APPROACH OVERVIEW

We previously developed and presented Annotated Pro-
gramming for Energy-efficiency, or APE, to reduce the chal-
lenges of building energy-efficient continuously-running mo-
bile (CRM) applications. In this section, we provide a brief
overview of APE and its use. (Further details can be found
in [?]). We then discuss the challenges remaining with this
approach, and present our new paradigm for specifying power
management policies.

A. APE Language and Runtime

APE’s power management model is based on the observa-
tion that two (or more) applications, processes, or threads can
concurrently use a power-hungry hardware resource at roughly
the same energy cost as one of them alone. Thus, significant
power savings are possible by delaying, say, a thread’s use of
the cellular radio until another one starts using it.

APE is designed to ease the development of such power-
management policies for CRM applications by providing
developers with a high-level annotation language to express
quality-of-service requirements and desired device state. These
annotations are translated at compile time into Java code that
makes calls to the APE runtime service, which coordinates
the execution of power-management policies across multiple
APE-enabled applications. APE has the benefit of separating
policies from the code that implements the functional require-
ments of the application, while insulating the developer from
the low-level complexities of monitoring hardware state.

APE includes a collection of built-in terms that corre-
spond to the states of various hardware components. These
terms can be joined together using AND and OR to compose
a boolean expression that describes potential device states.
These boolean expressions can then be used along with
the @APE_WaitUntil annotation to specify operations that
should be delayed until the provided expression has been sat-
isfied or some MaxDelay number of seconds has passed. Ad-
ditionally, the @APE_If, @APE_ElseIf, and @APE_Else
annotations allow for conditional policy selection at run-time.
New terms can be added to the APE language using the
@APE_DefineTerm annotation and entire policies can be
saved and reused via the @APE_DefinePolicy annotation.

while(true) {
@APE_If("Battery.Level > 70%")

@APE_WaitUntil("WiFi.Connected", MaxDelay=1800)
@APE_Else()

@APE_WaitUntil("WiFi.Connected", MaxDelay=7200)
uploadSensorData();

}

Fig. 1. An example of a policy implemented using APE: Delay the upload
of sensor data until a Wi-Fi connection is available.

Figure 1 provides an example of how these constructs are
combined to compose a power-management policy. The policy
expressed in the figure can be interpreted as follows: If more
than 70% of battery life remains, wait up to 1800 seconds
(30 minutes) for a Wi-Fi connection before uploading sensor
data. Otherwise, wait up to 7200 seconds (2 hours) for a Wi-Fi
connection. These annotations are replaced with corresponding
Java code at compile time and used to control the behavior of
sensor data uploads at runtime.

Our evaluation of APE found it to be both concise and ex-
pressive for a variety of power-management policies. In a case
study, APE introduced negligible overhead and equaled hand-
tuned code in energy savings, in our study achieving 63.4%
energy savings compared to when there is no coordination
among threads.

B. A New Approach that Eases Demands on Developer

APE was a significant advance because of its unique ap-
proach to power management, as well as abstracting away
vast amounts of technical detail in specifying policies and
achieving them at runtime. Still, as discussed in the intro-
duction, it was difficult to figure out where best to place an
@APE_WaitUntil and what to populate its arguments with.

To aid in describing this challenge, we introduce some
concepts and terminology. On the whole, the timeliness of
operations in mobile applications is an issue of user experience
rather than one of correctness. That is, if each thread in an
application is guaranteed to eventually make progress, the
addition of a bounded delay to any thread does not change
this guarantee. However, the user experience may be compro-
mised. We classify operations of mobile applications as delay-
insensitive or delay-sensitive depending on the impact that
delaying an operation has on the user experience. Examples of
delay-insensitive operations include the download of email or



prefetching of images that may be required at a later point in
the application. Delay-sensitive operations typically interact
closely with the user interface. For example, introducing a
delay on a callback from a UI widget may degrade user
experience and even result in “Application Not Responsive”
dialogs prompting the user to kill the application. We call
such highly sensitive operations delay-intolerant.

With these concepts in mind, it is now apparent that the
core challenge for the developer is achieving the intended
balance between power savings and user experience. Our
previous solution encoded both of these concerns into use of
@APE_WaitUntil annotations. In particular, the developer
needed to identify paths of execution that both (a) were time
insensitive, and (b) could produce power savings if delayed.
This is problematic. For reasons of clarity, the developer
would like to place annotations directly on, say, network
calls. However, it is common for such calls to be hidden
inside helper methods that are widely used in the application.
Inevitably, some but not all of its uses would involve, say,
retrieving data that would eventually be displayed in the
UI. As a result, instead of directly annotating network calls,
the developer would need to search up the call graph from
the helper method to the callers of that method, and so
forth, identifying paths to the network call that are delay-
insensitive (or at least not delay-intolerant), and then writing a
customized @APE_WaitUntil annotation on each path that
met the user experience requirements of that path. For delay-
intolerant call paths, no annotation would be placed at all.
The result, then, is multiple, path-specific @APE_WaitUntil
annotations that are time-consuming, at best, to place, and to
compound matters, are not near the network call that is meant
to be delayed.

The contribution of this paper is to decouple the concerns
of specifying power management from the concern of preserv-
ing user experience. Specifically, we introduce a new APE
primitive @APE_DelayableUpto(t) and its special case
@APE_Undelayable that allow the developer to directly an-
notate operations that should have bounded delays. A compile-
time analysis does the call-path reasoning that the devel-
oper previously performed. However, instead of inserting cus-
tomized @APE_WaitUntil annotations along these paths,
it inserts the power-optimal annotation at the network call
site, and then inserts monitoring code along all its call paths
(including paths through threads) that tracks the maximum
delays allowed on the executed path @APE_WaitUntil. The
maximum delay of the @APE_WaitUntil is then capped
at the minimum of its own maximum delay and the delay
allowances specified along incoming path.

It is important to note at this point that because this new
paradigm allows @APE_WaitUntil annotations to be lo-
cated at the access of resources, it is now possible to automate
the siting of these annotations. Identifying the locations where
resources are activated or acquired is straightforward as Java
and Android use well-known interfaces for such operations.
Since writing the specific guard conditions and maximum
delay cannot be automated, we employ a wizard to support

the creation of policies by presenting the developer with a list
of APE terms relevant to the resource in question (Figure 5).
The programmer composes the application-specific policy by
joining the APE terms with AND and OR operations. Another
benefit of this new approach to specifying power-management
policies is that a static program analysis can detect and warn
when all the call paths to a @APE_WaitUntil have a smaller
maximum delay than the @APE_WaitUntil itself.

With this overview in mind, the next two sections present
our approach in detail.

III. ANNOTATION SEMANTICS

Power annotations either defer operations or constrain how
long an operation may be deferred.

A. APE_WaitUntil

Consider an execution of an operation O that is annotated
with @APE_WaitUntil(E,DO) on a thread τ . Thread τ is
blocked until the device enters a state in which expression
E holds or the maximum allowable delay DO is reached.
We call the time that a thread τ is blocked while opera-
tion O is deferred as the operation’s delay (∆(O, τ)). The
@APE_WaitUntil annotation imposes the constraint that

∆(O, τ) ≤ DO (1)

holds on all threads τ that execute O.

B. APE_DelayableUpto

The developer may specify quality-of-service properties by
constraining an operation’s delay. We consider two useful
alternative semantics for this annotation, first considering just
delay within the operation in question (the METHOD case),
and then considering all the delays occurring in the operation’s
thread up to and including the operation (the THREAD_ENTRY
case).

a) METHOD alternative: Consider an operation O anno-
tated with @APE_DelayableUpTo(RO, METHOD). The
annotation constrains the aggregated delay of O and all other
methods invoked during O’s execution to be less than RO.
Formally, we require that for any thread τ :∑

o∈children(O)∪{O}

∆(o, τ) ≤ RO (2)

where, children(O) is the set of methods invoked by O.
b) THREAD_ENTRY alternative: The semantics for the

METHOD alternative are attractive because they are modular –
the timing constraints apply only to the annotated operation.
However, in our experiments with annotating real applications,
we found that we often wanted to constrain delays on the
operation O from the inception of the thread that contains
it. That is, in the case where all of the computations in the
thread leading up to the execution of O are seen as setting up
O, it makes sense to bound their delays as well. Formally, we
require that for any thread τ :∑

o∈predecessors(O)∪{O}

∆(o, τ) ≤ RO (3)



where, predecessors(O) is the set of operations invoked in
the thread prior to invoking O.

Because the THREAD_ENTRY alternative is ”safer” in that
it bounds the delays over at least as many operations as the
METHOD alternative, we treat it as the default in our syntax,
should the second parameter be omitted. Additionallly, we
define the annotation @APE_Undelayble() as equivalent
to @APE_DelayableUpTo(0).

C. Example

Consider the example of a simple application that down-
loads stock data and related images from a server, formats
the data, and then displays the results on the UI. Energy
consumption can be reduced by batching downloads. In Figure
2, the developer annotates the openConnection invocation
with an @APE_WaitUntil (see line 24). The annotation
allows the downloading of images and stock quotes to be
delayed until the device is connected to a Wi-Fi network or
if cellular activity was observed while connected to either a
3G or 4G cellular network. If no other application turns on
the network within 20 minutes, the application turns on the
network interface and proceeds with the download. Additional
energy savings may be obtained, by also deferring the display
of the analysis results for up to 5 minutes when the screen is
off (see line 15).

The developer may customize the user experience
by introducing @APE_DelayableUpTo annotations.
For example, perhaps stock quotes should be displayed
as soon as possible. The developer may annotate the
method invocation processData (see line 7) with a
@APE_DelayableUpTo(1 min, METHOD) to display
the analysis results for this timely data more quickly (see
line 6, in comment). Note that the annotation is specific to an
execution path, applying to the processData call on line
7, but not the one on line 9: the call of processData in
line 9 may delay the display of processed results for the full
5 minutes as specified by @APE_WaitUntil.

The developer, however, may still be unsatisfied with how
fast images are processed. To further reduce this time, she
may change the scope of the annotation by changing the
annotation to @APE_DelayableUpTo(1 min) (see line
5). The annotation requires that the aggregated delay of
all operations from the start of the thread until the com-
pletion of the processData call on line 7 be less than
a minute. Accordingly, both the openConnection and
updateDisplay function may be deferred by a total of
a minute; the time each function is delayed depends on the
state of the device. As before, the execution path through
the other call of processData is not constrained, and the
@APE_WaitUntil may delay processing up the the full 5
minutes.

IV. STATIC ANALYSIS AND RUN-TIME MONITORING

An APE annotated application must guarantee that delayed
operations satisfy any and all timing constraints specified by
a developer. To do so, a combination of static analysis and

1 class ProcessDataFromServer implements Runnable {
2 public void run() {
3 Data data = NetworkUtils.downloadData();
4 if (data.isStockTicker()) {
5 @APE_DelayableUpTo(1min)
6 // @APE_DelayableUpTo(1min, METHOD)
7 processData(data);
8 } else {
9 processData(data);
10 }
11 }
12

13 void processData(Data data) {
14 ...
15 @APE_WaitUntil(Display.ON, 5min)
16 updateDisplay(data);
17 ..
18 }
19 }
20

21 class NetworkUtils {
22 public static Data downloadData() {
23 URL url = new URL(SERVER_ADDR);
24 @APE_WaitUntil("WiFi.Connected OR Network.Active
25 and (Cell.4G OR Cell.3G)", MaxDelay= 20min)
26 HttpURLConnection conn =
27 (HttpURLConnection) url.openConnection();
28 ...
29 return data;
30 }
31 }

Fig. 2. A thread attempts to download data to displayed within the application.
The @APE_DelayableUpTo annotation ensures that the downloading and
displaying of the data is not delayed by APE by more than one minute.

run-time instrumentation and monitoring is used to ensure
that constraints are satisfied during execution. Static analysis
translates @APE_DelayableUpTo annotations into delay
allowances that are assigned along relevant call-paths in the
program. These allowances bound the delay experienced by
a thread of execution: threads spend their allowance when
waiting at a @APE_WaitUntil annotation site and may not
spend more than their smallest assigned allowance. When a
thread has zero remaining delay allowance, it simply skips
any @APE_WaitUntil annotations. Threads without any
form of @APE_DelayableUpTo constraint have infinite
delay allowance, meaning that the time spent waiting at
a @APE_WaitUntil annotation is bounded only by the
MaxDelay parameter of the policy. Allowances are updated
by the APE runtime after each @APE_WaitUntil annotation
to reflect the time actually spent waiting at the annotation site.

A. Algorithms for Static Analysis and Monitoring

The static program analysis employed by APE is built upon
the Soot Java Optimization Framework [?]. The first step
in our analysis is to generate the control flow graph (CFG)
of the target application. Static program analysis using the
Soot framework requires that an entry point to the application
be specified, and by default this entry point is the main
method. However, unlike other Java-based programs, Android
applications do not include a main method. Instead, an ap-
plication specifies a variety of potential entry points that may



1: let G be the control flow graph of the application
2: let X be set of operations annotated with @APE_DelayableUpTo
3: for each operation O ∈ X:
4: let a be the annotation @APE_DelayableUpTo(scope, RO)
5: if (scope == METHOD):
6: add allowance RO before O; clear allowance after O
7: if (scope == THREAD_ENTRY):
8: let E be the set of entry points in G that reach O
9: for each e ∈ E: add allowance RO at e

10: clear allowance after O
11: if (scope == THREAD_EXIT):
12: add allowance RO before O
13: let F be the set of exit points in G that may be reached from O
14: for each f ∈ F : clear allowance RO at f

Fig. 3. Algorithm for instrumenting application code with delay allowances.

be called by the Android framework, such as the onCreate
and onStop methods that are called when an application is
first started or stopped, respectively. To allow Soot to properly
analyze the application, a dummy main method must be
constructed. By default, this main method includes calls to the
common Android application lifecycle methods (onCreate,
onResume, etc.). The developer may occasionally have to
manually add other entry points in their application to this
dummy main method. Further automation of this process using
techniques such as those used in FlowDroid [?] is an area of
future work.

The analysis considers each @APE_DelayableUpTo op-
eration in the CFG and generates allowances as follows. Con-
sider the annotation @APE_DelayableUpTo(RO, scope)
on an operation O. The locations where the delay allowances
are inserted depends on the scope of the annotation. As previ-
ously mentioned, each @APE_DelayableUpTo annotation
without the optional scope parameter is assumed to have a
scope of THREAD_ENTRY. If the scope of the annotation is
THREAD_ENTRY, then delay allowances must be assigned at
each entry point with a path to O and cleared immediately
after O is completed and returns. This requires computing
the set of entry points in the CFG that reach O, which is a
reachability problem solved using the Soot generated CFG.
If the scope of the annotation is METHOD, delay allowances
are assigned immediately before O and cleared immedately
following O. If the scope of the annotation is THREAD_EXIT,
delay allowances are assigned immediately before O and is not
cleared until the thread of execution reaches its completion,
again determined by utilizing the Soot generated CFG. Delay
allowances are assigned and cleared via calls to the APE
service at runtime, which is discussed in further detail later in
this section. The pseudocode of the static analysis is included
in Figure 3.

Concurrency and thread synchronization must also be con-
sidered during analysis, as a path may be potentially blocked
by another path of execution by use of thread synchronization
constructs like wait and notify. If a thread τ is blocked
and waiting for notification from another, delayed thread, then
τ must also be considered delayed. To properly handle such
cases, a points-to analysis is used to identify shared locks

1: add-allowance(τ , O, RO):
2: ∆[τ,O] = RO

3: remove-allowance(τ , O):
4: remove (τ,O) from ∆:

5: wait-until-entry(τ , E, DO):
6: let Rτ = minO ∆[τ,O]
7: wait up to min(Rτ , DO) for E to be satisfied
8: let T be the time spent waiting
9: for each (τ,O) ∈ ∆: ∆[τ,O] = ∆[τ,O]− T

Fig. 4. Instrumentation for assigning, clearing, and using delay allowances.

across paths. Edges are added to the generated control flow
graph from all notify calls to matching wait calls on
shared objects so that any potential delays leading up to the
notify call are considered also on the path of the wait call.

The pseudocode for the instrumentation code is included in
Figure 4. The core of our instrumentation code is the shared
map (∆) that includes all the constraints constraints that are
currently active. A constraint RO of operation O on thread
τ becomes active when τ executes add-allowance(τ,O,RO)
method. The constraint becomes inactive after τ executes
remove-allowance(τ,O). At any point during the execution
of τ , the maximum amount of time that a @APE_WaitUntil
annotation may delay it without violating the delay constraints
is:

Rt = min
O

∆[τ,O]

Accordingly, a @APE_WaitUntil(E, DO) annotation
may wait for expression E to hold for at most min(Rτ , DO)
Let T ≤ min(Rτ , DO) be the time that τ is blocked. The
allowance budget of τ is updated to reflect the introduced
delay by subtracting T the budget of all active constraints.

B. Run-time Optimizations

The APE runtime service is primarily responsible for the
monitoring of changes in hardware state and the execution of
power-management policies on behalf of client applications.
To ensure that constraints for delay-sensitive operations are
respected at runtime, the APE service has been extended to
track running threads and to make use of the code generated
during static program analysis. Depending on the thread of
execution and path taken through the application, power-
management policy requests to the APE runtime fall into one
of three categories:

1) UI Thread Request: Request was made from the main
UI thread of the application,

2) Constrained Request: Request was made from a non-
UI thread that has a delay constraint, and

3) Normal Request: Request was made from a non-UI
thread with no constraints.

The ‘normal request’ is handled as presented earlier: the thread
of operation makes a synchronous request to the APE runtime
to execute a particular power-management policy. The two
other cases, however, require further discussion.



The main UI thread of an application is responsible for
handling updates to the user interface of an application.
As any long-running operation on this thread would delay
updates to the interface and give the appearance of a broken
application, such operations should never be run on the
main thread. In fact, the official Android developer guide
explicitly and clearly warns developers: ”Do not block the
UI thread” [?]. As APE-based power-management policies are
based around the idea of delaying execution of tasks until
an energy-efficient opportunity presents itself, it is clear that
the main thread should never be delayed by APE. So as
to avoid any unwanted stalls in the UI, whenever a thread
reaches a APE_WaitUntil annotation, it is checked using
Thread.currentThread().getId() to see if the ex-
ecuting thread’s ID matches that of the main thread. If the
calling thread is in fact the main thread, the synchronous
request to the APE service is skipped over and execution of
the application continues normally. Once a thread has been
delayed a total amount of time equal to its allowance, it may
no longer be delayed and simply skips all other APE-driven
delays as if it was the main UI thread.

V. POLICY GENERATION ENGINE

The Policy Generation Engine, or PGE, is designed to lower
the barrier to developing power-management policies with
APE by examining the source code of an Android application,
identifying instructions that are known to be sources of high-
power consumption, and recommending relevant APE power-
management policies to apply to the program.

The tool first scans the target application source code
looking for any calls to the interfaces provided by Android to
power-hungry resources. The PGE does not actively measure
the power-consumption of a running application to determine
instructions to target. Instead, it makes use of knowledge
gathered from official documentation and various best-practice
guides to target instruction that are known to wake power-
hungry hardware components. The current implementation of
the PGE identifies instructions that may wake the smartphone
display or cellular radio, as these resources are well suited for
delay-based power-management policies and are commonly
used in a variety of CRM applications. This list of relevant
instructions, and the the hardware resource they utilize, can
be found in a file called rules.pge that accompanies
the tool. This file also includes a list of APE-based power-
management policies to recommend for each such instruction
and is easily extensible to support adding information about
third-party libraries that provide new interfaces for interacting
with hardware components.

When the PGE is run, it parses the information found in
rules.pge and builds a list of all locations in the target
application that include a call to an instruction found in the
rule set. The tool then presents the developer with information
about the identified operations and provides a proposed power-
management policy to apply. Specifically, whenever a costly
operation is identified, the developer is presented with:
• a snippet of code that provides context to the instruction,

Fig. 5. An example of output from the Policy Generation Engine: a costly
network operation has been identified and a general and effective power-
management policy is presented and explained.

• the APE policy that is being recommended for insertion,
• a plain language description of the recommended policy,
• a list of other APE recognized terms that are relevant to

operation being modified, and
• the option to modify, insert, or discard the recommended

policy.
The description of the policy is intended to assist developers
new to APE with understanding how to read and compose their
own annotations, while the list of relevant terms is intended
to assist the developer with adjusting the generated policy as
they see fit.

Figure 5 provides an example of the results provided by
the PGE. During analysis of the source code, it was de-
termined that the openConnection() method of a URL
object was being called. As this operation will make use
of a network to open an HTTP connection to a desired
address, a networking related power-management policy is
recommended to the developer. At this point, the developer can
insert the recommended policy, discard it, or modify it before
inserting it. Clicking on any of the listed terms below the
recommendation will automatically insert it into the policies
boolean expression.

The authors believe that it is critical that the developer of
an application be kept in the loop during policy generation
and that no changes be made to the application source code
without explicit approval of the developer. Quality-of-service
requirements may vary greatly across different applications
and domains, and these requirements may not always be
inferred by examining source code. For example, the server
side component of a particular sensing application may expect
updates from clients at least once every twenty minutes.
Delaying such an update in hopes of piggybacking on an-
other transmission may improve energy-efficiency in a mobile



application, but it could also cause unintended consequences
on the server side.

In certain cases, it is possible that delaying the use of one
resource may extend the length of time another resource is
powered on. For example, if an application was to force the
display to stay awake by acquiring a WakeLock and only
released that lock after a particular network operation was
completed, any delays to that transmission would cause the
display to be active for longer than if the network operation
was undelayed. However, in the experience of the develop-
ers, such interactions are rare in practice, as the logic for
managing the state of various hardware components is not
typically interwoven in such a manner, nor is it commonly the
responsibility of a single thread. Previous work has studied
issues related to unreleased locks in mobile applications and
provided techniques for identifying them [?]. Extending the
PGE to handle such cases is an area of future work.

The current implementation of the PGE does not perform a
precise points-to analysis and may therefore miss identifying
expensive instructions in the face of complicated aliasing.
However, in the experience of the authors, this shortcoming
has not impacted the tools ability to successfully identify
instructions when tested on real-world applications. It is the
intention of the developers to eventually pair the PGE with
a precise points-to analysis to catch any uncommon issues
related to aliasing.

VI. EVALUATION

The core claim of our approach is that it is possible to
separate the specification of timing constraints and power
management policies while still achieving the goals of both.
Additionally, we claim that separating the two makes it is
possible to automatically identify the sites where power man-
agement policies can be inserted. Finally, we claim there is
minimal runtime overhead incurred. We evaluate these claims
by presenting case studies of our tool’s use in real applications
drawn from the open-source and research communities.

A. Accuracy of Policy Generation Engine

To evaluate the accuracy of the PGE, we compared it
against the Grep command-line utility, a tool often used
by developers to search large numbers of plain-text files.
Since Grep can only perform searches, we do not evaluate
it against the PGE’s ability to guide the formulation of the
actual @APE_WaitUntil annotation.

For the purposes of the comparison, the authors took on the
role of developer for six different Android-based applications
and libraries:

- AndStatus: a social networking client [?],
- AudioSense: a CRM application for hearing aid per-

formance evaluation [?],
- K-9: an e-mail client [?],
- NPR News: an application for reading and listening to

news stories [?],
- ohmage: a participatory sensing platform [?], and
- WeatherLib: a library for weather applications [?].

Prior to beginning the study, a definitive list of APIs –
classes and method names – relevant to power management
was derived via careful study of official Android API docu-
mentation. Then, for each application, we first ran the PGE
to insert @APE_WaitUntil annotations. We then repeated
the process using Grep, recursively invoking it from an
application’s root directory, looking for whole-word mentions
of any of the 18 classes that contain methods that initiate
network communication, such as ‘HttpClient’, ‘URL’, and
‘Socket’. Finally, we exhaustively inspected each application
to determine the ground truth. Only Java files were considered,
since the PGE and APE are implemented for Java.

For the analysis, we calculated the precision and recall of the
PGE and Grep at both the file level and the method level, for
each application. We considered an insertion recommendation
correct at the file level if it at least identified the correct file
for insertion of a @APE_WaitUntil annotation. Likewise,
for the method level, if a recommendation identified the right
method for insertion. To make the comparison with Grep fair,
we did not require line-level precision, as most developers
could quickly identify the correct line of code to annotate
once in the right method. However, if PGE identified the right
method, it identified the right line as well. The results are
presented in Table I.
Grep found all of the relevant files (i.e., 100% recall) for

all of the applications. Recall was also good at the method
level, achieving 67% recall or higher on all six applications.
Grep returned no false positives (i.e., 100% precision) on
the Audiology project, at both the file and method level, in
part because it encapsulates all networking related code within
a single method. Otherwise, method precision was low for
Grep, often returning many results in files that contained no
network operations at all. In many of these files, objects of
networking-related classes are instantiated, but not used. For
example, the AvatarData class in the AndStatus application
contains a URL object that encodes the path to an avatar image.
However, this URL is not used from within this class, but
rather is accessed by another class that performs the actual
communication. In other cases, files contained large comment
blocks that discussed how an instance of the class is used
in communication elsewhere in the application. Using a tool
like the Eclipse IDE’s search could avoid such false positives.
For the cases in which method recall was below 100%, Grep
still provided a file-level match. In other words, using Grep
will eventually get the developer to the relevant operations
for power management, but only after wading through many
irrelevant results and additional searching.

In contrast, the PGE was found to be fully precise at the
file and method level. However, the PGE did miss some results
in the ohmage and WeatherLib projects, reducing recall. As
discussed in the previous section, the PGE looks for particular
method calls on objects of relevant types. In the missed case
from the ohmage application, the network-utilizing method
call was made directly on the return value of a getter method
defined elsewhere in the application. The PGE does not
currently infer the return types of method calls and therefore



TABLE I
SEARCHING FOR OPPORTUNITIES TO REDUCE NETWORK-USE RELATED ENERGY-CONSUMPTION

App Truth Grep PGE
N

am
e

To
ta

l
Fi

le
s

R
el

ev
an

t
Fi

le
s

R
el

ev
an

t
M

et
ho

ds

G
re

p
R

es
ul

ts

N
um

.o
f

Fi
le

s

Fi
le

Pr
ec

is
io

n

Fi
le

R
ec

al
l

N
um

.o
f

M
et

ho
ds

M
et

ho
d

Pr
ec

is
io

n

M
et

ho
d

R
ec

al
l

N
um

.o
f

Fi
le

s

Fi
le

Pr
ec

is
io

n

Fi
le

R
ec

al
l

N
um

.o
f

M
et

ho
ds

M
et

ho
d

Pr
ec

is
io

n

M
et

ho
d

R
ec

al
l

AndStatus 209 4 8 58 17 24% 100% 14 50% 88% 4 100% 100% 8 100% 100%
Audiology 151 1 1 3 1 100% 100% 1 100% 100% 1 100% 100% 1 100% 100%

K-9 263 6 6 65 12 50% 100% 7 71% 83% 6 100% 100% 6 100% 100%
NPR News 75 4 6 53 11 36% 100% 15 40% 100% 4 100% 100% 6 100% 100%

ohmage 345 3 6 80 14 27% 100% 9 44% 67% 2 100% 67% 5 100% 83%

WeatherLib 70 2 10 32 7 29% 100% 6 50% 30% 1
(2) 100% 50%

(100%)
2

(10) 100% 20.0%
(100%)

misses this opportunity, though this feature will now be added.
The WeatherLib project, on the other hand, makes use of
a precompiled external library for most of its networking-
related functionality. As information about this library was not
initially included in the PGE’s rules.pge file, it failed to
identify it as a source of network utilization. However, when
the PGE’s rules file was updated to include this library, recall
improved to 100%. As an alternative analyzing API’s at the
source level, the PGE could analyze code at the byte-code
level, thus detecting networking calls from compiled libraries
without additional information from the developer.

B. Interaction of User Experience with Power Management

To evaluate the effectiveness of the policies recommended
by the PGE combined with the use of timing constraints,
we took a closer look at the NPR News and AndStatus
applications. We ran the applications in three conditions:
unannotated, annotated only with PGE annotations, and anno-
tated with both PGE annotations and timing annotations. The
policies were coded to have the effect of delaying all network
operations in the two applications by up to five minutes while
waiting for either a Wi-Fi connection to become available or
for the cellular radio be woken by another process on the
device.

All experiments were run on a Pantech Burst smartphone
running Android version 4.0. To simulate the presense of other
applications running on the device, a service was implemented
that would request a network resource once every two min-
utes. Device power-consumption was measured using a Power
Monitor from Monsoon Solutions [?]. The battery of the Burst
smartphone was modified to achieve a direct bypass between
the smartphone and the power monitor, allowing power to
be drawn from the monitor rather than the battery itself. All
networking was done over the T-Mobile cellular network in
the San Diego metropolitan area.

In the PGE-only condition, the generated APE policies
successfully captured each networking request made in the
application and delayed the operations. In both applications,
periodic, battery-draining ‘refresh’ attempts that polled a re-
mote server for new content were successfully delayed. How-
ever, this had undesirable consequences on the user experience
in both applications. In the case of NPR News, the initial
loading and display of news stories was delayed, as was the

downloading and playback of user selected audio stories were
delayed. In the case of AndStatus, manually-requested refresh
attempts by the user were also being delayed. However, these
operations eventually completed, preserving the semantics of
eventual progress on all threads. Delays like these would likely
leave the user staring at a frozen display.

In the PGE-and-timing-annotations condition, both applica-
tions were revisited and @APE_Undelayable annotations
were placed at relevant sites in each application. In the
NPR News application, an annotation was added within the
AsyncTask responsible for downloading content on the
user’s playlist and within the run method of a thread respon-
sible for fetching news stories at start up. In the AndStatus
application, an @APE_Undelayable constraint was added
to the AsyncTask in the application’s service component
responsible for executing all requested tasks. When executed,
these timing-annotated versions of the applications no longer
exhibited the undesirable behavior, while the periodic refreshes
that ran in the background continued to be delayed to reduce
power-consumption.

We now examine the relative power savings. To simu-
late real-world usage patterns, each application was used
three times during the course of a day (morning, midday,
evening) for ten minute periods. The average system power-
consumption while running each of the three different versions
of the NPR News and AndStatus applications are presented
in Figure 7. In the case of NPR News, the application was
configured to update news stories automatically once every
five minutes. The AndStatus application was configured to
check for new updates on Twitter once every three minutes.
As expected, the applications without any form of APE-driven
power-management policy observed the highest power con-
sumption, as operations were executed without concern for the
state of the device. Adding in each of the recommended APE
policies improved efficiency significantly, reducing power-
consumption by 18.1% in NPR News and by 22.2% in
AndStatus. However, as noted above, these versions of the
applications included an undesirable user experience. When
updated to avoid delaying user-requested updates and initial
downloading of content, savings in NPR News dropped to
9.5% while AndStatus saved 16.6%.

Nearly any application that includes a user-facing compo-



Fig. 6. A trace of power consumption on a smartphone device while using the NPR News application to listen to an audio story.

Fig. 7. Power consumption in various versions of the NPR News and
AndStatus applications.

nent is likely to require some form of @APE_Undelayable
or @APE_DelayableUpTo constraint, although the interac-
tion between quality of service and power management could
vary widely. In the case of the NPR News application, its
@APE_WaitUntil annotations were reached by a total of
21 paths in the program, and 2 paths were constrained by
timing annotations.

C. Runtime Overhead

In our previous APE work we found that each invocation
of a @APE_WaitUntil entailed 1.71ms of overhead. Most
of that cost is due to interprocess communication. Here we
report on the additional overhead induced by propagating delay
allowances along execution paths. This involves two basic
steps: (1) identifying the current thread of execution and (2)
inserting and reading allowance values from a hash map based
data structure. These steps are typically performed only two to
three times during the execution of a path: when an allowance
is assigned at the start of the path, when a constrained
operation has been completed, and if a @APE_WaitUntil

annotation is encountered on that path.
The average overhead of these checks were measured to be

approximately 2 µs, and 7 µs in the unlikely case of high
contention for the synchronized hash map. These overheads
are small compared to APE’s other overheads because no
interprocess communication is involved.

In the general case, the total overhead of allowance tracking
along a path of execution is equal to 2µs× C+ 1710µs ×L,
where C is equal to the number of constraints on that path
and L is the number of APE policies on that path. Assuming
that a path has one constraint and one policy, the addition of
allowance monitoring at runtime leads to an expected increase
of only 6 µs, or 0.36%. A path with no constraints will access
this map only once when a policy is reached, for a total
increase in overhead of 0.12% compared to the original APE.

VII. RELATED WORK

Research in energy-efficient software typically falls into
one of two categories. Low-level optimizations are typically
implemented at the kernel or device-driver level and manage
the power state of hardware components. Examples of such
techniques include dynamic voltage and frequency scaling (see
[?] for a review), tickless kernel implementations [?], low-
power listening [?] and scheduled transmissions for radios
[?], [?], and batching of I/O operations for devices such as
flash [?]. Such optimizations are typically the responsibility of
device vendors. System-level optimizations, on the other hand,
are implemented at the application- or middleware-level. These
optimizations interact with hardware components at longer
time-scales and include techniques such as workload shaping,
sensor fusion, and filtering. A workload shaping policy like
delaying large network operations until a WiFi connection is
available is found in applications such as Google Play Market,
Facebook, and Dropbox.

The difficulties of implementing such policies motivated
our work, as well as that of many others, in developing



higher-level ways of expressing power-management policies.
Energy Types allows developers to specify phased behavior
and energy-dependent modes of operation in their application
using a type system, dynamically adjusting CPU frequency
and application fidelity at runtime to save energy [?]. EnerJ
employs a type system for developers to specify which data
values in their application may be approximated to save energy
and guarantees the isolation of precise and approximate com-
ponents [?]. While these approaches are useful for building
CPU-intensive applications, they have limited applicability
to applications that make heavy use of other power-hungry
resources. These approaches also require the application to
be structured into discrete phases of execution, which may
necessitate refactoring when applied to an existing, mature
project. In contrast, APE-based policies may be dropped into
an existing application without refactoring and are well-suited
for managing access to access to hardware components other
than CPU, such as the cellular radio and display. Beyond
expressing power-management policies, annotation-based ap-
proaches have been used for code generation [?], [?], [?],
verification [?], and driving optimizations [?], [?].

Procrastinator is a tool that automatically delays the
prefetching of network resources in Windows Phone appli-
cations so as to reduce costly network data usage [?]. Re-
ducing network usage can also reduce power consumption.
The Procrastinator Instrumenter identifies prefetching patterns
in an application, modifies the relevant network calls at the
byte-code level to instead be routed through the Procrastinator
Runtime, and delays the fetching of content that is displayed
within a UI element until that element is detected to be
visible to the user. This work is related to our own in that
it eases the implementation of a delay-based technique within
an application, but it is narrower in scope and less flexible.
Procrastinator focuses only on networking operations, and
only those related to the user interface. It also provides no

developer control of user experience: all identified prefetching
calls are delayed. On the other hand, these limitations allow the
approach to be completely automated, with no developer input.
In this respect, Procrastinator and APE are at opposing ends of
the spectrum of tool-assisted delay-based power management
techniques.

VIII. CONCLUSION

In this paper we presented a new paradigm for introducing
power-saving delays into an application. We presented the
@APE_DelayableUpTo and @APE_Undelayable anno-
tations, which allow a developer to demarcate delay-sensitive
and -intolerant operations in their application. This information
is then used by the APE compiler and runtime to generate and
insert effective power-management policies within the target
application while ensuring that all delay related constraints
are satisfied at runtime. We demonstrated the efficacy of
our approach by presenting a study of introducing power-
management policies to six CRM applications. Measurements
have shown that the generated policies were effective at re-
ducing the power-consumption of a smartphone device, while
a small number of constraint annotations can ensure proper
application behavior while still providing savings. The addition
of delay allowance checking at runtime was shown to have a
minimal overhead of only 2µs, a negligible impact on runtime
performance.

ACKNOWLEDGMENT

This work was supported by the National Science Foun-
dation (grant nos. CNS-0932403, CNS-1144664, and CNS-
1144757) and by the Roy J. Carver Charitable Trust (grant
no. 14-4355).

REFERENCES


