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Abstract—This paper presents CSense – a stream-processing
toolkit for developing robust and high-rate mobile sensing ap-
plication in Java. CSense addresses the needs of these systems
by providing a new programming model that supports flexi-
ble application configuration, a high-level concurrency model,
memory management, and compiler analyses and optimizations.
Our compiler includes a novel flow analysis that optimizes the
exchange of data across components from an application-wide
perspective. A mobile sensing application benchmark indicates
that flow analysis may reduce CPU utilization by as much as
45%. Static analysis is used to detect a range of programming
errors including application composition errors, improper use
of memory management, and data races. We identify that
memory management and concurrency limit the scalability of
stream processing systems. We incorporate memory pools, frame
conversion optimizations, and custom synchronization primitives
to develop a scalable run-time. CSense is evaluated on Galaxy
Nexus phones running Android. Empirical results indicate that
our run-time achieves 19 times higher steam processing rate
compared to a realistic baseline implementation. We demonstrate
the versatility of CSense by developing three mobile sensing
applications.

Keywords—Dataflow computing; runtime environment; embed-
ded software

I. INTRODUCTION

Mobile phones are capable sensing platforms that include
multi-modal sensors, increasing computational and memory
resources, and versatile networking capabilities. Their capa-
bilities have enabled a new generation of mobile sensing
applications (MSAs). We are interested in using mobile phones
to transform how healthcare professionals collect information
regarding a patient’s physiology, physical activities, and social
interactions. Results of recent studies on mobile health systems
have shown the feasibility of collecting medical records with
higher resolution than is possible through manual data collec-
tion methods [1]–[4]. However, experience has also shown us
that the development of MSAs is particularly time demanding
and challenging as significant time is spent on ensuring that the
system operates robustly within the resource constraints of the
embedded platform. The development of MSAs faces several
challenges that are poorly addressed by existing operating
systems like Android:

Concurrency: MSAs must handle data processing and asyn-
chronous events concurrently: sensors are sampled, data is up-
loaded to servers, and the system responds to user interactions
or changes in the environment. Such systems are difficult to
implement correctly using low-level concurrency primitives

such as threads or events. Thus, MSAs require a flexible
concurrency model that supports static analysis to detect bugs.

High Frame Rates: MSAs collect data from one or more
sensors at high rates (e.g., 44100Hz for processing audio). The
collected data frames must be processed in real-time or within
a few seconds from collection and may involve expensive
signal processing operations (e.g., FFT). Supporting such high
rates is difficult due to the limited resources available on
mobile phones.

Reliability: MSAs are intended for long-term data collection
from users in unpredictable environments. This operating
regime, coupled with the need to provide a positive user
experience, motivates a focus on bug prevention to reduce run-
time errors.

Java Run-time Environment: Although Java increases pro-
grammer productivity and reduces programming errors (com-
pared to C/C++), it also increases the complexity of im-
plementing MSA efficiently. Efficient implementations must
manually manage memory, select appropriate concurrency
mechanisms, and integrate native implementations of expen-
sive operations.

To address these challenges, we propose CSense, a stream
processing (SP) toolkit for developing MSAs that provides a
programmer the following capabilities:
• Consistent with SP approaches [5]–[9], an MSA is

modeled as a directed acyclic graph of components
that encapsulate reusable user code. The programming
model includes three novel features: (1) a simple but
expressive concurrency model that handles concurrent
operations and asynchronous events efficiently, (2)
a flexible type system used to specify the types of
inputs and outputs for components, and (3) the explicit
inclusion of memory management operations as part
of the component graph.

• Our compiler includes a flow analysis that leverages
type information and explicit memory management to
perform application-wide optimizations. The same in-
formation is leveraged by our static analysis to identify
a range of programming errors including application
composition errors, incorrect usage of the memory
management system, and data races. Code generation
techniques are used to integrate MATLAB functions
(compiled into C code) as CSense components.

• We designed a run-time environment that supports
high-rate SP on the Dalvik VM. This required careful



design of memory management and concurrency. The
run-time environment tightly integrates with Android’s
power management system.

The primary novelty of CSense is the inclusion of type and
memory management information as part of the programming
model to facilitate static program analysis and optimizations.

Several frameworks aim to simplify various aspects of
MSA development. CSense is closely related to efforts aimed
at reducing the burden of resource management [8]–[11]
and complementary to those that focus on integration with
cloud services [12] or machine learning support [13], [14].
SeeMon [10] selects an informative set of sensors to track a
user’s context. Coordinator [11] extends these capabilities to
adapt application behavior in response to resource availability.
JigSaw [8] provides customized pipelines for accelerometer,
microphone, and GPS sensors. A limitation of these systems
is that they only support MSAs that may be defined using
constrained queries [10], [11] or customized pipelines [8]. In
contrast, CSense provides a high-level stream programming
abstraction suitable for a broad range of MSAs. Similar to
CSense, SymPhony [9] provides a general programming model
for MSAs, however, it emphasizes the problem of sharing
resources across multiple MSAs that run on a single device.
We do not focus on resource sharing as we are interested in
mobile health applications where devices are dedicated to run
a single application. More importantly, SymPhony does not
support flexible concurrency, compiler optimizations, or static
analyses.

The benefits of the CSense run-time and optimizations have
been evaluated on mobile phones. Experiments show that the
use of memory pools and lock-free synchronization improves
the peak SP rate by as much as 19 times over a realistic
baseline implementation. Moreover, our frame analysis reduces
the number of memory copies and allows components to be
executed at different rates. We show that flow analysis can
reduce CPU usage by as much as 45% in a realistic application.

We have used CSense to implement three MSAs: SpeakerI-
dentifier, ActiSense, and AudioSense. The three systems were
selected because they produce different types of workloads
and pose different system challenges. SpeakerIdentifier is a
CPU-intensive application that processes speech samples to
determine the identity of speakers. ActiSense requires high
concurrency to predict patient activities from multiple ac-
celerometers connected to a phone over Bluetooth. AudioSense
[4] delivers electronic surveys and collects audio samples to
evaluate the performance of hearing aids. The key challenge of
AudioSense is to collect sensor data reliably during weeklong
data collection sessions.

The remainder of the paper is organized as follows. The
programming model, compiler analysis, and optimizations
are presented in the next section. The run-time environment
that executes CSense applications is described in Section III.
Micro- and macro-benchmarks that show the benefits of flow
optimization and run-time environment are provided in Section
IV. The related work is reviewed in Section V. Conclusions
are included in Section VI.

II. CSENSE DESIGN

CSense supports the development of MSAs that are robust
and require high-rate SP. The building blocks of CSense are
fine-grained components that encapsulate user functionality.
An application is built by connecting components to form
Stream Flow Graph (SFG). The SFG includes type and
memory management information that facilitate static compiler
analyses and optimizations.

The design of CSense is based on the following principles:
CSense builds on Java: CSense components are implemented
as Java classes. The Android SDK provides programmers
a rich set of reusable components which, when used in
conjunction with object-oriented programming techniques, can
significantly reduce development time. However, this approach
has disadvantages: (1) supporting high-rate SP requires careful
engineering and deep understanding of the operating system
internals, (2) low-level concurrency primitives provide little
support for writing of safe code, and (3) it is difficult for
compilers to analyze and optimize an application globally
when it is structured as loosely coupled Java components.
CSense addresses these limitations.

Flexible, safe, and optimized applications: Applications are
modeled as SFGs, which capture application-level properties
including the flow of data between components, constraints
on frame types and their sizes, and concurrency. SFGs sup-
port flexible configuration, program analysis for safety, and
application-level performance optimizations.

Native code: Most stream operations can be implemented
efficiently in Java. However, there are cases when native imple-
mentations would significantly reduce computational overhead.
CSense components may be implemented in MATLAB and
compiled to native code. This has the advantage of including
efficient signal processing functions that are often readily
available as MATLAB toolboxes.

The remainder of this section describes the programming
model and associated compiler analyses and optimizations. The
run-time environment is described in next section.

A. Programming Model

Components are the building block of CSense applications.
They encapsulate functionality common to MSAs including
support for data collection, feature extraction, file I/O, and
networking operations. Applications are written by connecting
components into a directed acyclic graph called the Stream
Flow Graph (SFG). We distinguish two types of components:
modules and configurations. Modules provide the underlying
Java implementation of a component. Existing Java libraries
may be reused as part of module implementations. Configu-
rations may be used to either (1) configure a single module
(called simple configurations) or to (2) connect and configure
groups of modules and configurations to create reusable com-
ponents (called group configurations). A module must have
at least one configuration to be used in an application. Each
application has a main group configuration that connects and
configures all the modules of an application. We opted to
implement both modules and configurations in Java. Using
Java has many advantages including programmer familiarity,
ease of integration with Android, and availability of compiler
and analysis tools.



1: public class RMSClassifierM<T extends Vector>
extends Module {

2: InputPort<T> in = newInputPort(this, "in");
3: OutputPort<T> above = newOutputPort(this, "above");
4: OutputPort<T> below = newOutputPort(this, "below");
5: double threshold;

6: public RMSClassifierM(double threshold) {
7: this.threshold = threshold;
8: }

9: public void onInput() {
10: T v = in.getFrame();
11: double rms = computeRMS(v);
12: if (rms ≥ threshold) above.push(v);
13: else below.push(v);
14: }
15:};

Fig. 1. The RMSClassifierM module

1: public class RMSClassifierC
extends SimpleConfiguration {

2: public RMSClassifierC(double threshold) {
3: // === specify Java implementation ===
4: super(RMSClassifierM.class);

5: // === type definitions ===
6: VectorC type = TypeC.newFloatVector()
7: type.addConstraint(Constraint.GT(8000));
8: type.addConstraint(Constraint.LT(24000));

9: // === ports definitions ===
10: InputPortC in = addInputPort(type, "in");
11: OutputPortC above = addOutputPort(type, "above");
12: OutputPortC below = addOutputPort(type, "below");

13: // === specify internal links ===
14: link(in, above); link(in, below)

15: // === add component arguments ===
16: addArgument(new Argument(threshold));
17: }
18:};

Fig. 2. Configuration of RMSClassifierM shown in Figure 1

An example of a module is shown in Figure 1. The
RMSClassifierM classifies frames based on their root
means square (rms) value. The core of the module is the
onInput() function that is called when there are frames
to be processed on all the module’s input ports. Within the
onInput function, the RMSClassifierM retrieves a frame
from the in port and, depending on the computed rms value,
the frame is pushed on either the above or below port.
More complicated components may maintain private state and
schedule/handle events. CSense, also supports “pull” seman-
tics: a component may request data from upstream components
by calling pull() on any of its input ports. Pulls are
implemented as polling requests and the upstream components
may respond asynchronously by scheduling events. We will
return to the details of event handling in the context of the
concurrency model later in this section.

A simple configuration defines the ports, internal connec-
tions, and initialization parameters of the module it configures.
An example of a simple configuration is shown in Figure 2.
The public interface of a component is defined by its input
and output ports (lines 10 – 12). The types of ports are
specified according to the type system described in Section
II-D. A typical component execution involves retrieving frames
from input ports, modifying these frames, and pushing them
over output ports. The flow of frames within a component

– from one input port to one or more output ports – is
captured by its internal connections (line 14). A connection
indicates the potential of a frame exchange rather than a
requirement. Accordingly, a component that connects an input
port (I) to two output ports (O1 and O2) may, at run-time,
output a frame on O1, O2, or on both O1 and O2. For
example, the configuration RMSClassifierC connects the
input port in to both above and below ports. At run-
time, the module RMSClassifierM will output a frame on
either above or below depending on the rms value of the
frame. We prohibit components from creating new frames as
precise information regarding the flow of frames is necessary
to perform optimizations and error checking.

Figure 3 provides an example of a group configuration
that specifies a speaker identification application. The group
configuration allows for components to be instantiated, con-
figured (lines 5 – 10), and linked (lines 11–17). While groups
constitute “syntactic sugar”, they facilitate code reuse. For ex-
ample, MFCCFeaturesG is a group that includes components
that implement several signal processing operations. Internally,
the group automatically configures the filter bank required to
compute the MFCC based on the size of the feature type. These
details are hidden from external components.

B. Memory Management

The overhead of memory operations, including object cre-
ation, copy, and garbage collection, can dwarf computation
times as shown in Section IV. As a consequence, CSense
adopts pass-by-reference semantics and incorporates memory
management operations into the SFG. For memory manage-
ment purposes, we distinguish three types of components:
sources, user components, and taps. Sources are the only
components that produce new frames. Frames are modified
by user components and passed to a Tap when they are no
longer used. As previously mentioned, user components are
prohibited from creating or copying frames. These operations
are supported by including Copy and Ref components in
SFGs. We expect to raise the programmer’s awareness of
memory operations by incorporating explicit stream operators.
More importantly, this approach allows the entire flow of
frames in an application to be known at compile time allowing
for optimizations and static analysis.

C. Concurrency

Concurrency is prevalent in MSAs: sensors are sampled,
data is uploaded to servers, and the user interacts with the
system. This results in a mix of events and SP operations,
which must be processed concurrently.

CSense provides four concurrency mechanisms: domains,
events, selectors, and a global workspace. A domain includes a
subgraph of components that are executed in the same thread.
Components pertaining to the same domain exchange frames
through function calls without requiring synchronization. Data
exchanges across domains are mediated by synchronization
queues. Synchronization queues buffer frames to handle vari-
ations in the execution rate of different domains. A key
advantage of the domain abstraction is its simplicity: the
developer can reason about the behavior of components within
a domain using sequential semantics.



1: public class SpeakerIdentifierG extends GroupConfiguration {
2: public SpeakerIdentifierG(int rateInHz,

URL server, double rms) {

3: // === type definitions ===
3: VectorC speechT = TypeC.newFloatVector(1024);
4: VectorC featureT = TypeC.newFloatVector(128);

5: // === add components to group ===
6: addComponent("audio", new AudioComponentC(rateInHz, 16));
7: addComponent("rmsClassifier", new RMSClassifierC(rms));
8: addComponent("mfcc", new MFCCFeaturesG(speechT, featureT));
9: addComponent("toDisk", new ToDiskComponentC(featureT));
10: addComponent("httpPost", new HttpPostC(server, "fileType"));

11: // === connect components ===
12: link("audio", "rmsClassifier");
13: toTap("rmsClassifier::below");
14: link("rmsClassifier::above", "mfcc::sin");
15: fromMemory("mfcc::fin");
16: toTap("mfcc::sout");
17: link("mfcc::fout", "toDisk");
18: toTap("toDisk");

19: // === specify concurrency constraints ===
20: getComponent("audio").setThreading(Threading.NEW_DOMAIN);
21: getComponent("httpPost").setThreading(Threading.NEW_DOMAIN);
22: getComponent("mfcc").setThreading(Threading.SAME_DOMAIN);
23: }

audio toDisk httpPostrms
Classifier

Types declarations and size constraints:
audioT : vector<short>, ≥ 1000
energyT: vector<double>, ≥ 8000, ≤ 24000
speechT: vector<double>, = 128
featuresT: vector<double>, = 11
diskT: vector<double>
filenameT: vector<char>, ≤ 1024

mfcc

audioT!out

energyT!in

energyT!below

energyT!above

speechT!sin speechT!sout

featuresT!fout

diskT!in

filenameT!fout filenameT!out

diskT!out

S2

T1

S1

T2 T3 T4

featuresT!fin filenameT!fin

Memory 
Source Tap

Fig. 3. The main configuration of a speaker identification system adapted from [15]. The audio component records audio at a configurable frequency. The
RMSClassifierC filters out sound frames unlikely to contain speech. The mfcc component computes Mel-Frequency Cepstral Coefficients. For efficiency,
mfcc is implemented in MATLAB. MFCCs are persisted on disk by toDisk and uploaded to a server by httpPost for the final speaker identification.
The types of ports are denoted using underlined text and their constraints are shown in the grayed box. The audio and httpPost components require to be
executed in different domains. The bounded boxes denote the execution domains.

Each domain has a scheduler that is responsible for manag-
ing events and selectors. Both mechanisms allow components
to defer their execution to allow other components to run.
CSense supports high concurrency by integrating with Java
New I/O (NIO). A component may register NIO selectors
with the scheduler. The scheduler calls the component when
the selector has data available to read or write. This mech-
anism allows the scheduler to multiplex I/O requests. We
restrict components to schedule events or register selectors
for themselves, i.e., providing independent event streams per
component. Moreover, to preserve the integrity of the domain
abstraction, events and selector handlers are executed in the
domain of the component that scheduled their execution.
Components may share state through a global workspace.
The workspace is organized as a dictionary in which shared
variables are read and written through using agreed-upon keys.

CSense applications are multithreaded and may include
shared state. As a consequence, there is a potential for race
conditions to occur when variables are accessed from multiple
domains. The race analysis ensures that individual accesses to
shared variables occur in synchronized blocks. This invariant
ensures that individual accesses to shared variables are race-
free. While this approach avoids a majority of data races,
there still is the potential for data races when implementing
more complex synchronization protocols that involve multiple
accesses to shared variables. Two factors make enforcing the
above invariant in Java programs difficult: (1) determining the
target of each update and (2) determining the complete set
of potential execution inter-leavings. Our race analysis takes
advantage of the restricted semantics of the CSense program-
ming model to address these challenges. First, the problem of

identifying the target of an update is straightforward since the
programming model requires shared variables to be accessed
via the workspace. Second, unlike for general Java programs
whose call graph is not fully known at compile time, the call
graph in CSense is encoded by the SFG. The race analysis
checks that all execution paths that access a shared variable
are from within synchronized blocks. This is accomplished
by accounting for the fact that the only entry points for a
component are the onInput (called to exchange frames) and
onEvent (called to handle events) method calls. Our analysis
may also have false positives i.e., the compiler may issue a
warning when a race does not exist. For instance, this may
occur when a frame is accessed from two domains, but the
two domains never execute concurrently.

The programmer can specify concurrency by defining con-
straints on components. First, the programmer may specify
that a component should be executed in a new domain using
a NEW_DOMAIN constraint. The constraint is associated with
sources and components that include long/blocking operations.
For example, the NEW_DOMAIN constraint may be added to
the audio and httpPost to record and upload data con-
currently (lines 20 – 22 in Figure 3). Second, the programmer
may enforce that components are executed within the same
domain using a SAME_DOMAIN constraint. For example, the
components implementing the mfcc component should not
be split across domains. Otherwise, a large number of frames
would have to be exchanged via synchronization queues adding
significant overhead.

The compiler uses a simple heuristic to partition the SFG
into domains subject to the specified concurrency constraints.
The algorithm operates on the SFG in which all groups



are flattened except for those that include a SAME_DOMAIN
constraint. The algorithm iterates through each source in the
SFG assigning multiple components to a domain. Initially, the
domain is set to zero and incremented in each iteration of the
algorithm. Let c and d be the source and domain currently
under consideration. The algorithm assigns c to run in d.
Additionally, it computes the predecessor subgraph of c that
includes all components x such that there is a path from x
to c. If no component in the predecessor subgraph requires
a NEW_DOMAIN, all components of the subgraph will be
executed in d. Otherwise, they will be assigned to a domain in a
later iteration of the algorithm. Next, the algorithm computes
the successor subgraph of c that includes all components x
such that there is a path from c to x. Component x will be
executed in domain d if no component on the path from c to
x has a NEW_DOMAIN constraint. In a post-processing step,
the groups with SAME_DOMAIN constraints are flattened and
the members assigned to the group’s domain. The proposed
heuristic typically assigns subgraphs of components that share
a path to the same domain, which reduces overhead.

D. Type System

Our type system is designed to provide the programmer
with flexibility in specifying frame types. A frame can be
either a vector or a multi-dimensional matrix of primitive Java
types. While Java does not support matrices as types, CSense
supports them to simplify the integration with MATLAB.
The main extension to the type system is that we allow the
programmer to specify simple constraints (≤, <, =, >, and ≥)
over the size of each dimension of an array. These constraints
may be added cleanly as part of configurations (see lines 5 –
8 in Figure 2 for an example). Obviously, the size of a frame
must be eventually determined. We define type materialization
to be the procedure that determines the frame sizes subject to
the defined constraints.

The support for parameterized and constrained frame types
benefits error checking, component reuse, and optimization.
Let us consider the audio and mfcc components. The
audio component records sound in an underlying frame that
is returned to the user when it is full. The Android OS
enforces a minimum size for the recording buffer to reduce
CPU utilization when recording audio. In contrast, the input
mfcc component outputs features that always contain 11
floats. CSense identifies configuration errors due to connec-
tions between ports of incompatible rates at compile time. In
other SP models, such errors would go unnoticed until run-
time.

Rich types also foster component reuse. For example,
the mfcc component may be parameterized to use vectors
whose element type is either float or double. This allows the
developer to trade-off computational accuracy of MFCCs and
computational overhead with a minor change to the frame
type. Similarly, depending on its configuration, the audio
component may record samples as bytes (8-bit samples) or
shorts (16-bit samples). This allows audio to be configured
based on the type of its output ports.

Defining components that operate over ranges of sample
sizes is a powerful construct. For example, audio may use
frames whose size exceeds 1024. Therefore, the same audio

component may be used in two applications with different size
configurations. This makes it feasible to select frame sizes such
that components operate optimally from an application-wide
perspective. CSense may accomplish this through the flow
analysis presented next.

E. Flow Analysis

Type materialization requires that the compiler determine
the size of frames subject to the constraints specified by
developers. However, not all feasible solutions to this problem
can be implemented efficiently. A source of inefficiency is
frame conversions that can occur when ports, which require
frames of different sizes, are connected. Consider the connec-
tion between rmsClassifier and mfcc in Figure 3. A
feasible solution is for the rmsClassifier to output frames
of 10,000 samples that mfcc must convert to frames of 128
samples. To handle this mismatch, the compiler must introduce
a Converter that receives frames of 10,000 samples and
outputs frames of 128 samples. Since 10,000 is not a multiple
of 128, the Converter cannot be implemented efficiently as
it requires at least some samples to be copied. In contrast, if the
rmsClassifier were to output a frame of 10,240 samples,
then the samples can be divided into 80 vectors that contain
128 samples as required by mfcc. This may be implemented
without copying by defining 80 non-overlapping views over
the same memory buffer containing the 10,240 samples.

The goal of the flow analysis is to find a solution to the type
materialization problem that may be implemented efficiently.
The flow analysis is performed at compile time and, therefore,
it does not introduce any run-time overhead. The analysis
is performed on the application SFG (see Figure 3 for an
example) by considering each path sequentially. A path in
the SFG captures the flow of frames from a source to a tap
following internal and external links. For example, the frames
from audio follow two paths: audio  T1 and audio
 T2. The behavior of a conversion is determined by three
variables: super-frames (S), frames (F), and multipliers (M).
A super-frame is a contiguous block of memory that can be
divided into an integer number of frames. Components along
all paths that originate at a source s use super-frames of the
same size (Ss). Each port p of a component A may require
different frame sizes FA,p. This requirement is fulfilled by
having A execute MA times to ensure Ss = FA,p ·MA. When
these constraints are satisfied, all conversions on the paths from
s may be implemented efficiently.

The compiler casts the problem of determining the super-
frames, frames, and multipliers as an Integer Linear Program
(ILP). Integer linear constraints are generated based on the
type constraints supplied by the programmer according to
the pseudocode shown in Figure 4. For clarity, we consider
the case of determining the appropriate conversions for a
single source that has a super-frame of size S. The algorithm
considers each port p of a component A on the path. Let
CA,p be the set of type constraints associated with port p of
component A. A constraint has the form (./, v), where ./ is
an operator (./ ∈ {<,≤,=,≥, >}) and v is an integer. The
algorithm iterates through each type constraint, adding new
constraints to the ILP problem. If ./ ∈ {=}, then the size
of the frame (FA,p) is set to equal v (as specified by the type
constraint) and we ensure that the super-frame (S) is a multiple



1:for (A, p) a component-port pair path
2: for (./, v) ∈ CA,p:
3: ILP: 0 < FA,p ≤ S
4: ILP: MA ≥ 1
5: hasEquals = False
6: if ./ ∈ {=}:
7: hasEquals = True
8: ILP: FA,p = v
9: ILP: S = FA,p ×MA

10: elif ./ ∈ {≤, <,>,≥}:
11: ILP: FA,p ./ v
12: if hasEquals = False:
13: ILP: MA = 1
14: ILP: S = FA,p ×MA

Fig. 4. Frame analysis: Algorithm and notation

of FA,p (lines 6 – 9). The multiplier MA is optimized based
the constraints of entire path. If the user does not supply a “=”
constraint (./ /∈ {=}) (lines 13 – 14), then we set MA = 1
indicating that the component can process the entire super-
frame in a single call. In this case, the value of the frame
FA,p will be optimized based on the constraints of the entire
path. If ./ ∈ {≤, <,>,≥} (lines 10 – 11), then the size of
the frame (FA,p) is constrained by v. Additionally, the frames
sizes FA,p are constrained to be smaller or equal to then super-
frame sizes S (line 3) and multipliers (MA) to be at least 1
(line 4).

Solving the created ILP will determine the value of super-
frames, frames, and multipliers subject to the type constraints
specified by the programmer and those required to perform
efficient frame conversions. A typical MSA has an associated
ILP with multiple feasible solutions. Choosing an appropriate
solution involves a trade-off between memory utilization and
run-time overhead. CSense currently uses the solution that has
the least memory utilization. This is because Android imposes
strict limits on the memory utilization of an application, which
limits an effective evaluation of trade-offs in selecting different
solutions.

The ILP does not have a feasible solution in two cases:
there is no solution to type materialization and there is no
efficient implementation. In the former case, the compiler
generates an error; in the latter case the compiler generates
a warning indicating that inefficient conversions are used and
then reruns the ILP without the efficient frame conversion
constraints. In practice, the developers select frame sizes to
be multiples of each other, in which case, a feasible solution
to the ILP problem exists.

F. Compiler

The compiler has the following workflow. The main config-
uration instantiates components, and configures, and connect
them. After flattening groups, the compiler checks that the
SFG is structurally correct: no ports are unconnected and
no fan-ins, fan-outs, or cycles exist. Additionally, we ensure
that the all paths start with a source and end with a tap.
The compiler runs the flow analysis to materialize types and
includes Converters, as appropriate. The SFG is partitioned
into domains and then checked for race conditions. The final
step is to generate code for the target platform.

We use the MATLAB compiler to generate C code for
components that use MATLAB functions. The C code is

compiled as a static library. The general strategy for including
a MATLAB function as a CSense component is to create a
mapping between input/output ports of the component and
the input arguments/return values of the MATLAB function.
The compiler generates custom wrapper classes that call the
generated static library. Data is exchanged using NIO buffers
for efficiency. The compiler also generates a “main” applica-
tion that configures components, connects them, and creates
threads for their execution. The code generation completes by
compiling the generated code. Even though in this paper we
focus on Android, owing to Java’s portability, we have been
able to run CSense applications on both Linux and OS X.

III. RUN-TIME ENVIRONMENT

A. Scheduler

An application is partitioned into domains, each domain
having its own scheduler. The scheduler is responsible for
managing memory, events, and selectors.

The goal of memory management is to minimize the
impact of object creation, copying, and garbage collection.
We implement memory management as follows. Each source
maintains a memory pool that contains a number of super-
frames. A source retrieves a super-frame from the pool when
it has data to write. Flow analysis (performed at compile time)
ensures that frames are exchanged efficiently until they reach
a tap. Upon reaching the tap, the scheduler must determine
if it should put the super-frame back in the memory pool.
We associate a reference counter with each super-frame. The
reference counter is incremented each time a new reference is
created. Conversely, the counter is decremented when taps are
reached and, when the counter becomes zero, the super-frame
is put back in the pool for reuse. During the initialization of
an application, a configurable number of frames (currently set
to 8) are preallocated in each memory pool. Additional frames
may be allocated at run-time when new frames are request but
none are available in the pool. These mechanisms limit the
creation of new frames and their garbage collection.

A component may schedule events to run after a delay.
The scheduler maintains two execution queues. The immediate
execution queue is a FIFO queue that stores zero delay events.
Components use zero delay events to yield their turn and allow
other components to be executed. Non-zero delay events are
inserted in a priority queue sorted by time when they are
scheduled to fire. The scheduler operates in rounds. In each
round, the scheduler drains the immediate queue and processes
all the events in the priority queue scheduled to execute no later
than the current time. A component may also register selectors
with the scheduler. Selectors are checked at the end of a round
and components that have pending data are notified.

Memory pools and events may be accessed from dif-
ferent threads, so a concurrency mechanism is necessary.
Java includes support for concurrent collections including
blocking queues and synchronized arrays that may be used
to implement the event queues of schedulers and memory
pools of sources. However, the underlying implementation of
these data structures uses reentrant locks. Locks are designed
to handle high levels of contention. Under low or medium
contention, locks introduce a high overhead since a thread
must be suspended when it attempts to acquire a lock that



is already held by a different thread. Atomic variables provide
a lightweight synchronization mechanism that is implemented
efficiently using hardware-supported compare-and-swap. The
challenge with atomic variables is that the developer has
to implement appropriate mechanism to handle concurrent
access. To improve SP rates, we have implemented customized
synchronization primitives. Our synchronization primitives use
a two-level locking scheme. Atomic variables are used for con-
currency in the low contention case. If the lock implemented
using atomic variables is not acquired after several attempts,
we switch to using reentrant locks.

B. Android Integration

CSense is designed to take advantage of the underlying
Android services. Consistent with the Android architecture, a
CSense application uses activities for user interfaces and a
service to host its run-time environment. The user interface
and service run in the same process, but in different threads.
CSense components have specialized implementations for An-
droid. For example, components that use sensors leverage on
the Android APIs to capture motion, GPS, and audio data.

CSense integrates with Android’s power management to
allow phones to sleep. Android uses power locks to prevent
the CPU and display from entering a sleep state. When no
power locks are acquired, Android will aggressively turn them
off. Releasing power locks prematurely may result in an appli-
cation being suspended for an indeterminate amount of time.
Other resources, such as network or GPS, are not managed
though power locks. Instead, the programmer must explicitly
turn them on and off. These resources are typically accessed
from a single CSense component that is also responsible for
managing their power consumption.

There are two challenges to integrating our scheduler and
Android’s power management: (1) we must determine when it
is safe to sleep, and (2) we must develop an efficient mecha-
nism to enter and leave sleep states. To determine if it is safe to
sleep, the scheduler consults the pending events and registered
I/O handlers. Each scheduler maintains an independent power
lock that is acquired during its initialization. In the following,
we describe the behavior of each scheduler independently. The
CPU will sleep only when all schedulers release their power
locks. Let tnow be the current system time and tfirst be the
time when the next event in either one of the scheduler’s
queues is scheduled to run. If tfirst < tnow, then the scheduler
is running behind, effectively having to catch up with the
sequence of events. Thus, the power lock cannot be released
to allow the scheduler to catch up. Otherwise, if tfirst ≥ tnow,
the scheduler can sleep for d = tfirst − tnow seconds. In this
case, the scheduler registers an alarm to wake up the system
after d seconds. Android guarantees that alarms wake up the
system from sleep, at which point, the scheduler reacquires
the power lock. In the case when no events are scheduled, the
scheduler will go to sleep and may be woken by receiving data
from other domains or by external events.

Initial testing indicated that the above algorithm has an
important limitation: it does not account for the time necessary
to transition to sleep and then to wakeup. Let twakeup be the
time from the time when the power lock is released until the
wakeup alarm is delivered. If the time the scheduler may sleep

d < twakeup, then some events will be delivered late. This is
particularly problematic when there are numerous events to
be processed due to highly concurrent workloads. To address
this limitation, we devised a two-level sleep strategy that only
release the power lock when d > tth, where tth is user-
specified constant. If d < tth, then the scheduler will use
Java’s wait/notify mechanism to sleep for d seconds without
releasing the power locks. Otherwise, we release the power
locks and allow the CPU to sleep. This algorithm is safe in
that it does not introduce additional delay penalties of pending
events due to sleep.

IV. EVALUATION

In this section, we provide an empirical evaluation of
CSense on Galaxy Nexus phones running Android Jelly Bean.
Galaxy Nexus uses a Texas Instruments OMAP 4460 SoC
that includes a 1.2 GHz dual-core ARM Contex-A9. The
phone has 1GB of memory and 32 GB of storage. C code is
generated from MATLAB functions using MATLAB R2012b
and MATLAB Coder 2.3. The resulting code is cross-compiled
into a static library using Android NDK (r8d). We evaluate
CSense using both micro- and macro-benchmarks.

A. Micro-benchmarks

Scheduler Scalability: We evaluated the scalability of the
scheduler using a Producer-Consumer benchmark. The pro-
ducer generates frames at specified rates. The produced frames
are passed to the consumer and then to a tap. The producer and
consumer operate in different domains to capture the impact of
inter-domain connections. Memory was managed using either
Java’s memory management (GC) or using memory pools (MP).
In the former case, new objects are created for each frame
and garbage collection is used to free them. Flow analysis
is not used in this benchmark. Concurrency in the scheduler
was implemented using locking primitives (L) and CSense’s
synchronization primitives (C). A scheduler implementation
combines a memory management and a locking mechanism.
The results are averages over five runs; each run lasting for a
minute. 95%-confidence intervals are also plotted.

Figure 5(a) shows the performance of the three schedulers.
We increase the offered rate linearly and measure the rate at
which the consumer receives frames. A scheduler should match
the offered rate until it reaches its peak rate. To understand the
differences in performance, we also measure the total garbage
collection time and CPU usage. The CPU usage is measured
as the total time the benchmark runs on either CPU core.

A naive implementation of the scheduler would use Java’s
memory management and locking concurrency primitives
(GC+L). GC+L performs poorly; it supports a peak rate of only
1,534 events/s. MP+L incorporates memory pools and relies on
locking concurrency primitives. Memory pools eliminate the
creation of frames and reduce garbage collection. As a result,
the peak event rate is increased to 21,176 events/s – a 13.8
times increase. Figure 5(b) plots the garbage collection time
for each implementation as reported by Dalvik. As expected,
the naive implementation has the highest garbage collection
time. MP+L reduces garbage collection significantly, but does
not eliminate it. In fact, the garbage collection time increases
slowly with the offered rate. This increase may be attributed



(a) Scheduler implementations

(b) Total garbage collection time

(c) CPU usage

Fig. 5. Producer-consumer benchmark: Assessing the impact memory pools
and concurrency mechanisms

to ReentrantLock objects being created in Java concurrent
collections. These objects are created when a thread attempts
to access a lock that is already held by a different thread.

Using our concurrency primitives, the scheduler (MP+C)
may support a peak rate of 30,029 events/s. This represents
an additional 30% improvement over MP+L. Overall, the
proposed optimizations provide a 19 times improvement over
the naive implementation. Two factors contribute to these
improvements. The garbage collection time is reduced to zero
when our customized synchronization primitives are used.
Additionally, as shown in Figure 5(c), MP+C runs for a longer

(a) Benefits of flow analysis

(b) Detailed performance at 44100 Hz

(c) Scheduler overhead

Fig. 6. MFCC benchmark: Assessing the benefits of the flow analysis

time as indicated by the higher CPU time. This is because
our synchronization primitives reduce the number of thread
suspensions and resumptions. This allows for multiple frames
to be inserted by the consumer or removed by the producer
from the synchronization queue without requiring context
switches.

B. Macro-benchmarks

We have implemented three applications to showcase the
versatility of CSense: SpeakerIdentifier, ActiSense, and Au-
dioSense. CSense facilitated incorporating MATLAB code in



Application Number of constraints
SpeakerIdentifier 53

AudioSense 164
ActiSense (phone only) 172

ActiSense (phone + 3 Shimmer motes) 564

Fig. 7. Number of ILP constraints for each application

applications and its integration with additional Java compo-
nents for data collection, file I/O, networking operations, and
UI. Each application highlights an aspect of the toolkit: the
benefits of flow analysis, the scheduler scalability, and its
overhead. Statistics regarding the size of the ILP problem for
each application and compilation times are also provided.

SpeakerIdentifier: SpeakerIdentifier (see Figure 3) deter-
mines the identity of speakers based on their voice fingerprint.
The application is based on SpeakerSense [15]; however, in
contrast to SpeakerSense, SpeakerIdentifier performs speaker
identification remotely. The mfcc component is implemented
in MATLAB. To evaluate the effectiveness of flow analysis
on a realistic application, we will compile and profile the
application with (flow-analysis) and without (simple)
flow analysis.

Figure 6(a) plots the CPU usage when the audio sampling
rate was 8000, 22050, 32000, and 44100 Hz. The figure clearly
indicates the benefits of using the efficient frame conversions
enabled by flow analysis. Moreover, these benefits increase
with the audio sampling rate. At 44100 Hz, using flow analysis,
the CPU usage is reduced by 45% compared to the baseline.
To better understand the benefits of framing, Figure 6(b) plots
the time spent in each component of the MFCC pipeline. Aside
from minimizing the number of object copies, the use of super-
frames has three additional advantages: (1) It reduces overhead
since super-frames contain more samples than frames but
require the same number of function calls to push. This results
in lower overhead on mfccSource and tap components that
are responsible for memory management. (2) Super-frames al-
low components to execute at different rates. The super-frame
is 4096 samples, but the mfcc source and saveFeature
are executed 32 and 1 time, respectively, to process a super-
frame. This feature explains the reductions in the CPU time
of mfcc, saveFeature, and saveAudio. (3) Finally, the
Converter component is used to convert shorts to doubles.
For efficiency, this component is implemented in native code.
A benefit of using CSense is that the compiler can automate
such transformations thus reducing the development burden.

We instrumented the scheduler to measure the time each
domain thread spends executing the user code and the total
time the thread was executed. The difference between the
total and user time is considered overhead. We divide the
overhead into sleep overhead and scheduler overhead. The
sleep overhead measure the time to access the underlying
power locks associated with each domain. Figure 6(c) plots
detailed scheduler overhead when the flow analysis is used.
The overhead percentage is computed relative to the total
CPU usage reported in Figure 6(a)). The overhead ranges
from 2.37% to 1.83%, decreasing slightly as the sampling rate
increases. The slight decrease is the result of the CPU usage
increasing faster than the scheduler overhead. These results
show that the scheduler introduces small overhead.

Figure 7 includes the number of ILP constraints that
were generated by the flow analysis for each application. All
applications include less than a thousand linear constraints. ILP
solvers can solve problems of this size very efficiently. On a
laptop with a 2.6 GHz Intel Core i7 with 16 GB of RAM all
ILPs were solved in less than 10 ms.

ActiSense: ActiSense is an activity recognition application
that uses accelerometers to recognize running, sitting, walking,
standing, and climbing stairs. The system is based on [2].
ActiSense includes a mobile phone and three Shimmer motes.
Data from the Shimmer motes is streamed to the phone
over Bluetooth. Feature extraction is performed on the phone.
The extracted features are mean, time-domain and frequency-
domain entropy, and correlation features as described in [2].
A Support Vector Machine (SVM) classifier determines user
activities in real-time.

We have conducted a small user study involving 3 vol-
unteers to evaluate the accuracy of the system. While instru-
mented, the volunteers performed the target activities as part of
a circuit of activities. The collected data was annotated with
the start and end times of each activity. The annotated data
set was divided into training and testing data sets. We have
evaluated four classifiers (Naive Bayes, ensembles of Naive
Bayes classifiers, SVM, and ensembles of SVM classifiers) on
the collected data set. The classification accuracy computed
using 10-fold cross-validation is shown in Figure 8.

The components of ActiSense are partitioned into six do-
mains. Four domains are responsible for collecting acceleration
readings, saving them to flash, and making predictions using
an SVM classifier. Three of the four domains are allocated
for processing acceleration data from motes (one per mote).
An additional domain is allocated to process acceleration data
from the phone. The remaining two domains are responsible
for recording data from the gyroscope and magnetometer
sensors to disk.

Figure 9 plots the user time and associated overhead for
each domain. The domains processing data from the Shimmer
motes spent a similar amount of thread time – about 400 ms.
The bulk of the time is spent on feature extraction (275 ms) and
classification (68 ms). In contrast, the time to process the data
collected from the phone’s accelerometer is twice as long. The
increase is reflected in a longer feature extraction (530 ms) and
prediction (95 ms) times. An explanation for this difference
is that the sensors use different sampling rates: the Shimmer
motes are sampled at 50 Hz while the phones are sampled at
60 Hz. The overhead across all domains is about 13%. Half the
overhead can be attributed to operations on Android’s power
locks. The higher overhead of ActiSense (compared to that of
SpeakerIdentifier) is due to smaller super-frames. ActiSense
was configured to produce activity predictions every second,
which prevented the creation of large superframes. Relaxing
this constraint will reduce overhead, as the flow analysis will
use larger super-frames.

AudioSense: AudioSense [4] evaluates the performance of
hearing aids using electronic surveys. Surveys may be user
initiated or triggered at random intervals on average every 1.5
hours. Concurrent with the delivery of surveys, AudioSense
collects audio samples and GPS locations to provide a context
for the surveys. AudioSense caches data on the mobile phone



Classifier Configuration Accuracy
Naive Bayes Phone + Shimmer 69.54%

Naive Bayes Ensemble Phone + Shimmer 76.55 %
SVM Shimmer 88.43%
SVM Phone 94.64%

SVM Ensemble Shimmer + Phone 96%

Fig. 8. ActiSense: Accuracy for different configuration and learning algo-
rithms

Fig. 9. ActiSense: Execution time and overheads

and uploads it when it may establish a 3G connection to our
remote server. AudioSense has been deployed for six months
as part of a clinical study. The challenge of developing such a
system is to ensure reliability during weeklong deployments.

Figure 10 plots the reliability for each day of the trial. The
reliability is computed as the fraction of data uploaded out
of the data that was collected. As shown in the graph, there
were three instances when the reliability was zero during the
trial. The cause of these outages was the server being offline
for several days due to power outages. The remainder of the
outages may be attributed to coverage gaps in the study area.
Figure 10(b) shows the reliability for the 13 patients in the
study included in the first six months of the study. Excluding
the server outages, the reliability of AudioSense exceeds 90%.
This shows that our toolkit is sufficiently mature to support
long-term deployments.

V. RELATED WORK

CSense uses a stream processing (SP) model to support
the development of high-rate and robust MSAs. This section
places CSense in the context of prior work on SP systems and
static analysis of Java programs.

Stream Programming: SP models have been studied for
decades (see [16] for a review). SP systems can be broadly
divided into synchronous and asynchronous systems. Syn-
chronous systems operate on a shared clock (or clocks) that
dictates when components are executed. The rigid timing of
synchronous systems is suitable for compiler optimizations.
Compilers can determine execution rates, buffering require-
ments, and implement efficient scheduling [7], [16], [17].
Asynchronous systems provide a more flexible concurrency
model but sacrifice performance, as many of the optimizations
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Fig. 10. AudioSense: Reliability during a 6-month trial

developed for synchronous systems do not translate these
systems. CSense adopts an asynchronous model to support
workloads that include both concurrent operations and asyn-
chronous events.

The problem of efficiently supporting asynchronous SP
has been previously considered in systems such as Click [5],
XStream [18], and WaveScript [17]. Click executes compo-
nents in a single thread but avoids creating inflexible fixed
schedules. Click maintains a task queue to which sources and
queue components are added when they have data to process.
A scheduler determines the execution order of the tasks in
the queue. The execution of the other type of components is
triggered by function calls that traverse the component graph
in a depth-first manner. A similar approach to component
scheduling is used in XStream and WaveScript. As described
in Section II-C, CSense extends this mechanism by including
support for multiple execution domains and event handling.
CSense further reduces overhead through a flow analysis that
allows components to be executed multiple times without
involving the scheduler.

Memory management can have a significant performance
impact on SP. XStream and WaveScript use an abstract
data structure called SigSegs to efficiently exchange frames
between components. SigSegs have some similarity to our
flow analysis that optimizes the memory allocation of frames.
However, in contrast to SigSegs that operate solely at run-
time, we optimize memory management by leveraging type
information and explicit knowledge of frame flows at compile
time. This optimization is feasible in CSense due to the
additional information supplied by developers.



Static analysis: There have been several efforts to de-
tect concurrency problems in Java programs. For example,
ESC/Java2 [19] and Checker Framework [20] are static anal-
ysis tools that identify potential bugs such as data races.
Unfortunately, these tools are neither sound nor complete,
they cannot fully address the problems of aliasing and limited
visibility into the Java/Android run-time environment. More
promising results are obtained in domain specific languages.
For example, NesC [21] limits programmers to using only
static memory and a restricted concurrency model to facilitate
static analysis. CSense adopts a similar strategy by explicitly
capturing memory operations as part of component graphs and
limiting its concurrency model.

VI. CONCLUSIONS

In this paper, we presented CSense – a stream programming
toolkit for developing high rate and robust mobile sensing
applications on Android. CSense provides developers a pro-
gramming model, a compiler, and a run-time environment.
The programming model extends existing SP models by in-
corporating a flexible concurrency model, a new type sys-
tems that fosters component reuse, and incorporates memory
operations as part of the SFG. We leverage this additional
information for both the compilation and static analysis. Our
compiler incorporates a novel flow analysis that optimizes
frames exchange across components from an application-wide
perspective. Empirical results indicate that the flow analysis
may reduce CPU utilization as much as 45%. Moreover, static
analysis techniques can prevent a range of programming errors
including the incorrect usage of the memory management
system and data races. These techniques enabled us to deliver
a mobile sensing application that uploads data to a server
with over 90% reliability. We have identified that the memory
management and concurrency limit the scalability of SP on
Android. We incorporate memory pools, frame conversion
optimizations, custom synchronization primitives, and careful
integration with power locks to develop a scalable run-time
environment. Micro-benchmarks indicate that these optimiza-
tions increase the peak stream rate by as much as 19 times
over a baseline implementation that uses Java’s concurrency
management.
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