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ABSTRACT
This paper evaluates the relationship between auditory con-
texts, hearing aid features, and hearing outcomes based on
real-world measurements. We use a mobile phone applica-
tion to concurrently evaluate the auditory contexts and hear-
ing aid outcomes using Ecological Momentary Assessments.
The collected dataset includes 3437 surveys collected from
nineteen patients over ten months. Our analysis indicates
that the most frequent listening activities were conversa-
tions (32.7% of the time) and listening to media (30.7% of
the time), commonly occurring at home, in predominantly
quiet environments. Subjects do not attribute equal impor-
tance to hearing well in all auditory contexts: it is more
important to hear well in contexts that involve social inter-
actions. We show that hearing aid outcomes measures are
moderately correlated. By leveraging on these correlations,
we propose a method of combining measurements of hear-
ing aid outcomes into a single score to reduce measurement
error. Finally, we show that it is possible to discriminate
between poor and good hearing aid outcomes with an accu-
racy of 78% solely based on auditory contexts and hearing
aid features. This shows the central role that auditory con-
texts play in understanding hearing aid outcomes in situ.

1. INTRODUCTION
A 2008 MarkeTrak survey estimates that 11.3% of Ameri-
cans (approximately 34.25 million) suffer from hearing loss
[12]. Left untreated hearing impairment affects communi-
cation and can contribute to depression, anxiety, isolation,
paranoia, and, possibly, dementia [1, 14–16]. The primary
intervention for sensorineural hearing loss and related psy-
chosocial consequences is hearing aid (HA) amplification.
However, in spite of significant advancements in HA technol-
ogy during the past decade, HA use is not prevalent among
people with hearing loss [9, 12] and only half of those using
HAs are satisfied with their performance in noise [8]. More-
over, several recent clinical studies indicate that the benefit
of HA technology (i.e., HA outcome) measured in the labo-

ratory often does not translate to the real world [2,11,17,18].
Therefore, in order to provide better hearing healthcare,
there is a critical need to develop assessment techniques that
allow researchers and clinicians to understand the factors
that affect HA outcomes in the real world.

Measuring HA outcomes in the real world poses significant
challenges as it depends on the patient’s auditory context
which includes characteristics of listening partners, listening
activities, and acoustic environment. Audiologists typically
use interviews and questionnaires to measure HA outcomes.
Unfortunately, the accuracy of data collected using survey
methods is negatively affected by memory biases as patients
are asked to remember the circumstances in which HAs per-
formed poorly long after they occurred. Survey methods
are complemented by laboratory-based assessments such as
speech recognition tests. During a speech recognition test,
a patient placed in a sound-treated booth is presented seg-
ments of speech under different noise conditions. As it is
extremely difficult to recreate the real world listening con-
ditions in the sound booth, laboratory-based assessments
generally fail to be representative of the listening contexts
that patients encounter during their daily life. Accordingly,
neither self-reporting nor laboratory-based tests are effective
in describing the auditory contexts observed by patients in
the real world.

In prior work, we have developed AudioSense [5], a novel
system for evaluating HA outcomes in the real world using
mobile phones. AudioSense includes a mobile phone ap-
plication that delivers Ecological Momentary Assessments
(EMAs). EMA involves the repeated sampling of a sub-
ject’s current state and experiences in real-time [13]. This is
accomplished by delivering electronic surveys either at ran-
domized intervals or when triggered by patients. Compared
to other self-reporting methods, EMA has the advantage of
reducing memory bias since patients report on their recent
experiences (in the previous 5 - 10 minutes). The delivered
surveys capture information both the auditory context and
the associated HA outcomes.

In this paper, we make the following contributions: (1) We
present an empirical study that assess the auditory contexts
and their impact on HA outcomes from data collected us-
ing mobile phones. We collected a total of 3437 surveys
from nineteen subjects using AudioSense to create a detailed
record of the auditory contexts that HA users encounter dur-



ing their daily lives. The scale of our study significantly ex-
ceeds previous data collection efforts that used mobile tech-
nology. (2) Using the collected dataset, we characterize the
common properties of auditory contexts and the importance
subjects associate with hearing well in a given context. (3)
Research to date shows that HA outcomes show moderate
to strong correlations supporting the presence of a latent
factor characterizing overall patient experience and opinion.
We propose a technique to combine these measures into a
single score in order to reduce the measurement error associ-
ated with each independent measure. (4) More importantly,
we show that it is possible to discriminate between poor and
good HA outcomes with an accuracy of 78% solely based on
the auditory contexts and HA features. This highlights the
central role that auditory contexts play in understanding
HA outcomes in situ.

2. RELATED WORK
Several recent clinical studies indicate that the benefit of HA
technology (i.e., HA outcome) measured in the lab does not
translate to the real world [2,11,17,18]. As a result, there is
an increased interest in measuring the prevalence of auditory
contexts and HA outcomes in the real world [4,6,17,18]. Eco-
logical Momentary Assessment (EMA) [13] is an established
alternative to retrospective self-reporting methods that re-
duces the problem of memory-bias by collecting data in the
moment. Additionally, EMA techniques can be implemented
using computer technology for scalability. Two computer-
based EMA studies have been performed in the field of au-
diology to date: Henry et al. [6] evaluated the impact of
tinnitus on daily lives of people and Galvez et al. [4] as-
sessed patient satisfaction with hearing aids. As part of the
ongoing study described in this paper, we have already col-
lected over 3400 surveys, exceeding the scale of the previous
computer-based EMA studies in Audiology.

Computer scientists have developed a number of EMA sys-
tems [3, 7, 10]. These systems provide a framework that al-
lows for real-time collection of survey and sensor data. How-
ever, most often these systems are not deployed as part of
clinical or field studies. AudioSense provides similar capabil-
ities to existing EMA systems but emphasizes the collection
of data relevant to audiologists such as audio, GPS, and
survey data on mobile phones. AudioSense may also replace
noise dosimeters (as those used in [19]), which have a larger
form-factor to less obtrusive measurement of noise levels in
the real world. AudioSense provides the audiologists with
a web portal for tracking patient compliance in real-time.
The main contribution of this paper is the empirical anal-
ysis of the collected data. For the first time, we show that
it is feasible to predict HA outcomes based on the charac-
teristics of auditory contexts and HA features. In a broader
context, our work contributes to the growing body of litera-
ture establishing computer-based EMA as a reliable method
for assessing HA technology.

3. AUDIOLOGY APPLICATION
AudioSense integrates mobile phones and web technology to
assess hearing aid (HA) outcomes in the real world. We use
EMA methods to characterize auditory contexts (e.g., lis-
tening activity, room size as compared with an average sized
room, and location of speakers relative to the subject) and
HA outcomes (e.g., listening effort, speech understanding)

associated with these contexts. AudioSense uses a client-
server model. The mobile phones are carried by subjects and
are used to deliver surveys and collect sensor measurements
such as audio signals and GPS location (sensor data is not
analyzed in this paper).Mobile phones act as clients in our
architecture. The server backend includes two components:
a web server and a database. The web server stores the data
uploaded by clients in a database. The web server provides
a standard web portal interface to visualize the collected
data and monitor subject compliance with data collection
regiment.

Mobile phones and the web server communicate using HTTP
over Wi-Fi or a cellular network. As subjects in our studies
are mobile and may live in rural area, wireless connectiv-
ity may be intermittent. AudioSense is designed to tolerate
intermittent network connectivity by having mobile phones
cache the collected data. Periodically, the mobile phone at-
tempts to establish a connection to the web server and, when
successful, it uploads the collected data. Note that the stor-
age space available on modern mobile phones is sufficient to
store all the data that we collect even in a multi-week de-
ployment. The data is uploaded to the server primarily to
track subject compliance.

The client-side of AudioSense runs on Android OS. Android
OS is available on numerous mobile phones and tablet com-
puters. AudioSense could be deployed on any Android de-
vice. The backend server was portable and could be de-
ployed on Mac OS, Linux, and Windows. The web portal
was implemented using the Django web framework. SQLite
was used to store data and manage metadata associated with
the collected sensor readings and surveys.

The mobile application manages the delivery of surveys. A
survey is modeled as a set of questions. To keep track of
the subjects’ choices at run-time, we associate with each
question a variable to which we assign a value based on
the response of the subject to that question. A subject has
the option to navigate through the survey both forwards
and backwards. Answers may be revised as necessary. Au-
dioSense supports adaptive surveys by dynamically deter-
mining the next question that will be presented to the user
based on his/her previous answers. While the EMA com-
ponent had an extensible architecture, we currently sup-
port two types of questions: multiple-choice questions and
scale rating. Multiple-choice questions were rendered as a
sequence of buttons whose text could be specified by the
programmer (see Figure 1(b)). The subject was allowed to
select a single option out of those presented. Scale rating
questions were rendered using seekbars and the program-
mer could provide labels to be rendered for the middle and
ends of the bar (see Figure 1(c)).

The delivery of electronic surveys is either alarm triggered
or subject-initiated. Alarm-triggered surveys are delivered
using randomized schedules. After an alarm is delivered, the
time to deliver the next survey is determined by adding a
constant time offset Toffset to a random number picked uni-
formly from the time interval [0, Trand]. The time to deliver
the first survey is determined based on the time when the
application is started the first time. The surveys in our field
study are delivered on average every 1.5 hours and consecu-



(a) Home screen (b) Multiple choice (c) Scale rating (d) Settings screen

Figure 1: AudioSense mobile application

Variable Statistics
Gender Male 35%

Female 65%
Age(years) Median: 70.5, Range: 65 – 87
Hearing loss onset(years) Median:12, Range: 1– 54
Employment Full-time 1

Part-time 1
Retired 18

Duration of HA use (years) Median: 8.5, Range : 0 - 40

Table 1: Demographic information of subjects

tive surveys were separated by at least 1 hour (i.e., Toffset =
1 hr and Trand = 1 hr). Moreover, in order to minimize the
interruption burden to subjects, clinicians could select the
time interval during a day when surveys could be delivered.
To further mitigate the effects of the survey appearing at an
undesired time during the aforementioned interval, a Snooze
button was provided to delay the alarm by 30 minutes. An
alarm outside the delivery interval is postponed until the
next day.

Appropriate user interface design can have a significant im-
pact on the compliance of subjects with the data collec-
tion protocols. This is particularly problematic given that
subjects with hearing loss also tend to be older. Accord-
ingly, they not only suffer from hearing loss but may also
have impairments associated with vision and/or fine motor
control. These considerations influenced our user interface
design choices. We opt for large font sizes and an easy-to-
distinguish color scheme. Similarly, we use large buttons
and enlarged the default seekbar provided by Android OS.
The most important decisions in the user interface are re-
lated to the delivery of alarms – notifications that the user
should complete a survey. After several iterations and feed-
back from subjects, we decided to deliver survey alarms by
vibrating the phone, playing loud ringtones, and turn on/off
the flash of the camera. In order to diminish the intrusive-
ness and irritation of the alarm, we allowed the subjects to
press the power button to stop the alarm and added a Snooze
option to postpone survey completion by 30 minutes.

4. FIELD STUDY
Nineteen older adults are recruited. The participants are
hearing impaired, native English speakers, and at least 65
years old. The participants have adult-onset, bilateral, sym-

Condition HA use DM/DMR usage
0 Unaided –
1 Entry level Off
2 Entry level On
3 Premium Off
4 Premium On
5 Reliability measure
99 Training

Table 2: Study sessions

metric (within 15 dB), sensorineural hearing loss with thresh-
olds averaged across 0.5-4.0 kHz between 25 and 60 dB HL.
This represents a mild-to-moderate level of hearing loss.
Both new and experienced HA users are included. The par-
ticipants are recruited in two ways: (1) The Department of
Communication Sciences and Disorders maintains a subject
pool from which people who matched the inclusion criteria
are invited to participate in the study. (2) The remaining
study participants are recruited through word of mouth from
other study participants or through hearing screenings in the
community. The sample population is representative of the
patients commonly seen in audiology clinics. The detailed
demographics are included in Table 1.

Each subject is enrolled in six sessions, each session lasting
for a week. The sessions differ in the types of HA devices
used and what features are enabled (see Table 2). This is a
single-blind study: participants are not aware of what type
or features of the HA are active in a given session (but the
research team is). To understand the impact of HA tech-
nology, we select the following hearing aids: (1) a low-cost,
entry-level model (Phonak Bolero Q50) with a low-end adap-
tive directional microphone (DM) and digital noise reduction
(DNR) and (2) a premium level hearing aid (Phonak Bolero
Q90) with advanced DM and DNR features. The devices are
used with both the DM/DNR features enabled and disabled.

HA outcomes depend on both HA capabilities and the audi-
tory contexts in which HAs are used. AudioSense is used to
simultaneously characterize the auditory context and mea-
sure the HA outcomes associated with that context. The
impact of HA features is evaluated by comparing the results
obtained in different sessions. The surveys evaluate the audi-
tory contexts and HA outcomes across multiple dimensions
(see Table 3). We leverage on AudioSense’s capability to dy-



Context Variable Question
Activity
context

Activity type What were you listening to?
Location Where were you?

Acoustic
context

Noise level How noisy was it?
Noise location Where was the noise coming

from?
Talker location Where was the talker?
Room size How larger was the room?
Carpeting Was there carpeting?

Social
context

Visual cues Could you see the talker’s
face?

Familiarity Are you familiar with the
talker(s)?

Perception Speech
perception (SP)

How much speech did you un-
derstand?

Listening effort
(LE)

How much effort was required
to listen?

HA satisfaction
(ST)

How satisfied were your with
the hearing aid?

Sound localiza-
tion (LCL)

Could you tell where sounds
were coming from?

Loudness (LD2) Were you satisfied with the
loudness?

Activity partici-
pation (AP)

How your hearing affected
what you wanted to do?

Importance Importance How important was it to hear
well?

Table 3: Measured variables

namically determine the next question in the survey based
on prior answers in order to reduce the number of questions
asked. A typical survey includes a median of 22 questions
(range: 12 – 26 questions).

The auditory contexts are evaluated across three dimen-
sions: (1) The activity context captures the type of listening
activities (e.g., conversing vs. music listening) and the loca-
tion of these activities (indoor vs. outdoor). (2) The acous-
tic context includes elements that affect noise level, location,
and degree of reverberation (as determined by room size and
presence of carpeting). (3) The social context characterizes
the interactions between speakers including visual cues and
familiarity. Empirical evidence exists in audiology literature
to support that each of these factors may have an impact on
HA outcomes. However, as discussed in related work, most
of these experiments were not performed using computerized
EMA. The HA outcomes are evaluated across multiple di-
mensions including: listening effort, speech understanding,
satisfaction with HAs, the ability to localize sounds, level of
loudness, and impact on activity participation.

The first patient was enrolled in the study in February 2013
and the trial is ongoing. By the end of the trial, we will
collect data from 50 subjects. The results presented in this
paper are based on 3437 surveys collected from the 19 sub-
jects. To the best of our knowledge this is the largest audi-
ology dataset collected using mobile phones. This showcases
the feasibility of mobile phones as a data collection platform
in field and clinical studies.

5. RESULTS
In this section, we characterize the interplay between audi-
tory contexts, HA features, and HA outcomes based on real
world data. Specifically, our analysis focuses on the following
questions:

• What are the typical auditory contexts subjects en-
counter in the real world and what is the relative im-
portance they assigned to hearing well in that context?

• Are the HA outcome measures correlated and, if they
are, can they be combined into a single HA outcome
score?

• Can the HA outcomes be predicted based on auditory
contexts and HA features?

Answering these questions will provide a sound basis for
understanding some of the factors that affect HA outcomes.
This information is valuable to both audiologists that are
interested in measurements of HA outcomes in the real world
and to computer scientists that are interested in improving
EMA systems.

5.1 Properties of Auditory Contexts
We analyzed the distribution of auditory contexts both per
subject and over the entire sample, as we are interested in
characterizing both the average likelihood of a context and
its variation between subjects. The prevalence of a context
per subject is the fraction of surveys that the subject indi-
cated to be in that context. The prevalence of a context
over the entire sample was computed by averaging the con-
text prevalence over all subjects. Due to space limitations,
we focus on listening activities, their locations, and noise
level as they have a significant impact on HA outcomes.
The subjects rated the importance of hearing well in a given
context on a 1 – 100 scale. The analysis presented in this
section uses data from all sessions as the HA features have
no bearing on context prevalence.

Figure 2(a) plots the activity type for a representative sub-
set of seven patients and for the entire sample (labeled All

in figures). Subjects spent about 19.2% of the time listen-
ing passively. The most common activities are conversations
(32.7%) and listening to media (30.7%), accounting for total
of 63.4% of the time. The remaining time (17.3%) is spent
talking on the phone (6.8%) and listening to live presenta-
tions (2.8%) or non-speech sounds (7.1%). Approximately
80% of the conversations involve at most three participants
(Conv. (-3)), only 20% involving more than three par-
ticipants (Conv (3+)). We observe a significant variability
across patients. For example, patient 1 spends 42.1% of his
time compared to just 17.2% for patient 2 in conversations.
A similar trend may be observed for other activities.

Figure 2(b) shows that subjects spend 16.9% of their time
outdoors and 83.1% indoors. About half of the time spent
outdoors was spent driving a car (Outdoor (Traffic)). Most
of the time spent indoors is at home, in the presence of
fewer than 10 people (Home (-10)). Our subjects spent a
significant fraction of time (17.65%) engaging in social activ-
ities either outside (Not home (-10)) the house or in crowds
(Crowd (10+)). Similar to the activity type, we observe a
significant variation in the distribution of locations across
patients.

Figure 2(c) plots the noise level reported by subjects. Most
of the time subjects report low levels of noise: Quiet (50.1%)
or Bit noisy (39.9%). The low levels of noise can be partly
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Figure 2: Auditory type, location, and noise level
for sample and representative subjects

justified by subjects being at home where they can adjust
the noisiness of their environment. The propensity of low
noise levels is common across all patients.

Result: Most frequent listening activities were conversa-
tions and listening to media, commonly occurring at home,
in predominantly quiet environments. Results indicate sig-
nificant variability between subjects in both listening activi-
ties and locations.

The importance of activity type and location are plotted in
Figures 3(a) and 3(b), respectively. The plots show that
passive listening or listening to non-speech sounds are asso-
ciated with low importance ratings. Listening to media is
associated with higher importance ratings. In contrast, con-
versations and listening to live presentations are associated
with the highest importance ratings. These insights are cor-
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Figure 3: Importance of activity types and locations

roborated by importance ratings assigned to locations. Most
important locations are Not home and Crowd, where the pa-
tient is more likely to be socially engaged.

Result: The importance assigned to hearing well in a con-
text is strongly related to subject’s level of social engagement
in that context.

5.2 HA Outcomes Measures
HA outcomes are typically assessed across multiple domains
to better understand what factors have a negative impact on
the subject’s assessment of the HA. Our surveys targeted the
following HA outcome dimensions: speech perception, lis-
tening effort, loudness, sound localization, HA satisfaction,
and activity participation (see Table 3 for details). It is of
interest, therefore, to understand the relationships among
outcome dimensions. Moreover, if outcomes are correlated,
a single aggregated score could be created that would po-
tentially reduce the inherent noise of each dimension. For
the analysis presented in this and the following section, we
focus on surveys in which subjects reported using a HA and
engaging in conversations.

Figure 4 plots the distribution of HA outcome scores using
box plots. All scores are continuous variables in the range 1
— 100. A higher score for all variables except listening ef-
fort indicates improved HA outcomes Listening effort has an
inverse relationship with HA outcomes (i.e., a lower effort
indicates better outcomes). For consistency, we adjusted
the value of listening effort to be 100 - LE ensuring that
higher scores indicate improved HA outcomes for all vari-
ables. The median scores were in the range 71 – 86 across
all dimensions. The high scores indicate that the subjects
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SP LE ST LCL LD2 AP
SP 1.0000 0.6178 0.6562 0.5847 0.4785 0.5126
LE 0.6178 1.0000 0.5963 0.5029 0.4732 0.6431
ST 0.6562 0.5963 1.0000 0.5477 0.5429 0.5693
LCL 0.5847 0.5029 0.5477 1.0000 0.3451 0.4030
LD2 0.4785 0.4732 0.5429 0.3451 1.0000 0.4989
AP 0.5126 0.6431 0.5693 0.4030 0.4989 1.0000

Table 4: Spearman’s rank correlation between HA
outcome measures. The bolded variables are used
to compute a combined HA outcome score.

were overall satisfied with their hearing aids. However, the
score variability and presence of outliers indicate that there
are contexts in which HA outcomes can be improved.

Table 4 shows the Spearman’s rank correlation coefficient
for the outcome measures. The correlations were computed
over the entire dataset (without averaging across patients).
Spearman’s correlation is used instead of standard Pearson’s
correlation coefficient, as it does not require variables to
have a linear dependence and is less susceptible to outliers.
Correlations vary in the range 0.34 – 0.65 indicating fair to
moderately strong correlations between outcome measures.
This suggests that dimensions measure different underlying
aspects of HA outcomes but they are sufficiently well corre-
lated to derive an aggregated score.

We created an aggregated HA outcome score from the four
most correlated features: SP, LE, ST, and LCL. The first step
in creating a combined score is to compute the following
three mappings: f1 : LCL 7→ LE, f2 : SP 7→ LE, and f3 :
ST 7→ LE. We map LCL, SP, and ST onto LE because it has
the widest score distribution (as shown in Figure 4), which
allows for better discrimination between HA outcomes. The
combined score is computed by taking the average of the LE

score and f1(LCL), f2(SP), and f3(ST).

Figure 5 shows the three mappings that we constructed.
Each circle represents the LE value corresponding to the in-
put (LCL,SP, and ST) in a survey. A key challenge to build-
ing such a mapping is to handle the large variability in test
scores. The large variability is clear in Figure 5. The map-
pings were constructed by first dividing the scores into bins
over the domain 1 – 100. For each bin, the median LE score
was determined as indicated by the green squares in the fig-
ure. A third degree polynomial was fitted to go through
the (x, y) coordinates of the middle of each bin and me-

dian LE scores (the green squares). Bins that contain only
a few values are omitted from the calculation of the best-
fit polynomial to achieve robustness to noise. The degree
of the polynomial was selected to improve the accuracy of
predicting the combined score given auditory contexts and
HA features.
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Figure 5: Creating a combined (CB) outcome score
from LE, SP, ST, and LCL

Result: HA outcome measures are moderately correlated al-
lowing for the computation of a combined HA outcome score.

5.3 Predicting HA outcomes
In this section, we consider the problem of predicting HA
outcomes based on auditory contexts and HA features. An
accurate model would highlight the importance of auditory
contexts to understanding HA outcomes. Moreover, there
are other factors that affect HA outcomes that are not mea-
sured in our study (e.g., the comfort of wearing a HA) or not
included as part of the model (e.g., level of education). Fac-



tors that are not modeled affect the error rates in our model.
Therefore, the accuracy of the HA outcomes also quantifies
the degree to which the auditory context is characterized
well by the selected variables.

The accurate prediction of HA outcomes faces several chal-
lenges: (1) The model should incorporate data from all sub-
jects. This is only feasible if we are able to account for
individual differences among subjects, some of whom may
consistently have more negative evaluations than others. (2)
The model must account for the interplay between HA fea-
tures and auditory contexts. However, the model must be
parsimonious to avoid over fitting.

The HA outcome (Y ) is evaluated using the combined score
introduced in the previous section. All independent vari-
ables are nominal. The auditory context is represented by
ten nominal variables. The HA features are represented by
the nominal variable session whose values are given in Table
2. All nominal variables are encoded using dummy coding.
The variable D is used to denote the set of dependent vari-
ables. We start by modeling the problem as a regression
problem where the HA outcome is a continuous variable.
Later, we discretize the HA outcome to evaluate the abil-
ity of the model to discriminate between poor and good HA
outcomes.

The collected data set can be analyzed in the framework of
linear model models. A model that models the entire depen-
dence between subjects, sessions, and the variables charac-
terizing the auditory context may be easily defined:

Y = β + subject · session ·
∑
x∈D

x (1)

where β is the intercept term. However, this model intro-
duces a high number of variables to model the Cartesian
product of subjects, sessions, and auditory contexts. As a
result a significant number of surveys would be necessary
to fit the model. Motivated by this insight, we opted for a
more parsimonious model:

Y = β + subject ·
∑
x∈D

x+ session ·
∑
x∈D

x (2)

The term subject ·
∑

x∈D x accounts for variations in audi-
tory contexts among patients. Similarly, the term session ·∑

x∈D x accounts for variations between HA features.

The model described in Equation 2 was further refined using
a stepwise procedure to remove terms that are not statisti-
cally significant. The procedure removes terms in a greedy
manner until the sum of squared errors cannot be further
improved. In each iteration, the procedures considers each
term in the model and uses an F-statistic test to assess the
quality of the model with or without a term. The null hy-
pothesis is that the term has a zero coefficient. If there is
insufficient evidence to reject the null hypothesis, the term
is removed.

Figure 6 plots the results on the final model obtained from
using the stepwise procedure. Figure 6(a) plots the actual
versus the predicted combined scores. The line of best fit
(plotted in black) clearly indicates a linear relationship be-
tween the actual and predicted scores. The high R2 value

supports the goodness of fit of the model to the data.

The cumulative distribution of errors is shown in Figure
6(b). The graph indicates that an absolute error of less than
5 and 10 is achieved 65% and 85% of the time, respectively.
This is a positive result as measurements are on a scale 1 –
100. The validity of the model was further evaluated using
10-fold cross validation. The average and standard devia-
tion of the median absolute error across the 10 folds is 6.2
and 1.0882, respectively. Furthermore, we have also investi-
gated the use of non-linear models including support vector
machines and neuronal networks. In both cases, the same
features as the ones in the linear model were used. The
non-linear models did not yield significant improvements in
accuracy.
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Figure 6: Predicting HA outcomes based on audi-
tory context and HA features

To further assess the model’s goodness, we considered the
problem of discriminating poor versus good hearing out-
comes. To this end, we discretized the combined HA score
into two classes: good outcomes and bad outcomes. The
classes were determined by comparing each score with the
median value. Using 10-fold cross validation, linear models
were able to discriminate between classes with an accuracy
of 78%. Achieving an accuracy of 78% (well above chance)
suggest that HA features are indeed essential to accurately
predicting HA outcomes. However, it also indicates that
there is the potential room for improvement by incorporat-
ing other factors in the model.

Result: The auditory contexts and HA features are essential
to understanding HA outcomes. A linear model based on



auditory contexts and HA features can predict HA outcomes
with an accuracy of 78%.

6. CONCLUSIONS
Hearing aid outcomes depend on both auditory contexts and
hearing aid features. Evaluating this relationship in the real
world has been tremendously difficult due to the limitations
of traditional survey methods. Over the past ten months, we
have used AudioSense – a novel hearing-aid evaluation tool –
to collect 3437 surveys from nineteen patients. AudioSense
uses EMA to characterize auditory contexts and hearing aid
outcomes given a hearing aid configuration. The primary
contribution of this paper is the empirical analysis of the
collected dataset.

Our analysis indicates that most frequent listening activities
were conversations and listening to media. These activities
commonly occurred at home in a predominantly quiet en-
vironment. The results indicate a significant variation in
listening activities and locations among subjects. More im-
portantly, subjects associate different levels of importance
to hearing well to contexts. We showed that the degree of
social engagement given a context determines the impor-
tance a subject associates with hearing well in that context.
Hearing outcomes are measured across multiple dimensions
to understand what factors affect a subject’s assessment of
HA performance. Our analysis indicates that these mea-
sures are moderately correlated. We propose a method that
creates a combined outcome score by creating mappings be-
tween dimensions using polynomial fitting. The method is
designed to tolerate the significant noise observed in real out-
come measures. Finally, we show that it is feasible to predict
the HA outcomes (measured by the combined scores) based
on the auditory context and HA features. A linear model
discriminates between good and poor HA outcomes with an
accuracy of 78%.

In future work, we will explore approaches to incorporating
other variables in the model. We are particularly interested
in combining the subjective measures obtained using EMA
with objective measures captured from sensors such as mi-
crophones and GPS.
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