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ABSTRACT
Energy-efficiency is a key concern in continuously-running
mobile applications, such as those for health and context
monitoring. Unfortunately, developers must implement com-
plex and customized power-management policies for each
application. This involves the use of complex primitives and
writing error-prone multithreaded code to monitor hardware
state. To address this problem, we present APE, an annota-
tion language and middleware service that eases the devel-
opment of energy-efficient Android applications. APE anno-
tations are used to demarcate a power-hungry code segment
whose execution is deferred until the device enters a state
that minimizes the cost of that operation. The execution
of power-hungry operations is coordinated across applica-
tions by the APE middleware. Several examples show the
expressive power of our approach. A case study of using
APE annotations in a real mobile sensing application shows
that annotations can cleanly specify a power management
policy and reduce the complexity of its implementation. An
empirical evaluation of the middleware shows that APE in-
troduces negligible overhead and equals hand-tuned code in
energy savings, in this case achieving 63.4% energy savings
compared to the case when there is no coordination.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Computer-aided software engineering (CASE);
D.3.3 [Programming Languages]: Language Constructs
and Features—Constraints

General Terms
Experimentation, Languages, Performance

Keywords
Mobile applications, energy-efficiency, hardware monitoring,
annotations, programming
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1. INTRODUCTION
The rapidly advancing capabilities of modern smartphones

have enabled the development of a new generation of con-
tinuously-running mobile (CRM) applications, such as those
for personal health and user-context monitoring. Such appli-
cations may periodically wake to collect and process sensor
data, check with a remote server for updates, or provide re-
ports to a user. Examples include CenceMe [17], Surround-
Sense [6], AudioSense [12], and CitiSense [21]. Even though
these applications operate at low duty cycles, cumulatively
they have a large impact on the battery life of a device due to
their periodic use of power-hungry system resources, such as
the cellular radio for networking or the GPS for localization.

Even though mobile operating systems like Android pro-
vide control over these power-hungry resources, developing
an energy-efficient CRM application is challenging. Beyond
the expected algorithmic and systems challenges of design-
ing a power management policy (see Section 2), there are
also significant software engineering challenges:

• The code for power management tends to be complex.
Not just because the application must actively man-
age which resources are required or not, but also be-
cause it must manage nuanced tradeoffs between the
availability of resources and desired battery life. Users
are often willing to accept delays in processing or ap-
proximations in measurement to increase battery life.
Additionally, as will be seen in Section 5.1, power man-
agement code is often event-driven and multithreaded.

• Power management optimizations should be postponed
until the application’s requirements are set. Mobile de-
velopers often depend on tight, “agile” development
cycles in order to elicit feedback from early adopters
on basic application behavior. Developing (and cycli-
cally revising) complex power management code early-
on would slow this cycle.

Thus, while many power-management techniques have been
developed, there is no high-level way to access these as lan-
guage primitives to specify or implement an application-
specific policy for a new application. This paper makes three
contributions:

• We present our system, Annotated Programming for
Energy-efficiency (APE) — a small declarative anno-
tation language with a lightweight middleware runtime
for Android (Sections 3.2 and 4). APE enables the
developer to demarcate power-hungry code segments



(e.g., method calls) using annotations. The execution
of these code segments is deferred until the device en-
ters a state that minimizes the cost of that operation.
Policies have a declarative flavor, allowing the devel-
oper to precisely trade-off delay or adapt sensing al-
gorithms to reduce power. The policies abstract away
the details of event and multi-threaded programming
required for resource monitoring.

• We introduce an abstract model of the APE approach
based on timed automata. With this model, a wide va-
riety of existing power management techniques can be
described, demonstrating both the scope and simplic-
ity of the approach (Section 3.1). The model guided
both our language and middleware design.

• We provide a first evaluation of the APE approach. We
evaluate the expressiveness of the language through (a)
a series of policy examples (Section 3.2), and (b) a case
study of introducing power management into the Ci-
tiSense CRM application, both without and with APE
(Section 5.1). For the middleware runtime, we show
that an APE-annotated implementation of CitiSense
saves as much power as the hand-tuned implemen-
tation, while requiring fewer changes to the original
source code and having negligible runtime performance
overhead (Section 5.2).

2. BACKGROUND AND RELATED WORK
In recent years, energy-saving optimizations for mobile de-

vices have been an active area of research. Such work typi-
cally falls into one of two categories: low-level optimizations
and system-level optimizations.

Low-level optimizations save energy by judiciously con-
trolling the power state of hardware components such as the
CPU, radio, flash memory, and sensors (see [7] for a review).
Low-level optimizations are implemented as part of device
drivers, or even in hardware, to ensure that they interact
with the device at time scales comparable to the transi-
tion times between power states (typically sub-millisecond).
Examples of such policies include dynamic voltage and fre-
quency scaling (see [28] for a review), tickless kernel im-
plementations [27], low-power listening [24] and scheduled
transmissions for radios [8, 31], and batching of I/O opera-
tions for devices such as flash [30].

System-level optimizations interact with the hardware com-
ponents on longer time scales and, as a consequence, may
be implemented as part of applications or middleware ser-
vices. Three common approaches to system-level optimiza-
tions include workload shaping, sensor fusion, and filtering.
An example of workload shaping is that of delaying large
network operations until a Wi-Fi connection is available, as
Wi-Fi is typically more efficient than cellular data transmis-
sion. Such a policy is found in applications such as Google
Play Market, Facebook, and Dropbox. Sensor fusion is used
to combine data from multiple potentially heterogeneous
sources that have diverse energy costs. Sensor fusion has
found applications in state-of-the-art localization techniques
that combine information from GPS, cell towers, Wi-Fi, and
Bluetooth (e.g., [15]). Power savings are achieved by shift-
ing the sensing burden from the high-power GPS sensor to
the other sensors that consume significantly less energy. In
the same vein, context-recognition frameworks adapt sensing

and networking operations based on the user’s context. Op-
timizations found in such frameworks include adjusting the
amount of processing applied to sensor data [16], selecting
a minimal set of sensors to power [29], and avoiding sens-
ing altogether by inferring context based on already-known
information [20]. Recent techniques for environmental and
user-context sensing have examined the use of models to fil-
ter out collected data, incurring the high cost of processing
and transmitting collected measurements only if they devi-
ate from expected values [19, 22].

Challenges. In spite of the significant progress made
in developing power management policies, energy-efficient
applications remain difficult to develop. A one-size-fits-all
approach fails to yield desirable results as minute differences
in hardware specifications or quality of service requirements
makes power management policies suboptimal or, in patho-
logical cases, leads to energy being spent ineffectively. This
reality leads developers to include highly customized power
management code in their applications. Unfortunately, such
code is prone to errors [23] because, even when written at
the application level, the developer must still use complex,
low-level power management primitives and handle the con-
currency required by hardware monitoring code.

What is needed is a general mechanism of encoding power
management policies that allows a developer to easily cus-
tomize them for new applications. A general model for spec-
ifying power management policies may be difficult to derive
as it must encode complex trade-offs between quality of ser-
vice and energy consumption. We will show that a timed
automata model meets these criteria: (1) The model allows
simple policies to be composed into more complex ones. (2)
More importantly, the complex trade-offs in quality of ser-
vice can be effectively expressed as state transitions in the
timed automaton which are triggered by hardware events
and the passage of time.

Our Approach and Related Work. APE employs an
annotation language and middleware runtime that allows
developers to annotate their code to declaratively compose
power-management policies from low-level primitives. APE
is not a replacement for existing power-saving techniques,
but rather facilitates the design and implementation of such
techniques in real-world applications. APE targets the im-
plementation of system-level power optimizations.

The design of APE was inspired by OpenMP [10], an API
and library that facilitates the development of parallel C,
C++, and Fortran applications. As an alternative to low-
level thread management, OpenMP allows a developer to
specify—using preprocessor directives placed directly in the
code—how tasks should be split up and executed by a pool
of threads.

Several other projects have examined the use of annota-
tions for code generation [1, 2, 4], verification [14], and driv-
ing optimizations [11, 25]. Energy Types allows developers
to specify phased behavior and energy-dependent modes of
operation in their application using a type system, dynam-
ically adjusting CPU frequency and application fidelity at
runtime to save energy [9]. However, this approach requires
developers to structure their application into discrete phases
and would likely require significant effort to apply to an
existing application later in the development cycle. EnerJ
allows a developer to specify which pieces of data in their
application may be approximated to save energy and guar-
antees the isolation of precise and approximate components



[26]. These systems are complementary to our own and may
be used alongside APE. APE is, to our knowledge, the first
such system to provide a general and highly-programmable
way of expressing runtime power-management policies for
mobile applications without the need for significant refac-
toring.

3. APE DESIGN OVERVIEW
APE is designed to provide developers a simple yet ex-

pressive mechanism for specifying power management poli-
cies for CRM applications. Three basic principles underline
the design of APE:

• APE separates the power management policies (ex-
pressed as Java annotations) from the code that im-
plements the functional requirements of an applica-
tion. This enables developers to focus on correctly
implementing the functionality of an application prior
to performing any power optimizations.

• APE does not propose new power management poli-
cies, but rather it allows developers to compose simple
power management policies into more complex ones
using an extensible set of Java Annotations. APE an-
notations are both simple and sufficiently flexible to
capture a wide range of power management policies.

• APE insulates the developer from the complexities of
monitoring hardware state and provides a middleware
service that coordinates the execution of power man-
agement policies across multiple applications for in-
creased power savings (compared to when power man-
agement is not coordinated across applications).

APE includes an annotation preprocessor and a run-time
environment. The preprocessor validates the syntax of anno-
tations and translates them into Java code. The generated
code makes calls to the run-time environment that coordi-
nates the execution of power management policies across
multiple APE-enabled applications.

The remainder of the section is organized as follows. First,
we will introduce the formal model that is used by APE.
Then, we present the set of Java Annotations that APE
provides to the developer.

3.1 The APE Policy Model
APE builds on the following key insight: power manage-

ment policies defer the execution of expensive operations un-
til the device enters a state that minimizes the cost of that
operation. For example, CRM applications reduce the cost
of networking operations by deferring their data uploads un-
til another application turns on the radio. If no connection
is established within a user-defined period of time, the ap-
plication turns on the radio and proceeds with the data up-
loads. Similarly, an application that maps road conditions
(e.g., detect potholes) would collect data only when it de-
tects the user to be driving. An energy-efficient mechanism
for detecting driving may be to first use the inexpensive ac-
celerometer to detect movement and then filter out possible
false positives by using the power-hungry GPS sensor.

To our surprise, this insight holds across diverse power-
management policies that involve different hardware re-
sources and optimization objectives, as illustrated by the
examples in this section. Nevertheless, the examples also il-
lustrate the difficulties associated with developing a general

model for expressing power-management policies. (1) The
model must capture both static properties of hardware re-
sources that may be queried at run-time (e.g., radio on/off)
as well as user-defined states that must be inferred using
complex algorithms (e.g., driving). Henceforth, we refer to
changes in hardware states or in inference results as applica-
tion events. (2) The model must also incorporate a notion
of time. The first example illustrates the use of timeouts
to trigger a default action. More interestingly, the second
example defines a policy where the application should mon-
itor for potholes [18] as a sequences of application events
(evolving over time): first the accelerometer must detect
movement that is then confirmed by GPS.

APE adopts a restricted form of timed automata to spec-
ify power management policies. The automaton encodes the
precondition when an operation O should be executed as as
to minimize energy consumption. At a high level, a power
management policy is encoded by the states and transitions
of the timed automaton. The timed automaton starts in the
start state and performs transitions in response to applica-
tion events and the passage of time. Eventually, a timed
automaton reaches an accepting state that triggers the exe-
cution of O.

Formally, APE’s restricted timed automata is a tuple:

TA = (Σ, S, s0, SF , C,E) (1)

where,

• Σ is a finite set of events,

• S is a finite set of states, state s0 ∈ S is the start state,
SF ⊆ S is a set of accepting states,

• C is a finite set of clocks, and

• E is a transition function.

The transition e ∈ E is a tuple (c, σ) where c is a clock
constraint and σ is a boolean expression consisting of ap-
plication events. The automaton transitions from state si
to sj (si

c:σ−−→ sj) when both c and σ hold. In contrast to
standard timed automata [5], in our model, transitions from
the current state are taken as soon as the required clock
constraints and inputs are satisfied. Additionally, we also
restrict the expressiveness of clock constraints. Clock con-
straints can only refer to a single global clock cG or to a
single local clock cL that is reset each time a transition is
taken to a new state. The local clock can be used to im-
pose constraints on transitions outgoing from a state, while
the global clock can be used to impose a time constraint on
the total delay before an operation O is allowed to execute.
The above restrictions ensure that the automaton can be
executed efficiently on resource constraint devices such as
mobile phones.

To clarify our APE’s formal model, let us return to the
examples introduced in the beginning of the section.

Example 1: Defer uploads, for up to 30 minutes, until
the Wi-Fi radio has connected to a network. Figure 1 shows
the automaton associated with this policy. It includes only
two states: a start state and an accepting state. Transitions
from the start state to the accepting state occur in two cases:
(1) when the radio is connected and the global clock is less
than 30 minutes or (2) the global clock exceeds 30 minutes.
Note the expressive power of the automaton to compactly



start

true : WiFi.Connected

cG ≥ 30min : true

Figure 1: Defer uploads, for up to 30 minutes, until
the Wi-Fi radio has connected to a network.

capture conditions that depend both on applications events
and time constraints.

Example 2: Defer sensor sampling until the user is driv-
ing. Driving is detected by first verifying movement using
the accelerometer and then waiting for up to 30 seconds
for driving to be confirmed using GPS. Figure 2 shows the
automaton associated with this policy. The automaton in-
cludes three states, transitioning from the start state to state
Acc when movement is detected based on readings from the
accelerometer, which is captured by predicate Accel.Move.
The automaton transitions to the accepting state from Acc
when driving is confirmed based on readings from the GPS,
which is captured by the predicate GPS.Drive.

start Acc

true : Accel.Move

cAcc ≥ 30sec : true

tr
u
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:
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e

Figure 2: Defer sensor sampling until movement is
first detected by the accelerometer and driving is
confirmed using the GPS.

The described formal model allows us to capture a wide
range of power management policies. However, a disadvan-
tage of using timed automatons as a specification language
is that they are hard to define using simple literals that
may be included in Java annotations. While experiment-
ing with expressing power management policies in APE,
we observed that most of policies have a regular structure
that can be captured using a simpler model. The execu-
tion of an operation O is deferred until a finite sequence
(σ1, t1), (σ2, t2)...(σn, tn) of states holds:

P = ({(σ1, t1), (σ2, t2)...(σn, tn)}, tMaxDelay) (2)

Sequences of conditions (when n > 1) are resolved in order,
optionally rolling back and rechecking the previous condition
(σi−1, ti−1) if the current condition being checked, (σi, ti),
is not satisfied before ti time has passed. Additionally, a
policy may provide an upper bound, tMaxDelay, on the delay
introduced by the policy. Constructing a timed automaton
from the simple model is a straight-forward process that we
omit due to space limitations.

Using this concise notation, the previous two policies can
be expressed as:

P1 = ({(WiFi.Connected,∞)}, 30 min)

P2 = ({(Accel.Move,∞), (GPS.Drive, 30 sec)},∞)

Most policies found in literature and real-world applications
can also be expressed using APE’s simplified model. For ex-
ample, a policy implemented by applications such as Ever-
note, Google Play Market, and YouTube, is to delay syncing
data and downloading updates until a Wi-Fi connection is
available and the device is charging:

({(WiFi.Connected AND Battery.Charging,∞)},∞).

While advertisements in mobile applications are typically
fetched over the network whenever one is required, an adver-
tisement framework could instead display ads from a locally
stored corpus that is updated periodically [13]. The policy
that manages when updates to the corpus are fetched could
be described as:

({(Ads.NeedUpdate,∞),

(Net.Active AND WiFi.Connected,∞)},∞).

Batching write requests to flash memory is yet another ex-
ample of a power-saving technique for mobile applications.
An email client may store newly received emails in memory,
writing them out to flash in batches periodically or when
the number of emails in memory exceeds some threshold
[30]. Such a policy could be described as:

({(Batch.Threshold,∞)}, 60 min).

While these examples show that the simplified timed au-
tomata model of Equation 2 is able to express a diverse set
of real-world policies, this model is not as expressive as the
full model of Equation 1. For example, consider an exten-
sion of the driving detection policy in example 2 (See Fig-
ure 3). In the extended policy, driving is still detected by
first monitoring for movement using the accelerometer and
then verifying that the user is driving by using the GPS.
However, the policy additionally requires that driving be ob-
served continuously for 30 seconds before allowing execution
to continue. During this 30 second period, if the accelerom-
eter fails to detect motion or the GPS to detect driving, the
policy immediately returns to the initial state of checking the
accelerometer for motion. This policy cannot be expressed
in the simplified model because the transition from the state
Acc to the start state occurs on an event (¬Accel.Move
OR ¬GPS.Drive) rather than on a timeout, as required by
the simplified model.

APE annotations, further discussed in the next section,
build on the simplified model as it has a simple textual repre-
sentation and captures most of the policies we have encoun-
tered. APE may be further extended in the future to provide
a more complex syntax for expressing power-management
policies using general timed automata.

3.2 The APE Annotation Language
APE realizes the above model in a small and simple lan-

guage implemented using Java annotations. A preprocessor
translates the annotations at compile time into Java code
that makes calls to the APE middleware runtime (Section 4).
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Figure 3: Defer sensor sampling until the user is
driving. Driving is detected by first verifying move-
ment using accelerometer for 30 seconds and then
confirmed using GPS.

APE WaitUntil: The APE WaitUntil annotation is the
direct realization of the model syntax and semantics spec-
ified above in Equation 2. As such, it prefaces a code seg-
ment, and specifies the sequence of application events that
must be satisfied before execution proceeds to the prefaced
code. For example, the policy from example 1 can be ex-
pressed as:

while(true) {
@APE_WaitUntil("(WiFi.Connected, inf)", MaxDelay=1800)
uploadSensorData();

}

WiFi.Connected is an APE-recognized application event
that APE monitors on behalf of the application; inf says
that the local clock constraint is true, i.e., cs < infinity;
and MaxDelay=1800 asserts global clock constraint as cG ≥
1800 seconds. The parentheses can be dropped when there
is no local clock constraint:

while(true) {
@APE_WaitUntil("WiFi.Connected", MaxDelay=1800)
uploadSensorData();

}

Similarly, the policy from example 2 can be expressed as:

void startDrivingLogging() {
@APE_WaitUntil("({accMove()},inf),({gpsDrive()},30)",MaxDelay=inf)
beginSensorSampling();

}

where accMove() and gpsDrive() are local functions
that encompass logic specific to the application.

With APE_WaitUntil, it is also possible to designate
Java code that must be executed before the thread begins
waiting or after waiting has ended:

while(true) {
@APE_WaitUntil("WiFi.Connected", MaxDelay=1800
PreWait="log(’Started waiting for Wi-Fi...’)",
PostWait="log(’Finished waiting for Wi-Fi!’)")

uploadSensorData();
}

The optional PreWait and PostWait parameters are useful
when an application has to prepare for, or recover from,
blocking the annotated thread.

APE If, APE ElseIf, and APE Else: Example 1 can
be further extended to conditionally wait up to 30 minutes
for a Wi-Fi connection if the battery level is greater than
70%, or otherwise to wait up to two hours:

while(true) {
@APE_If("Battery.Level > 70%")

@APE_WaitUntil("WiFi.Connected", MaxDelay=1800)
@APE_Else()

@APE_WaitUntil("WiFi.Connected", MaxDelay=7200)
uploadSensorData();

}

The APE If, APE ElseIf, and APE Else annotations allow
developers to specify multiple energy-management policies
for the same segment of code, selecting one at run-time based
on application and device state at time of execution. Unlike
APE WaitUntil expressions, which block until they evaluate
true, any expressions provided to an APE If or APE ElseIf
annotation are evaluated immediately by the APE runtime,
and the selected branch is taken to invoke the appropriate
policy.

State Expressions and Transitions: The
APE WaitUntil, APE If, and APE ElseIf annotations
each take as a parameter a boolean expression, consisting
of application events, that represents a potential state
of the application and device. Each term used in an
expression must be either a recognized primitive in the
APE language or a valid Java boolean expression. An
APE term refers to a property of a hardware resource. For
example, WiFi.Connected refers to the status of Wi-Fi
connectivity. A Java expression included in an annotation
is surrounded by curly braces. Terms are joined using AND
and OR operators. As an example:

{requestsPending() > 0} AND

(WiFi.Connected OR Cell.3G)

describes the state where the client application has requests
pending and it is either connected to a Wi-Fi or 3G network.
The requestsPending() method must be in scope at the
location of the annotation.

Each of the expressions provided to an APE WaitUntil
annotation is a predicate controlling the transition to the
next state in a timed automaton. Consistent with Android’s
event-driven model, APE treats these predicates as events:
When in a given state, APE monitors the events necessary
to trigger a transition to the next state. As events arrive,
their containing predicate (expression) is reevaluated, and if
true, it triggers a transition to the next state. Arriving in a
new state causes APE to unregister for the last expression’s
events, and to register for the events required to trigger the
next transition. Likewise, event triggers are set up for a
state’s local clock; the global clock is its own event trigger,
set up when the automaton enters the start state.

The APE compiler must handle two special cases when
compiling an APE annotation, both related to the di-
chotomy between events and method calls. (1) When an
APE expression includes a local method call, the method
is periodically polled until its containing expression eval-
uates to true, or until the evaluation becomes irrelevant
due to another event trigger. For example, in the case of
the expression {requestsPending() > 0}, the method
requestsPending() is periodically polled until its con-
taining boolean expression evaluates to true. (2) When
APE initially registers for an event, it also makes a di-
rect query to the resource of interest to determine if the
resource is already in the desired state. For the expres-
sion WiFi.Connected, for example, APE both registers for
events regarding changes in Wi-Fi status, and queries Wi-Fi
to determine if it is already connected. If so, APE imme-



diately evaluates the expression to true. Otherwise, APE
waits for a callback from the system regarding a change in
Wi-Fi status and rechecks for the Connected condition.

The APE preprocessor performs syntactic checking and
error reporting, with APE terms being checked against an
extensible library of terms. The device state primitives sup-
ported by APE are specific to each device, but there is a
standardized core that encompass the display, cellular, Wi-
Fi, and power subsystems of a device and their various fea-
tures and states.1 Additional details regarding the efficient
implementation of timed automata semantics and the eval-
uation of state expressions are discussed in the next section.

APE DefineTerm: The APE DefineTerm annotation
allows a developer to define a new term that can be used
in APE annotations throughout the application. Defining
new terms not only provides for reuse, but also allows non-
experts to utilize policies constructed by others. For exam-
ple, a new term MyTerm may be defined by:

@APE_DefineTerm("MyTerm", "Battery.Charging AND
(WiFi.Connected OR Cell.4G)")

and used to construct APE annotations, such as

@APE_WaitUntil("{requestsPending()} AND MyTerm", MaxDelay=3600)

Any APE recognized primitive or valid Java boolean expres-
sion may used in the definition of a new term. Terms do not
encode any notion of timing, and are thus not complete poli-
cies in themselves, but rather building blocks for higher-level
policies.

APE DefinePolicy In addition to defining new terms,
developers may define reusable, high-level policies with the
use of the APE DefinePolicy annotation. The difference be-
tween a term, defined using APE DefineTerm, and a policy
is that a policy may encode timing constraints and transi-
tions. Unlike terms, which can be joined together with other
terms to form state expressions, a defined policy represents a
complete state expression. Transitions may be used to chain
policies together. For example, a new policy MyPolicy may
be defined by:

@APE_DefinePolicy("MyPolicy", "(Display.Off,inf),(MyTerm,10)")

and used to contruct APE annotations, such as

@APE_WaitUntil("MyPolicy,({dataReady()},30)", MaxDelay=3600)

The timing parameters in a defined policy act as defaults
and may be optionally replaced when referencing a policy:

@APE_WaitUntil("MyPolicy(inf,60),({dataReady()},30)",MaxDelay=3600)

For many power-management policies, such as those without
transitions, simply defining a new term is sufficient.

Annotations are translated at compile-time into runtime
requests to the APE middleware service, discussed in Section
4, which is responsible for monitoring device state and re-
solving policies on behalf of APE-enabled applications. Java
annotations are simply a form of metadata added to source
code, and thus have no impact on application behavior with-
out the relevant processor interpreting them during the build
process. This feature of annotations means that a devel-
oper can experiment with a power-management policy and
then quickly disable it during testing by simply removing
the APE annotation processor from the build process.
1APE builds upon Android’s Java hardware API specifica-
tion, which standardizes the names and low-level states of
many components.

4. THE APE RUNTIME SERVICE
The APE runtime is responsible for executing APE anno-

tations from multiple APE-enhanced applications. In this
section we focus on the key design decisions behind the ser-
vice and discuss optimizations made to reduce the overhead
of executing APE annotations.

The runtime consists of a client library and a middleware
service. A single instance of the middleware services, imple-
mented as an Android Service component, runs on a device.
The middleware service is responsible for (1) monitoring for
changes in hardware state and (2) (re)evaluating APE ex-
pressions in response to these changes. APE applications
communicate with the middleware through remote proce-
dure calls (RPCs). The details of RPC, including binding to
the service, parameter encoding, and error handling, are en-
capsulated in the client library. Having a single middleware
service instance has the advantage of amortizing the over-
head associated with policy evaluation over multiple appli-
cations. More importantly, this approach allows the middle-
ware to coordinate the activities of multiple clients for added
energy savings (shown experimentally in Section 5.2.2).

APE annotations are translated into Java code by the
APE preprocessor prior to compilation. Each policy is
converted into an equivalent integer array representation
so as to avoid string processing at runtime. The gen-
erated code relies on three functions provided by the
client library: registerPolicy, ifExpression, and
waitForExpression. The registerPolicy function is
executed during the initialization of the application and reg-
isters each APE policy with the middleware through RPC
calls. The middleware service returns a policy handler that
can be used by ifExpression and waitForExpression
to refer to a particular policy at runtime. RPCs to the mid-
dleware are synchronous, blocking the execution of the call-
ing application thread until they return. Consistent with the
model described in Section 3.1, each policy is represented as
a timed automaton that is executed by the middleware. An
RPC completes when the automaton reaches an accepting
state. This triggers the return of the RPC and, subsequently,
the execution of the deferred application code.

The generated code is split into initialization seg-
ments (registerPolicy calls) and policy segments
(ifExpression and waitForExpression calls) in order
to reduce runtime overhead. As the overhead associated
with RPC is dependent on the size of the request, the poten-
tially large representations of policies are only transmitted
once to the middleware using registerPolicy calls dur-
ing initialization. Runtime policy segments utilize policy
handlers so as to avoid uploading policies to the middleware
multiple times. As policy handlers are implemented as inte-
gers, they add only four bytes to the size of a RPC request,
thus minimizing runtime overhead. The overhead associated
with RPC is further discussed in Section 5.2.1.

For the middleware to execute the timed automatons ef-
ficiently, it must track changes in hardware state and up-
date the APE expressions in response in an efficient man-
ner. The monitoring of low-level device state primitives
is implemented as components called device state moni-
tors. Aside from requiring concurrent programming, device
state monitors are challenging to write because they must
glean information through somewhat ad hoc mechanisms.
For example, the connectivity of the cellular radio is deter-
mined by periodically polling the ConnectivityManager.



Figure 4: The boolean expression tree representa-
tion of a particular APE WaitUntil request. All leaf
nodes in the tree represent primitives in the expres-
sion, while all non-leaf nodes represent operators.

However, to determine whether data is transmitted/re-
ceived, the device monitor must register callbacks with the
TelephonyManager. Additional connectivity information
may also be extracted from sysfs – the Linux’s standard
mechanism for exporting kernel-level information. Our de-
vice monitors provide clean APIs that hide the idiosyncrasies
of monitoring hardware resources.

In response to a registerPolicy call, the middleware
generates an equivalent boolean expression tree for each ex-
pression. The tree is constructed such that leaves represent
terms in the expression and non-leaves are AND or OR oper-
ators. A node maintains a reference to its parent and any
children. In addition, a node also maintains a boolean rep-
resenting the evaluation of its subtree expression. At a high
level, the expression trees are evaluated from leaves to the
root. The leaves involve low-level states monitored using the
device state monitors. These values are propagated up the
tree and combined based on the boolean operator (AND or
OR). This approach reduces the cost of evaluating expres-
sions as changes in low-level state often do not require the
entire tree to be reevaluated.

Figure 4 provides an example of a simple boolean expres-
sion tree in APE. The arrows indicate the flow of informa-
tion during the evaluation of the boolean expression rep-
resented by the tree. The tree is evaluated in one of two
ways. In the case of ifExpression, the APE service calls
a method of the same name on the head node of the tree.
When ifExpression is called on a non-leaf node, the node
calls ifExpression on each of its children and applies its
operator to the returned values. When ifExpression is
called on a leaf node, the device monitor associated with the
node returns the current state of the hardware device. The
value returned by the method call on the head node is in turn
returned back to the client application, where the result is
used to select which policy, if any, should be applied.

In the case of waitForExpression, the APE service
again calls a method of the same name on the head node

of the tree. Rather than evaluating all nodes immediately,
waitForExpression notifies all leaf nodes to begin mon-
itoring changes in device state and starts any necessary
timers. Leaf nodes register for callbacks from the relevant
device monitor about changes regarding the node’s term. If
necessary, threads are created in the client application to
periodically evaluate any local Java code used as part of
an annotation and to communicate the result to the APE
service. Whenever a node receives information that would
change the evaluation of its term or operator, it notifies its
parent node of the change. This lazy evaluation of the ex-
pression tree from the bottom up ensures that each term and
operator in a state expression is only reevaluated when new
information that may affect its result is present. To avoid
unnecessary message passing and computational overhead,
device state monitors only actively monitor the hardware
components necessary to resolve all pending requests from
leaf nodes. When the head of the expression tree evaluates
to be true, or if the tree’s timer expires, all leaf nodes are
notified to stop monitoring changes by unregistering from
their corresponding device state monitor. In the case that
a policy consists of multiple expressions, the trees are eval-
uated in the order that they appear, moving forward to the
next tree once the current tree evaluates true, or returning
to a previous tree if the current expression times out. Given
the synchronous nature of the remote procedure calls, calls
to waitForExpression will block the calling thread of ex-
ecution in the client application until the call returns, thus
ensuring the costly operation that follows is not executed
until the desired conditions have been satisfied.

5. EVALUATION
In this section we evaluate APE from two perspectives.

First, we present a case study of introducing power manage-
ment into the CitiSense CRM application, both with and
without the use of APE. We then examine the performance
of the middleware runtime and show that APE effectively
reduces power-consumption by coordinating the workloads
of multiple applications, while requiring fewer changes to
the original source code and having negligible runtime per-
formance overhead.

5.1 Case Study: CitiSense
The authors have developed a variety of CRM appli-

cations, notably CitiSense, which monitors, records, and
shares a user’s exposure to air pollution using their smart-
phone and a Bluetooth enabled sensor device [21]. Building
an application that performed all the required tasks without
depleting the smartphone’s battery proved challenging, as
the application depended heavily on the use of GPS for local-
ization, Bluetooth for sensor readings, and cellular commu-
nication to upload measurements to a server for further pro-
cessing. Much of the challenge in improving CitiSense arose
from adding, evaluating, and iteratively revising the appli-
cation’s already-complex code base to implement energy-
management policies. In this section, we share our expe-
rience in implementing a policy for uploading sensor data
from the CitiSense mobile application to a remote server,
providing both hand-coded and APE implementations.

The initial implementation of the CitiSense mobile appli-
cation cached air quality measurements on the user’s de-
vice and attempted to upload all stored readings once every
twenty minutes. If the loss of connectivity caused a trans-



Thread uploadThread = new Thread(new Runnable() {
while(true) {
try {
Thread.sleep(120000);
} catch(InterruptedException e) {}
attemptUpload();

}
});
uploadThread.start();

Figure 5: Example of a naive implementation of sen-
sor reading uploading in CitiSense. A thread thread
wakes every twenty minutes to attempt uploading
any stored sensor readings before returning to sleep.

Thread uploadThread = new Thread(new Runnable() {
while(true) {
Intent batt = context.registerReceiver(null,

new IntentFilter(Intent.ACTION_BATTERY_CHANGED));
int lvl = batt.getIntExtra(BatteryManager.EXTRA_LEVEL,-1);
int scl = batt.getIntExtra(BatteryManager.EXTRA_SCALE,-1);
float batteryPct = lvl / (float) scl;
try {
if(batteryPct > 70){ Thread.sleep(120000); }
else{ Thread.sleep(360000); }

} catch(InterruptedException e) {}
attemptUpload();

}
});
uploadThread.start();

TelephonyManager teleManager = (TelephonyManager)
context.getSystemService(Context.TELEPHONY_SERVICE);

TransListener transListener = new TransListener();
teleManager.listen(transListener,
PhoneStateListener.LISTEN_DATA_ACTIVITY);

private class TransListener extends PhoneStateListener {
public void onDataActivity(int act) {
if(act == TelephonyManager.DATA_ACTIVITY_IN

|| act == TelephonyManager.DATA_ACTIVITY_OUT
|| act == TelephonyManager.DATA_ACTIVITY_INOUT) {

uploadThread.interrupt();
}

}
}

Figure 6: An improved implementation of uploading
in CitiSense that is both battery-life and cellular
radio state aware.

mission to fail, then the data would be preserved until the
next upload window. Although timed batching saves energy,
the approach still has several drawbacks. Uploads attempted
while a user’s phone had a weak cellular network signal often
failed, but still incurred high energy consumption during the
failed attempt. Additionally, even if connectivity was avail-
able nineteen out of every twenty minutes, the lack of con-
nectivity at the twentieth minute mark meant the upload
would be delayed until the next attempt. For some users
with unreliable cellular coverage, it often took hours before
their data was uploaded successfully to the server.

To improve the energy-efficiency and reliability of Ci-
tiSense uploads, the application was modified to attempt
a transmission whenever the phone’s cellular radio was de-
tected to already be transmitting or receiving data (See Fig-
ure 6). The equivalent timed automaton for this policy is
presented in Figure 7. The concept is that if the phone de-
tects that another application on the phone has successfully
sent or received data over the cellular radio, then CitiSense
would also likely succeed. Additionally, with radio already
being active, CitiSense would no longer be forcing the ra-
dio out of a low-power idle state: the application is taking
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Figure 7: The equivalent timed automaton for the
policy implemented in Figure 6.

advantage of other workloads waking the radio, reducing its
impact on device battery life. In the event that no other ap-
plication wakes the radio in a timely manner, CitiSense at-
tempts to upload any stored readings after a timeout. How-
ever, unlike the static twenty-minute timer used in the first
implementation, this one varies timeout length based on the
remaining battery life of the device. If remaining battery
life is greater than 70% the application waits up to twenty
minutes for the radio to become active; otherwise, CitiSense
will wait up to one hour.

Unfortunately, what was once a simple, nine-line imple-
mentation now requires querying the Android system for
the status of the battery, registering the application for call-
backs regarding changes in cellular data activity in the sys-
tem, and implementing a custom PhoneStateListener to
handle callbacks and to interrupt the sleeping upload thread
if data activity is detected. Further extending the imple-
mentation to be dependent on the state or availability of
other resources, such as a Wi-Fi connection, would require
implementing additional listeners to handle callbacks and
additional concurrency management. Given the large num-
ber and complexity of changes required, prototyping and
experimenting with a variety of potential policies becomes
time consuming and burdensome. Even a well-thought-out
policy can perform poorly in practice and require tweaks or
major changes.

When we reimplemented this policy in APE, the code col-
lapses back to nine lines, with the 19 lines of policy code
being reduced to three lines of APE annotations:

Thread uploadThread = new Thread(new Runnable() {
while(true) {
@APE_If("Battery.Level > 70%")

@APE_WaitUntil("Network.Active", MaxDelay=1200)
@APE_Else() @APE_WaitUntil("Network.Active", MaxDelay=3600)
attemptUpload();

}
});
uploadThread.start();

The developer-implemented PhoneStateListener, event
handling, and thread concurrency management are now han-
dled by the APE middleware. In this compact, declarative



format, it is now possible to read the policy at a glance, and
to attempt variants of the policy quickly.

The APE policy managing uploads can be rapidly ex-
tended to also consider the quality of the cellular connection
and the availability of Wi-Fi:

Thread uploadThread = new Thread(new Runnable() {
while(true) {
@APE_If("Battery.Level > 70%")
@APE_WaitUntil("WiFi.Connected OR
Network.Active AND (Cell.3G OR Cell.4G)",MaxDelay=1200)

@APE_ElseIf("Battery.Level > 30%")
@APE_WaitUntil("WiFi.Connected OR
Network.Active AND (Cell.3G OR Cell.4G)",MaxDelay=2400)

@APE_Else()
@APE_WaitUntil("WiFi.Connected OR
Network.Active AND (Cell.3G OR Cell.4G)",MaxDelay=3600)

attemptUpload();
}

});
uploadThread.start();

Instead of waiting for simply any cellular network activity,
CitiSense now uploads sensor readings only while connected
to a Wi-Fi network or if cellular activity was observed while
connected to either a 3G or 4G cellular network. The maxi-
mum time to wait for such a state was set to be 20 minutes
if remaining battery life was greater than 70%, 40 minutes
if between 70% and 30%, and 60 minutes if less than 30%.

With the use of APE, the new energy-management pol-
icy can be expressed in a total of six annotations. In con-
trast, an experienced Android developer implementing the
same policy by hand required 46 lines, including five lines for
suspending and waking threads, three lines to register the
application for callbacks regarding changes in device state
from the Android system, and 26 lines and one new class
for handling the callbacks. The thread responsible for up-
loading sensor readings is put to sleep until it is interrupted
by a different thread which handles callbacks from the An-
droid system and determines when all required resources are
available. Not only is this implementation much longer than
the APE based implementation, it is significantly more diffi-
cult to understand and maintain. This shows that APE not
only represents power management policies concisely, but
also significantly reduces the implementation complexity by
removing the need to write error-prone concurrent code.

5.2 System Evaluation
In this section we evaluate APE by examining the over-

head associated with communicating requests to the mid-
dleware service. Additionally, we present power savings
achieved by using APE to implement a simple resource-
aware energy-management policy in an application that
makes regular use of network communication. All exper-
iments were run on a Pantech Burst smartphone running
Android version 2.3.5. The power consumption of the de-
vice was measured using a Power Monitor from Monsoon
Solutions [3]. The battery of the Pantech Burst was mod-
ified to allow a direct bypass between the smartphone and
the power monitor, allowing power to be drawn from the
monitor rather than the battery itself. Traces of this power
consumption were collected on a laptop connected to the
power monitor over USB. Measurements involving network
communication were run on the AT&T cellular network in
the San Diego metropolitan area. Though the Pantech Burst
supports LTE, all experiments were run while operating on
AT&T’s HSPA+ network as LTE coverage was not available
at the site of our experiments.
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Figure 8: Time to register expressions of various
lengths using registerPolicy. As the size of the
expression grows, the size of the message passed over
IPC begins to impact latency.

5.2.1 APE Overhead
To evaluate the overhead associated with using APE,

we examine the time required to complete a simple re-
quest to the middleware service. Additionally, we ex-
amine the impact of expression length on the latency of
registerPolicy requests. A simple Android application
was built that performed no operations other than to execute
the code being benchmarked. The time required to execute
code segments was measured by taking the difference be-
tween calls to System.nanoTime() placed just before and
after the code segment.

To evaluate the latency overhead associated with using
APE, we measured the time required to check the current
status of data activity on the device using the standard An-
droid API and using APE. Checking the current status of
data activity using the standard Android API was done us-
ing the following code:

TelephonyManager telMan = (TelephonyManager)
getSystemService(Context.TELEPHONY_SERVICE);

int dataAct = telMan.getDataActivity();

The average time required to execute this code was measured
to be approximately 0.79 ms. Checking the current status
using APE was implemented using the following annotation:

@APE_If("Network.Active")

The average time required to check for data activity using
APE was measured to be approximately 2.5 ms, meaning
approximately 1.71 ms were spent sending the request to the
APE service over IPC, evaluating a single-term expression
tree, and returning a message to the client application over
IPC. Given that a developer would use APE to shape delay-
tolerant workloads, we believe that an overhead of 1.71 ms
is negligible, especially when compared to the time that will
be spent waiting for ideal conditions.

To evaluate the impact of expression length on the time
required to register a policy, calls to registerPolicy us-
ing expressions of various lengths were measured using our
test application. Expressions were constructed using a chain
of Network.Active and AND terms. As observed in Fig-
ure 8, the time to register policies remains fairly constant at
lower expression lengths. It is only when expressions begin
to become longer than 127 terms that the overhead associ-
ated with passing large messages over IPC begins to take its
toll. Messages are passed between processes using a buffer



Figure 9: Increase in system power-consumption
due to the introduction of additional applications
that periodically make use of network resources.
APE enhanced applications effectively recognize
opportunities to transmit data efficiently, only
marginally increasing power consumption.

Figure 10: Power consumption (mW) traces from a
smartphone device running a variety of naive (top)
and APE enhanced (bottom) CRM applications.

in the Android kernel. If messages become sufficiently large,
they require additional buffer space to be allocated in the
kernel, thus introducing additional latency in resolving re-
quests. However, expressions of such length are unlikely to
arise in practice as realistic energy-management policies de-
pend on significantly fewer application events. In the expe-
rience of the authors, most APE expressions tend to be be-
tween one and nine terms. As these requests are completed
only once, at the start of an application, their overhead is
considered acceptable, even at long expression lengths.

5.2.2 Power Savings
To demonstrate the potential impact of CRM applications

on the battery life of a device, power measurements were
collected from a smartphone running an instance of the Ci-
tiSense application, which fetched data from a remote server
once every two minutes. As a baseline, we measured the
power consumption of the phone, while powering its display
at maximum brightness and running a single instance of Ci-
tiSense, to be 865.33 mW. Up to five additional instances of
CitiSense were then introduced to the system. The power
consumed by these applications when their use of network

resources does not overlap, presented in Figure 9, reached as
high as 1416.39 mW, a 63.7% increase. This is a worst-case
scenario, as there is no coordination with existing workloads
on the device to ensure efficient usage of resources.

To demonstrate the potential savings of using APE to im-
plement even a simple energy-management policy, the ap-
plications were each modified using a single APE WaitUntil
annotation to wait up to 120 seconds for the cellular radio
to be woken before attempting transmission. As observed
in Figure 9, the introduction of this annotation significantly
reduced the power consumption of additional CRM work-
loads; adding five additional APE enhanced instances of the
CitiSense application increased power consumption by only
13.49 mW, or 1.6%. As can be seen in Figure 10, APE is able
to effectively coordinate the workload of the CRM applica-
tions to minimize the number of times the cellular radio is
woken and put into a high-power state. If no background ap-
plication had been running on the device and transmitting
data, then the first APE enhanced application to timeout
would wake the radio to transmit its request. The other
APE applications would then have detected this event and
transmitted at the same time for nearly no additional energy
cost. This experiment shows that APE provides effective
means of coordinating power management across applica-
tions to achieve significant energy savings.

6. CONCLUSION
Annotated Programming for Energy-efficiency (APE) is

a novel approach for specifying and implementing system-
level power management policies. APE is based on two key
insights: (1) Power management policies defer the execu-
tion of power hungry code segments until a device enters
a state that minimizes the cost of that operation. (2) The
desired states when an operation should be executed can
be effectively described using an abstract model based on
timed automata. We materialized these insights in a small,
declarative, and extensible annotation language and runtime
service. Annotations are used to demarcate expensive code
segments and allow the developer to precisely control delay
and select algorithms to save power.

We showed our approach to be both general and expres-
sive, in that it can replicate many previously published poli-
cies and that its use reduced the complexity of power man-
agement in CitiSense. The APE middleware’s use of tech-
niques like code generation, policy handlers, lazy evaluation,
and encoding policies as integer arrays kept overhead below
1.7 ms for most requests to the service. In our benchmarks,
APE provided power savings of 63.7% over an application
that did not coordinate access to resources.

Tools for assisting developers in reasoning about appro-
priate places to apply APE annotations are currently under
development. We are also exploring the use of a type system
for designating delay-(in)tolerant data in an application. A
user study of experienced developers will be conducted to
examine how well developers new to APE adapt to using
annotations to express power-management policies.
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