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Abstract—In this paper we consider the problem of supporting
real-time communication in mobile networks. To address this
challenge, we propose novel transmission scheduling techniques
that handle the routing uncertainty introduced by mobility. The
core of the scheduling techniques involves controlling the order
in which transmissions are scheduled and intelligently schedul-
ing multiple transmissions in a single entry of the scheduling
matrix without conflict. Flow-Ordered Mobility-Aware Real-time
Scheduling (FO-MARS) integrates these techniques to provide
a 14x increase in real-time capacity compared to the baseline
algorithms designed for static real-time networks. Additionally,
we propose Additive Mobility-Aware Real-time Scheduling (A-
MARS), which can handle network dynamics such as the addition
or removal of flows without having to reschedule previously
admitted flows. As a result, A-MARS achieves significantly lower
admission latency than that of the baselines.

I. INTRODUCTION

The adoption of real-time wireless standards such as
WirelessHART [1] and ISA100 [2] is making wireless tech-
nology an attractive solution for reducing the cost and for
simplifying the deployment of process monitoring and control
systems [3]–[6]. At the core of these standards are centralized
scheduling algorithms that schedule the transmissions of data
flows to meet diverse end-to-end deadlines. The real-time sys-
tems community has made significant progress in developing
scheduling algorithms and associated schedulability analysis
[5]–[13]. However, existing works do not support real-time
communication in mobile networks. This shortcoming limits
the applicability of prior work to applications that include
mobile entities such as humans (e.g., patients in a hospital)
or robots (e.g., an assembly line) [15], [16].

The goal of a real-time communication protocol is to ensure
that the packets of real-time flows are delivered within user-
defined end-to-end deadlines. Mobility introduces significant
network dynamics that are difficult to handle using existing
scheduling algorithms. Specifically, real-time algorithms must
guarantee that once a node is admitted to the network, its pack-
ets are delivered by their deadlines regardless of the mobility
patterns of mobile nodes. The key challenge to achieving this
goal is to ensure that the scheduling algorithm handles the
routing uncertainty introduced by mobility.

The problem of real-time communication in mobile net-
works may be approached through using either an on-demand
reservation approach or an on-join reservation approach. In
an on-demand reservation approach, a mobile node frequently
requests for bandwidth reservation update as routes change due
to mobility. In contrast, in an on-join reservation approach,
sufficient bandwidth is allocated when the node joins the
network to meet its communication requirements irrespective

of its movement. While an on-demand approach may (theoreti-
cally) provide a higher capacity, two factors make it unsuitable
for real-time mobile networks: (1) Low-power networks have
short communication ranges. As a result, mobility triggers
frequent path updates that would require significant signaling
traffic to keep the network’s global schedule updated. (2) More
importantly, this approach cannot guarantee that the real-time
communication requirements of a node will be always met
once it joins the network. Specifically, a node’s real-time
requirements may be violated when the movement of nodes
leads to a network configuration where the aggregated network
demand exceeds the network capacity. Due to these disadvan-
tages, we will focus on the on-join reservation approach.

Existing scheduling algorithms (e.g., [5]–[13]) cannot ef-
fectively schedule the transmission of mobile nodes under the
on-join reservation approach. These algorithms assume that
data flows follow predetermined paths. This assumption is
violated in mobile networks. An approach to addressing this
limitation is to use one of the existing scheduling algorithms
to allocate bandwidth on all communication paths from mobile
sources to a base station. However, as shown in the evaluation
section, this naive approach leads to a significantly reduced
real-time capacity. The central contributions of this paper is
the development of scheduling techniques that take advantage
of the intrinsic properties of mobility to improve real-time
capacity and handle workload dynamics.

In this paper, we use a hierarchical network architecture
and we propose novel scheduling techniques to address the
problem of delivering real-time traffic from mobile nodes to a
base station. The proposed network architecture is composed
of mobile nodes and fixed infrastructure nodes. The delivery
of packets to the base station is divided into two parts:
from the mobile node to an infrastructure node, and from
the infrastructure node to the base station. An advantage of
this network architecture is that mobility only impacts the
first hop delivery of data from mobile nodes to the base
station that is dynamically updated in response to mobility.
However, mobility has no impact on the routing of data from
an infrastructure node to the base station, which is considered
to be fixed. In our prior work [14], we proposed the schedule
combination techniques based on the observation that even
though data from a mobile node may be routed over multiple
paths, only one path is active during a specific interval. In this
paper, we extend these techniques by showing that the order
(forward vs. reverse) in which transmissions are considered
for scheduling can significantly impact the performance of the
constructed schedule. Simulations show that reverse scheduling
provides significantly higher real-time capacity than forward



scheduling.
We propose Flow-Ordered Mobility-Aware Real-time

Scheduling (FO-MARS) algorithm which incorporates the
mobility-aware scheduling techniques we developed. While
FO-MARS results in a significantly improved performance
compared to non mobility-aware baseline algorithms, a limita-
tion of FO-MARS is that it does not effectively handle network
dynamics. For example, the number of control packet trans-
missions necessary to perform any workload change scales
with the number of mobile nodes. To address this limitation,
we propose Additive Mobility-Aware Real-time Scheduling (A-
MARS). A-MARS is designed to handle network dynamics
such as the addition and removal of flows by employing
additive transmission scheduling techniques. These techniques
consider the real-time demand of future flows to intelligently
schedule packet transmissions such that future flows can be
scheduled without changing the current schedule. Therefore,
A-MARS handles workload changes without having to recon-
struct complete schedules. More importantly, A-MARS makes
the cost of workload changes independent of the number
of admitted mobile nodes because only the schedule of the
modified flow should be disseminated.

To perform realistic and repeatable performance measure-
ments we have developed a sophisticated simulator using the
packet reception traces provided as part of MoteTrack [17]. We
compare the performance of our algorithms against baselines
designed for stationary real-time networks as well as their
mobility-enhanced versions. Our evaluations show that the
MARS algorithms increase the number of admitted mobile
nodes by more than 14 times compared to the baselines. In
addition, while the admission delay achieved with the baselines
is longer than 150 seconds and increases with the number
of mobile nodes, the admission delay of A-MARS is always
lower than 20 seconds and is independent of the number of
mobile nodes. Furthermore, the additive scheduling feature of
A-MARS results in a modest (less than 15%) reduction in
bandwidth utilization, compared to FO-MARS which requires
the full reconstruction of schedules.

II. SYSTEM OVERVIEW

A. Network Model

Our network model is based on WirelessHART [1], [3],
which uses a centralized Gateway (GW) to implement a
FTDMA scheduling algorithm. Infrastructure nodes (I) form a
multi-hop infrastructure through which mobile nodes (M) can
communicate with the GW. The fixed infrastructure is deployed
to provide coverage within an area (e.g., a building). An
upstream graph is constructed to route data from every infras-
tructure node to the GW ensuring that the packet reception rate
(PRR) of each link exceeds 95%. A downstream graph is also
constructed to support data dissemination from GW to other
nodes. We assume that both upstream and downstream graphs
are spanning trees. Each infrastructure node periodically sends
a report flow to the GW. This flow is used to maintain the
upstream and downstream graphs, as well as delivering mobile
nodes’ requests for joining the network to the GW. Both the
infrastructure and mobile nodes are equipped with half-duplex
radios that may transmit on one of available channels (ch ∈ C).

B. Flows, Transmissions and Schedules
We adopt real-time flows as a communication primitive.

A flow i is characterized by its period Pi and deadline Di

(Di ≤ Pi). An instance Ji,k of flow i is released each period
k at time ri,k = k × Pi, where k ∈ N. The absolute deadline
of Ji,k is di,k = ri,k + Di − 1. Flows are assigned static
priorities according to a deadline monotonic policy. We use
the notation Πi

M,X to denote the path used to route data from
a mobile node M to the GW using an infrastructure node X for
flow i1. Similarly, the notation (AB)i represents a transmission
(AB) pertaining to flow i. The scheduler constructs a global
scheduling matrix S . Each transmission is assigned a time slot
and a channel. We refer to a time slot and a channel pair as an
entry because it can identify an entry of the scheduling matrix.

Transmissions must be scheduled such that the following
constraints are satisfied: (1) A node transmits or receives only
once in a time slot, as radios are half-duplex. (2) In each time
slot, WirelessHART requires that at most one transmission
should happen in each channel. (3) The hop-by-hop forwarding
of packets introduces precedence constraints such that a sender
must receive a packet before forwarding it to the destination.

C. Admitting a Mobile Node to the Network
1) Beaconing: Beacon broadcast allows the mobile nodes

to discover nearby infrastructure nodes.
2) Join Request: When a mobile node intends to join the

network, it sends a join request, including information about
the data flows the node will generate. Periodically, in a time
slot, all the infrastructure nodes listen for receiving join request
packets. Mobile nodes intending to join the network employ
slotted CSMA for channel access in this slot.

3) Schedule Reception: When an infrastructure node re-
ceives a join request, it includes that request within the report-
ing data sent to the GW. When the GW receives a join request,
it should reserve bandwidth for the data flows of the mobile
node. After schedule computation, the GW disseminates the
new schedule through control packets. However, in addition to
the schedule computed for a new mobile node, the GW may
also need to disseminate the schedules of other nodes if their
schedules have been modified. When an infrastructure node
receives scheduling information in response to a join request,
it should broadcast that data in its next beacon.

III. REAL-TIME SCHEDULING IN MOBILE NETWORKS

In this section, we start by formalizing the problem of real-
time scheduling in the presence of mobility. Next, we propose
scheduling techniques that take advantage of the structure of
the problem to improve real-time capacity. These techniques
will be used as part of the algorithms proposed in Section IV.

Let us consider the problem of delivering packets from a
mobile node M to the GW for a single instance of a flow
i. We assume Pi = Di = 8 slots. The delivery of packets
is divided into two parts: (1) single-hop communication from
the mobile node M to an associated infrastructure node and,
(2) potentially multi-hop communication, from the associated
infrastructure to the GW. Since we adopt an on-join approach,

1We will omit i and M from the notation when the flow and/or the mobile

we are considering are clear from the context.
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Fig. 1. Example topology and associated schedules. The solid circles indicate infrastructure nodes, and A is the GW. The solid edges form the upstream routing

tree. The dashed circle represents the mobile node. The dashed edges represent the potential associations of the mobile node. Black and gray (red) transmissions

are scheduled on channels 0 and 1, respectively.

we must ensure that we allocate sufficient capacity for mobile
node M to transmit its packets regardless of its mobility
pattern (and that of other nodes). Accordingly, in the general
case, M may deliver its packets to any of the infrastructure
nodes depending on its location. We formalize this problem by
constructing an Augmented Communication Graph (ACG) that
captures the workload introduced by the mobile nodes. The
ACG is constructed by starting from the upstream spanning
tree and then adding an edge from a mobile node to each
infrastructure node. Figure 1a shows the ACG of an example
topology with infrastructure nodes A,B,C,D, and E, and a
single mobile node M . The notation children(A) denotes the
children of A in the ACG. Similarly, the depth of a link (AB),
denoted as depth(AB), is the depth of B in the ACG.

A naive scheduler that is not mobility aware would sched-
ule M ’s transmissions over the five possible paths (ΠA, ΠB ,
ΠC , ΠD, and ΠE) independently. The scheduler maintains a
set of ready transmissions which includes all the transmissions
that can be considered for scheduling. Initially, only the
transmissions from the mobile node are ready. The sched-
uler iteratively considers each transmission in the ready set
and attempts to schedule it in the current slot. Additionally,
amongst the ready transmissions, higher priority is given to
a transmission with higher depth. Transmissions are assigned
to channels such that: (1) a single transmission is performed
per channel, and (2) a node transmits/receives at most once
in a slot. If a transmission is scheduled, then it is removed
from the ready set, and the next transmission of that flow is
added to the ready set to be considered for scheduling starting
from the next time slot. Note that the definition of the ready
transmission enforces the hop-by-hop forwarding constraints.
The scheduling matrix computed by the naive scheduler is
shown in Figure 1b. The matrix uses 8 slots and 2 channels
to schedule M ’s flow.

The naive scheduler is the state-of-the-art scheduling for
static real-time networks. However, the real-time capacity of
the network may be increased by observing that even though
there are multiple routes that M ’s packets may follow, only
one path is active at a time. Therefore, packet transmission
from different paths may be scheduled in the same slot and
channel, without violating the scheduling constraints.

Theorem 1 (Flow Merging). For a flow i, transmissions
(AB)i and (CD)i on two paths (AB) ∈ Πi

M,X and (CD) ∈
Πi

M,Y (X �= Y ) may be scheduled in the same entry.
Proof: Refer to our technical report [18].

The naive scheduler modified with Theorem 1 has significantly
higher capacity. The constructed scheduling matrix requires

only three slots and uses a single channel, as Figure 1c shows.
A close inspection of the scheduling matrix shows, how-

ever, that there are some sources of inefficiency. For example,
link CA is scheduled in three entries even though it actually
transmits at most one packet during a period of the flow gen-
erated by M (see Figure 1c). The reason for this inefficiency
is that the scheduling of the five paths is not coordinated. We
can impose the constraint that an infrastructure node cannot
transmit until its children’s have been scheduled. The following
rule further reduces the number of entries required to schedule
the flow instance, as shown in Figure 1d.

Rule 1 (Flow Coordination). For a flow i, a transmission
(AB)i must be scheduled once after transmissions (CA)i,
where C ∈ children(A), have been scheduled.

The real-time capacity of the network also depends on the
order in which transmissions are considered for scheduling.
Thus far, we have considered transmissions for scheduling in
a forward manner, meaning that: (1) transmissions are added
to the set of ready transmissions starting from the mobile
node and, (2) scheduling an instance Ji,k is started in slot
ri,k. Unfortunately, the forward scheduling approach yields
suboptimal results because it limits the reuse of infrastructure
nodes for scheduling other flows. A node is blocked in a
slot when it is scheduled to receive or transmit for a flow.
An infrastructure node blocked in a slot cannot be reused to
schedule other flows on any channel of that slot. For example,
in Figure 1d, node A is blocked in slots 0, 1, and 2.

We propose two approaches to reduce the blocking of
infrastructure nodes. First, when considering a transmission
(AB)i, we prefer scheduling the transmission in an entry in
which either A or B is already scheduled for transmitting or
receiving flow i. It is easy to see that adding (AB)i to such
an entry does not increase the number of blocked nodes. An
additional approach to reducing blocking is to schedule trans-
missions in reverse order starting from the deadline towards
the release time. This ordering implies the construction of a
reverse ready set that initially includes the transmissions that
deliver a flow to the GW. In addition, scheduling an instance
Ji,k is started from time slot di,k. When a transmission (AB)i
is scheduled in a slot s, the incoming links to A (from
its children) become reverse ready and are considered for
scheduling in the next time slot (i.e., s − 1). We prioritize
transmissions in the reverse ready set according to their depth,
and links with smaller depth are given higher priority.

Rule 2 (Reverse Scheduling). In reverse order, a trans-
mission (AB)i can be considered for scheduling only after
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all transmissions (CA)i, where C = children(A), have
been scheduled. Transmissions are prioritized according to the
receiver’s depth.

The schedule obtained using Rule 2 is shown in Figure 1e.
Note that the schedule uses the same number of entries as the
forward scheduling strategy. The difference between the two
cases becomes apparent when we consider the opportunities
for reusing the infrastructure nodes for other flows. As evident
in Figure 2, the reverse scheduling approach provides several
opportunities to schedule other flows concurrently with the
current one with the net effect of increasing real-time capacity.
For example, while node A is blocked in three slots when
forward scheduling is used, this node is blocked in only one
slot when reverse scheduling is employed.

Theorem 2 (Reverse Scheduling Optimality). Assume
that we are interested in scheduling a single flow in the
network. When scheduling packets in reverse scheduling order,
an infrastructure node is scheduled to receive in a single time
slot, which is optimal.

Proof: Refer to our technical report [18].

IV. SCHEDULING ALGORITHMS

In this section we introduce two scheduling algorithms that
benefit from the techniques introduced in the previous section.
The first algorithm employs the previously developed insights
to effectively schedule real-time flows from mobile nodes. A
limitation of the algorithm is that workload changes require re-
computing the entire scheduling matrix. The second algorithm
may handle such dynamics without having to reconstruct the
entire matrix. However, this comes at the cost of slightly lower
real-time capacity.

A. FO-MARS

Flow-Ordered Mobility-Aware Real-time Scheduling (FO-
MARS) is a mobility-aware FTDMA algorithm that uses flow
merging (Theorem 1), flow coordination (Rule 1), and reverse
scheduling (Rule 2) to improve real-time capacity. Algorithm 1
shows the pseudo-code. At a high-level, FO-MARS constructs
a scheduling matrix S that is repeated periodically. The number
of slots of S is equal to the hyper-period of the flows (H =
lcm{Pi|∀i ∈ F}, where F is the set of flows), since the arrival
pattern of periodic flows repeats every hyper-period.

FO-MARS determines the entries in the scheduling matrix
in a flow-oriented manner by considering each flow in increas-
ing deadline order and scheduling each instance Ji,k of the
flow that is released during the hyper-period. FO-MARS main-
tains a reverse ready list (denoted by rready) that includes
the transmissions that are ready for scheduling. Consistent
with our reverse scheduling approach, the scheduling of Ji,k is
performed by scheduling transmissions from its deadline (di,k)
towards its release time (ri,k). Initially, the reverse ready list
includes all the transmissions that the GW is their destination,

Algorithm 1: The FO-MARS algorithm

Input: F : set of the flows that should be scheduled.

Output: returns scheduling matrix S when flows are scheduled

successfully; returns “unsuccessful” otherwise.

1 Procedure FO-MARS

2 Let H be the hyper-period (H = lcm{Pi|∀i ∈ F})

3 for i in F sorted by deadline do
4 Let M be the mobile node generating flow i
5 for Ji,k in released(i, H) do
6 rready = { (AB)i | (B is GW) and (A ∈ I or A = M ) }
7 issched = False

8 for slot in di,k : ri,k : −1 do
9 scheduled = ø

10 for (AB)i in rready sorted by depth(AB) do
11 channel = may-schedule((AB)i, slot, S)
12 if channel �= None then
13 S[slot, channel] = S[slot, channel] ∪ {(AB)i}
14 scheduled = scheduled ∪ {(AB)i}

15 for (AB)i in scheduled do
16 rready = rready \ {(AB)i}
17 rready = rready ∪ {(CA)i | C ∈ children(A)
18 and (C ∈ I or C = M ) }
19 if rready = ø then
20 issched = True

21 break

22 if issched = False then return “unsuccessful”

23 return S
24 Procedure may-schedule((AB)i, slot, S)
25 Let T include all transmissions S[slot, ch] where ∀ch ∈ C

/* Half-duplex constraint */

26 for (CD)j in T do
27 if i �= j then
28 if C = A or C = B or D = A or D = B then
29 return None

/* A channel having (∗B)i or (A∗)i */

30 for ch in C do
31 if ∃C s.t. (CB)i ∈ S[slot, ch] or (AC)i ∈ S[slot, ch] then
32 return ch

/* A channel with a transmissions for flow i */

33 for ch in C do
34 if ch includes a transmission (CD)i in slot then
35 return ch

/* Return an empty channel */

36 for ch in C do
37 if ch is not used in slot then
38 return ch

39 return None

including the transmission from the mobile node to the GW
(see line 6 ). FO-MARS considers each link (AB)i in the
reverse ready set in the order of their depth. The algorithm
determines whether there is a suitable channel in which (AB)i
may be scheduled in the current time slot. If such a channel
may be identified using the may-schedule procedure, then link
(AB)i is added to the scheduled set (denoted by scheduled).
When all transmissions in set rready have been considered,
the reverse ready set is updated by removing all the links that
have been scheduled during the current slot and adding all
their children to the set (see lines 16 – 18).



The may-schedule procedure determines the channel in
which the transmissions can be scheduled. The procedure is
designed to: (1) ensure that the scheduling constraints are
satisfied, and (2) increase real-time capacity. We improve real-
time capacity by taking advantage of the insights developed
in Section III. Accordingly, we prefer to schedule (AB)i with
other transmissions from flow i that include either A or B
(see line 32). This does not increase the blocking of any
node. When this is not possible, we prefer to schedule (AB)i
with other transmissions from flow i since only one of the
transmissions scheduled in the entry will be performed at run-
time (see line 35). When no transmissions from i are included
in the current slot, then we return the first empty channel (if
one exists) (see line 38). The may-schedule procedure returns
’None’ when scheduling in the considered slot is not possible.

When the GW disseminated a newly computed schedule,
the new mobile node cannot immediately start communicating
with the GW upon schedule reception. Specifically, infras-
tructure nodes cannot arbitrarily switch to a new schedule if
the scheduling algorithm modifies the existing schedules. For
example, assume a transmission (AB)i happens after time slot
s in the current scheduling matrix S . However, in the new
scheduling matrix S ′, this transmission happens before time
slot s. If node A receives the new scheduling matrix at time
s, transmission (AB)i will not happen in the current period
of flow i if A immediately switches to the new schedule. To
avoid packet loss, the safe switching time is at the beginning of
the next hyper-period. However, if new bandwidth reservation
could be performed without modifying the existing schedules,
then the mobile node can start packet generation as soon as
the new schedule is received. The next section proposes an
algorithm that addresses such workload dynamics, and its node
admission delay is independent of the number of mobile nodes
and hyper-period duration.

An additional optimization is possible when the periods of
the flows are harmonic (i.e., multiples of each other). Owing
to the regularity of the arrival pattern, the resulting scheduling
matrix is also regular and it may be “compressed” to require
fewer transmissions to be disseminated. Consider transmission
(AB)i of flow i will be scheduled for Ji,0 in slot s0. Then,
(AB)i will be scheduled for instance Ji,k in slot sk = s0 +
k×Pi, where k ∈ N

∗. This property implies that transmissions
are scheduled with the same relative phase in the scheduling
matrix and, knowing the schedule of first instance of each flow
is sufficient to reconstruct the complete scheduling matrix.

B. A-MARS

Traditional scheduling approaches (including FO-MARS)
must recompute and disseminate complete schedules to handle
networking dynamics including addition, removal, or changes
in flows. In this section, we develop Additive Mobility-Aware
Real-time Scheduling (A-MARS), an additive scheduling al-
gorithm that schedules incoming flows without modifying the
schedule of previously admitted flows. The key challenge in
developing this algorithm is to ensure that scheduling a new
flow causes minimum impact on the schedulability of future
flows. In other words, the effect of scheduling a flow i on flows
with higher priority (i.e., shorter deadline) should be minimal.

A-MARS is developed under the assumption that the
network will service a set of flow classes (F̄) that are known
a priori. A flow class includes flows that have the same period
and deadline. Mobile nodes may add or remove flows at
arbitrary times, however, the likelihood of a flow belonging
to a class γ is aγ , and

∑
∀γ∈F̄ aγ = 1.

At a high-level, A-MARS works in two phases: (1) ini-
tialization phase, and (2) scheduling phase. The initialization
phase prepares an ordered slot list Lγ for each flow class
γ. This list indicates in what order the scheduling algorithm
should consider the slots that can be used for scheduling a
flow belonging to class γ. For an instance Jγ,k, the set of
slots that can be considered are those between its release time
(rγ,k) and its deadline (dγ,k). Therefore, for scheduling all the
instances of γ during the hyper-period, we must consider the
union of the intervals rγ,k, dγ,k, where k ∈ 0, H/Pγ . The
responsibility of the initialization phase is to order these slots
as a list Lγ , so that the schedulability of higher priority flows is
not compromised. After the initialization phase, the scheduling
phase uses a modified version of FO-MARS to schedule packet
transmissions based on the prepared ordered slots lists.

The core idea behind the initialization phase of A-MARS
is to estimate the impact that scheduling a flow can have on
its higher priority flows. For example, assume γ is the flow
class for which Lγ is being prepared. To prepare this list, the
slot preparation algorithm (Algorithm 2) iterates over the slots
in list slots, and in each iteration, one slot is added to Lγ . To
measure how choosing a slot s for scheduling γ (in addition
to the slots already in Lγ) would affect the schedulability of a
higher-priority class α, we define the potential utilization as:

PUα[s, Lγ ] =

⎧⎪⎪⎨
⎪⎪⎩

aα×Wα

Dα−|Lγ ∩ rα,k, dα,k| if ∃k ∈ 0, H/Pα s.t.

s ∈ rα,k, dα,k \ Lγ

0 otherwise
(1)

where Wα is the number of transmissions required to schedule
a flow belonging to class α, Dα is the deadline of flow class
α, and L is the set of slots that have been already prioritized
to be used by flow class γ. The value of PUα[s] represents
the (unnormalized) probability that slots s will be required by
Jα,k when some slots are used by a lower priority flow class.
The numerator estimates the required number of slots for Jα,k,
while the denominator estimates the number of free slots that
may be used to perform these transmissions.

We now present the operation of the slot preparation al-
gorithm (Algorithm 2). Assume we are interested in preparing
Lγ . First, a PU list is prepared for every flow class in set HP ,
which includes the flow classes with higher priority (see line
7). These PU vectors are updated after each iteration in which
a new slot is added to Lγ . Initially, the list slots includes
all the slots that should be prioritized, and each iteration of
the while loop moves one slot from slots to Lγ . In each
iteration, amongst the set of slots in slots, we should find
the slot that results in minimum increase of the PU vectors.
For a slot s, increase in the PU of a flow class is measured
through: (1) creating a temporary ordered slots list L′

α that
includes the slots already ordered as well as slot s (see line



Algorithm 2: AMARS’s Slot Preparation Algorithm

Input: F : set of flow classes;

Output: an ordered slot list Lγ for each flow class γ ∈ F ;

1 Procedure AMARS SlotPrep()

2 Let HP be the set of flow classes with higher priority than γ
3 Lγ = ø

4 slots =
⋃H/Pγ

k=0 rγ,k, dγ,k
5 while slots �= ø do
6 for flow class α in HP do
7 PUα = computePU(α, Lγ , slots)

8 for s in slots do
9 L′

γ = Lγ ∪ {s}
10 for α in HP do
11 PU ′

α = computePU(α, L′
γ , slots)

12 ADPU [s] +=
∑

s′∈slots\s
(PU′

α[s
′]− PUα[s′])

13 sbest = argmins∈slotsADPU [s]
14 Lγ = Lγ ∪ {sbest}
15 slots = slots \ {sbest}

16 Procedure computePU(α, Lγ , slots)
17 for s in slots do compute PUα[s, Lγ ] using Equation 1

18 return PUα

9), (2) computing a new PU vector considering list L′
α for

each flow class α (see line 11), (3) subtraction of PU from
PU ′ over all the slots except s, which reflects the increase
in the PU value of the slots (see line 12), and (4) addition
of the differential values (see line 12). When considered for
all the PU vectors, we refer to the sum of the increases in the
PU vectors as the accumulated differential potential utilization
(ADPU ). In each iteration, when all the slots in slots have
been evaluated, the slot that results in minimum ADPU is
identified as sbest (see line 13) and this slot is moved from
slots to Lγ . Additionally, the PU vectors are updated at the
beginning of the next iteration considering slot sbest marked
as prioritized (see line 14 and 7).

We clarify the operation of A-MARS through the sample
scenario given in Figure 3. There are three flow classes: γ,
β, and γ. We are interested in computing Lγ for class γ.
This figure includes the first three iterations of Algorithm 2.
When Lγ = ø, slot 15 results in minimum ADPU. In other
words, if we consider slot 15, the increase in PU values is
0. Intuitively this is expected since slot 15 cannot be used to
schedule transmissions for either α or β. This slot is moved
from slots to Lγ . In the second iteration, both slot 7 and
23 result in minimum ADPU, which is 0.1. The tie is broken
randomly and slot 23 is chosen. Following the same operation,
slot 7 is found as the best slot after the third iteration. The last
row of Figure 3 shows the iteration number in which a slot
is prioritized and added to Lγ . Therefore, this list reflects our
priority to use the slots in range [0, 31] for scheduling flows
of class γ.

FO-MARS may be modified to account for scheduling each
flow through using the ordered slots list prepared for that
flow’s class. The original FO-MARS algorithm considers the
slots from di,k to ri,k when scheduling the transmissions of a
flow instance Ji,k (see line 8 of Algorithm 1). However, when
modified for operation with ordered slots lists, the algorithm

should try to schedule a flow belonging to class γ using the slot
priorities provided in Lγ . To this end, the algorithm uses the
first slot of Lγ and tries scheduling. If scheduling is failed,
the algorithm uses the first two entries of Lγ . It should be
noted that since reverse scheduling is employed, the algorithm
considers these slots in a descending order of slot numbers.
This process is repeated until the scheduling succeeds, or the
scheduling is failed after using all the slots in Lγ . Considering
the priorities achieved in Figure 3, scheduling is first evaluated
using slot 15. If scheduling is failed, slot 23 and 15 are
considered. Similarly, slot 23, 15, and 7 are considered in the
third scheduling try.

C. Handling Workload Dynamics: FO-MARS vs A-MARS

In our network model, workload dynamics are the result
of flows being added, removed, or their parameters modi-
fied. FO-MARS schedules flows according to static priorities.
Therefore, the addition of a new flow results in FO-MARS
computing the schedule of the new flow as well as recomputing
the schedule of flows with lower priority than the considered
flow. Accordingly, the amount of control traffic that must be
disseminated is O(|F| ·Ψ(|E|)), where Ψ(|E|) is an efficient
encoding of transmissions over network edges (|E|). In sharp
contrast, A-MARS handles workload changes more efficiently,
and the addition of a flow requires that we only compute
the schedule of that flow. Accordingly, A-MARS handles a
workload change in O(Ψ(E)), which provides significantly
higher efficiency.

V. PERFORMANCE EVALUATION

In order to have a realistic and repeatable performance eval-
uation, we used the packet reception traces of MoteTrack [17].
Using MicaZ nodes with CC2420 radio, the trace provides
packet reception characteristics from 23 infrastructure nodes
on various mobility paths. The mobility model is consistent
with users moving along the hall-ways of the building (see
Figure 4). The initial position of each mobile node is randomly
selected on one of the mobility paths. The mobile nodes move
at constant speed until reaching the intersection of two paths.
At that point, either a new path is randomly selected or the
current path is continued. The moving direction is reversed
when a node reaches the end of a path. A routing graph is
created using an approach similar to that described in [19].

Fig. 4. The network used for performance evaluation.

Each infrastructure node broadcasts a beacon every 512
slots. A request reception slot is scheduled every 512 slots to
receive join requests. Similarly, the period of control and report
flows are 512 slots (see Section II-A). We consider two types
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Fig. 3. A network with three flow classes α, β, and γ. For these classes: Pγ = 32, Dγ = 28, Pβ = 16, Dβ = 10, Pα = 8, and Dα = 7. We are interest in

preparing Lγ . The calculations assume that flows arrive with equal probability (i.e., aα = aβ = aγ = 1), and their workload is Wα = Wβ = Wγ = 1. The

figure includes the first three iterations (denoted by ’It#’) of Algorithm 2. The last row shows the iteration number in which each slot is added to Lγ .

TABLE I. BASELINE ALGORITHMS

Static Real-Time Scheduling (*-SRS)
Algorithms designed for static real-time networks. These algorithms do not benefit

from Theorem 1, Rule 1, and Rule 2. These algorithms are as follows:

Earliest Deadline First-SRS (EDF-SRS): The schedulability of released transmissions

is evaluated in the order of their absolute deadlines.

Deadline Monotonic-SRS (DM-SRS): The schedulability of released transmissions is

evaluated in the order of their relative deadlines.

Least Laxity First-SRS (LLF-SRS): The schedulability of released transmissions is

evaluated in the order of their laxities. Laxity of a transmission in a given time slot is

computed as d′ − h, where d′ is the remaining number of time slots until deadline

and h is the number of hops to the destination.

Enhanced Static Real-Time Scheduling (*-ESRS)
EDF/DM/LLF-ESRS: Adds Rule 1 to EDF/DM/LLF-SRS

Combination-Enabled Real-Time Scheduling (*-CERS)
EDF/DM/LLF-CERS: Adds Theorem 1 and Rule 1 to EDF/DM/LLF-ESRS

TABLE II. GENERAL PERFORMANCE EVALUATION PARAMETERS

Time Slot Duration = 10ms (based on WirelessHART and ISA100)

Packet Format: 802.15.4 | Max Packet: 127B | Max Payload: 108B

Radio Channels: 11-26 | Radio Transmission Power = 0dBm

Battery: 2500mAh 3V | Speed: 1m/s | Guard Time (tg) = 1ms

of workloads: (1) Homogeneous: all the mobile nodes’ flows
belong to the same class. For example, Pdata = 128 means
the period of all the mobile nodes’ flows equals 128 slots
(1.28 second). (2) Heterogeneous: each mobile node randomly
chooses its flow from a set of flow classes. To measure energy
consumption, we have implemented the radio state machine
and energy consumption characteristics of CC2420 at the
physical layer [20] . Our MAC implementation considers time
synchronization errors through using a 1ms guard time (tg)
at the beginning of each time slot. In a reception time slot,
a node waits for 2tg + 160μs, and goes to the sleep mode if
no packet is detected. Note that 160μs is the preamble+SFD
transmission duration [21].

The baseline algorithms compared against FO-MARS and
A-MARS are given in Table I. We repeated the experiment
20 times for each configuration, and report the median, lower
quartile and higher quartile. The parameters used for simula-
tion are given in Table II.

A. Results and Discussions

1) Scalability: To measure real-time capacity, Figure 5
presents the maximum number of mobile nodes admitted by
various scheduling algorithms. The figure shows the very poor

performance of the algorithms designed for static wireless
networks (see the SRS algorithms in Table I), which is due
to the lack of flow merging, flow coordination, and reverse
scheduling. The results show that using Theorem 1 and Rule
1 in CERS algorithms increase the number of admitted mobile
nodes by more than 6x, compared with SRS algorithms. Addi-
tionally, the results reveal the effect of reverse scheduling on
the efficiency of schedule combination. Specifically, the MARS
algorithms increase the number of admitted mobile nodes by
2.5x, compared to the CERS algorithms. Although A-MARS
relies on a predictive strategy to schedule flows additively,
Figure 5 shows that A-MARS does not sacrifice bandwidth
utilization. While the bandwidth reservation efficiency of A-
MARS is as good as FO-MARS when the workload is homo-
geneous, it introduces less than 15% reduction in the number
of admitted mobile nodes when the workload is heterogeneous.

2) Admission Delay: Figure 6 shows admission delay,
defined as the interval between a mobile node’s turn on time
and the time at which it can start communicating with the GW.
The admission delay achieved with A-MARS is independent
of the number of mobile nodes and flow periods (always
< 20 seconds), thanks to its additive scheduling feature. The
admission delay of FO-MARS is the same as that of A-MARS
when flow periods are homogeneous (see Figure 6 (a)-(b))
because, the request for scheduling a data flow only requires
the scheduling of that flow. However, for the heterogeneous
workload, the admission delay of FO-MARS increases with
the number of admitted mobile nodes as an increasing amount
of control traffic is necessary to disseminate the recomputed
scheduling matrix. The admission delay of all the baseline
algorithms are significantly higher than that of the MARS
algorithms because they necessarily need to reschedule all
the flows when a join request is received. Meanwhile, the
admission delay of SRS algorithms is always higher than 150
seconds (see Figure 6 (b) and (d)). Furthermore, the admission
delay of the baselines depends on the relationship between flow
periods. For example, comparing Figure 6(a) and (b) reveals
the shorter admission delay achieved with smaller periods.
The reason is that, for example, when Pdata = 128, the GW
should distribute the schedule of each mobile node four times
(512/128), while this reduces to one when Pdata = 512.
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3) Lifetime: Figure 7 presents the average lifetime of
infrastructure nodes versus the number of active mobile nodes.
We do not report the lifetime of mobile nodes because it
was higher than that of infrastructure nodes. We increase the
number of mobile nodes in steps of 10 and measure steady-
state energy consumption. Although with a given Pdata and
a number of mobile nodes the time spent in transmit mode
is the same for all the algorithms, the lifetime differences are
due to the different durations the radio spends in receive mode.

From the MAC point of view, flow merging (Theorem 1) and
flow coordination (Rule 1) reduce the number of time slots
in which a node expects to receive a packet. Additionally, this
number is further reduced using the reverse scheduling strategy
(Rule 2). For example in Figure 2, the number of slots in
which A should wait for receiving a packet belonging to the
flow generated by M is 3 using forward scheduling, and this
value is reduced to 1 using reverse scheduling. Also note that
compared to FO-MARS, the additivity feature of A-MARS
contributes to energy saving through reducing the amount of
schedule dissemination data.

4) Algorithm Execution Duration: Figure 8 shows algo-
rithm execution duration versus the number of mobile nodes
admitted using an i7-4980HQ processor. The execution du-
ration of baseline algorithms (i.e., ESRS and CERS) are
considerably higher than that of MARS algorithms because
they need to schedule all the flows in all of their periods
within the hyper-period. The higher execution duration of A-
MARS compared to FO-MARS is due to its iterative evaluation
of schedulability using a subset of the slots in a prepared
ordered slots lists. Additionally, as the number of scheduling
tries depends on the flow arrival pattern, A-MARS shows high
variations.

VI. RELATED WORK

Although mobility support in low-power wireless networks
have been addressed by various works [22]–[25], unfortunately,
these approaches cannot guarantee real-time communication
with mobile nodes, and this is mainly due to the lack of
employing bandwidth reservation. More importantly, they do
not impose any admission control mechanism for joining
mobile nodes. Therefore, both reliability and delay depend
on medium access intensity, which is mainly determined by
mobility pattern and number of mobile nodes.

Several scheduling mechanisms have been recently pro-
posed for enabling low-power real-time communication [5]–
[13]. In [5] and [13], transmission schedules are determined
based on the number of nodes and network topology, before
network deployment. [6] and [12] address scheduling over
multiple paths between stationary nodes. The development of a
real-time communication system for a refinery with stationary
nodes has been presented in [11]. A laxity-based heuristic
scheduling algorithm has been proposed by [8] for reducing
schedule computation delay in static WirelessHART networks.
Unfortunately, none of these algorithms provide efficient band-
width reservation when mobile nodes are introduced to the
network. In this paper we referred to the prior work on
real-time scheduling in static networks as Static Real-time
Scheduling (SRS) algorithms (see Table I).

MBStar [26] aims to reduce the cost of schedule distribu-
tion to one-hop sensor nodes. Using offset-free scheduling, the
data generation offsets are determined to reduce the number
of collisions. Similar to MBStar, RT-WiFi [27] only addresses
mobility over a single hop, and eliminates the need for dynamic
association.

In our prior work [14] we identified several sources of
scheduling inefficiency, and we proposed the schedule com-
bination theorem for improving real-time capacity. Based on
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that, we proposed a laxity-based scheduling algorithm that
its operation is similar to that of the LLF-CERS algorithm
considered in this paper as a baseline. In this paper, we
have improved real-time network capacity through proposing
the reverse scheduling strategy that is the basis of the FO-
MARS algorithm. More importantly, we proposed A-MARS
which incorporates a novel approach for handling workload
dynamics.

VII. CONCLUSION

This paper proposed two algorithms to address the devel-
opment challenges of mobile real-time networks: FO-MARS,
and A-MARS. Both algorithms rely on a set of techniques
to improve the efficiency of on-join bandwidth reservation
for mobile nodes. Specifically, we presented flow merging,
flow coordination, and reverse scheduling, as the essential
techniques for improving the efficiency of bandwidth reser-
vation for mobile nodes. Furthermore, the salient feature of
A-MARS is additive scheduling, which allows A-MARS to
handle network dynamics without re-computing the scheduling
matrix. As a result, the admission delay of flows is independent
of the number of mobile nodes. Both MARS algorithms
significantly increase the number of admitted mobile nodes
by 14x, compared to several baseline algorithms.
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