Probabilistic Link Properties

Octav Chipara

Signal propagation

- Propagation in free space always like light (straight line)
- Receiving power proportional to 1/d² in vacuum much more in real environments (d = distance between sender and receiver)
- Receiving power additionally influenced by
 - fading (frequency dependent)
 - shadowing
 - reflection at large obstacles
 - refraction depending on the density of a medium
 - scattering at small obstacles
 - diffraction at edges

Physical impairments: Fading (1)

Physical impairments: Fading (2)

- Strength of the signal decreases with distance between transmitter and receiver: path loss
 - usually assumed inversely proportional to distance to the power of 2.5 to 5
- Channel characteristics change over time and location
- Slow fading: slow changes in the average power received
 - distance, obstacles
- Fast fading: quick changes in the power received
 - signal paths change
 - different delay variations of different signal parts
 - different phases of signal parts

Physical Impairments: Noise

- Unwanted signals added to the message signal
- Many potential sources of noise
 - natural phenomena such as lightning
 - radio equipment, spark plugs in passing cars, wiring in thermostats, etc.
- Modeled in the aggregate as a random signal in which power is distributed uniformly across all frequencies (white noise)
- Signal-to-noise ratio (SNR) often used as a metric in the assessment of channel quality

Physical Impairments: Interference

- Signals at roughly the same frequencies may interfere with one another
 - Example: IEEE 802.11b and Bluetooth devices, microwave ovens, some cordless phones
 - CDMA systems (many of today's mobile wireless systems) are typically interference-constrained
- Signal to interference and noise ratio (SINR) is metric used in assessment of channel quality

$$SNIR_{s,r} = \frac{RSS_{s,r}}{Noise + Interference}$$

Multipath propagation

• Signal can take many different paths between sender and receiver due to reflection, scattering, diffraction

signal at receiver

- Time dispersion: signal is dispersed over time
 - interference with "neighbor" symbols, Inter Symbol Interf. (ISI)
- The signal reaches a receiver directly and phase shifted
 - distorted signal depending on the phases of the different parts

Signal propagation: Real world example

Parametric propagation models

• Free space propagation model

$$PL(d) = PL(d_o) * \left(\frac{d_0}{d}\right)^2$$

• when not in free-space, the path loss exponent (2) is higher

Log-normal propagation model

$$PL(d) = PL(d_o) + 10n \log_{10}\left(\frac{d_0}{d}\right) + X_{\sigma}$$

- X_{σ} Gaussian RV with mean zero, it accounts for shadowing
- n path loss exponent, depends on environment (e.g., 3--6 indoors)
- d₀ reference distance in far field
- PL path loss

Radio signal propagation

Model signal strength (and its variation) at a distance

- useful for localization applications, coverage, etc
- networks with mobile users

Model signal strength (and its variations) at a fixed distance

- useful for networking protocols (routing, ARQ, etc)
- fixed networks

Log-normal path model

$$PL(d) = PL(d_o) + 10n \log_{10}\left(\frac{d_0}{d}\right) + X_{\sigma}$$

Non-isotropic connectivity

*Zhou et. al. 04

Non-isotropic connectivity (2)

13

Attenuation over distance

*Cerpa et. al. 03

Impact of antenna height

Transitional region (aka grey region)

Transitional region

Transitional region

Length of the transitional region increases with

- increases in shadowing => impact of multi-path
- decreases in path loss coefficient

Prevalence of good, bad, and intermediary links

• A significant fraction of links fall within the transitional region

• these links are important for protocols but hard to utilize

Link symmetry

• Links are often asymmetric

- protocols that assume path symmetry will not work well
- (e.g., path reversal)

Temporal variability

- Observation: errors in packet transmissions tend to be clustered
 - i.e., they are not independent
- Gillbert-Elliot channel: a simple channel model

Temporal properties of links

Temporal properties of links

- Good and bad links are temporally stable
- Intermediary links have significant fluctuations

Next class

• Low-power MACs