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Signal propagation

e Propagation in free space always like light (straight line)

e Receiving power proportional to 1/d2 in vacuum — much more in real
environments (d = distance between sender and receiver)
e Receiving power additionally influenced by
e fading (frequency dependent)
e shadowing
¢ reflection at large obstacles
¢ refraction depending on the density of a medium
e scattering at small obstacles
e diffraction at edges
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Physical impairments: Fading (1)
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Physical impairments: Fading (2)

e Strength of the signal decreases with distance between transmitter
and receiver: path loss

e usually assumed inversely proportional to distance to the power of 2.5t0 5
e Channel characteristics change over time and location
e Slow fading: slow changes in the average power received

e distance, obstacles

e Fast fading: quick changes in the power received
¢ signal paths change
e different delay variations of different signal parts
¢ different phases of signal parts



Physical Impairments: Noise

e Unwanted signals added to the message signal
e Many potential sources of noise
e natural phenomena such as lightning
¢ radio equipment, spark plugs in passing cars, wiring in thermostats, etc.

e Modeled in the aggregate as a random signal in which power is
distributed uniformly across all frequencies (white noise)

e Signal-to-noise ratio (SNR) often used as a metric in the
assessment of channel quality



Physical Impairments: Interference

e Signals at roughly the same frequencies may interfere with one
another

e Example: IEEE 802.11b and Bluetooth devices, microwave ovens, some
cordless phones

e CDMA systems (many of today’s mobile wireless systems) are typically
iInterference-constrained

e Signal to interference and noise ratio (SINR) is metric used in
assessment of channel quality
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Multipath propagation

e Signal can take many different paths between sender and receiver
due to reflection, scattering, diffraction
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signal at sender
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e Time dispersion: signal is dispersed over time

e interference with “neighbor” symbols, Inter Symbol Interf. (1SI)
* The signal reaches a receiver directly and phase shifted

¢ distorted signal depending on the phases of the different parts



Signal propagation: Real world example
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Parametric propagation models
* Free space propagation model

PL(d) = PL(d,) + (%)2

e when not in free-space, the path loss exponent (2) is higher

e Log-normal propagation model

d
PL(d) = PL(d,) + 10nlogg (EO) + X,

e X, - Gaussian RV with mean zero, it accounts for shadowing

e n - pathloss exponent, depends on environment (e.g., 3--6 indoors)
e do - reference distance in far field

e PL - path loss



Radio signal propagation

e Model signal strength (and its variation) at a distance
e useful for localization applications, coverage, etc
¢ networks with mobile users

e Model signal strength (and its variations) at a fixed distance
e useful for networking protocols (routing, ARQ, etc)
e fixed networks
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Log-normal path model
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Non-isotropic connectivity

*Zhou et. al. 04
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Non-isotropic connectivity (2)
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Attenuation over distance
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Impact of antenna height

Reception Rate (%)
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Transitional region (aka grey region)
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P (dBm)

Transitional region
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Analytical Method to Determine Regions in Wireless Links

Transitional region
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e Length of the transitional region increases with
® increases in shadowing => impact of multi-path
e decreases in path loss coefficient



Prevalence of good, bad, and intermediary links
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Packet Loss

¢ A significant fraction of links fall within the transitional region
¢ these links are important for protocols but hard to utilize
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Link symmetry

e Links are often asymmetric
¢ protocols that assume path symmetry will not work well
® (e.g., path reversal)
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Temporal variability

e Observation: errors in packet transmissions tend to be clustered
® i.e., they are not independent
e Gillbert-Elliot channel: a simple channel model

Po,j = p

Poo=1-p P],I =1-g

Pio=q
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Temporal properties of links
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Temporal properties of links

e Good and bad links are temporally stable
e Intermediary links have significant fluctuations
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Next class

e Low-power MACs
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