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Motivation
• Energy and capacity are limited resources in wireless sensor networks
• Answer: Topology and Power Control

• maintain a topology with certain properties (e.g., connectivity) while
reducing energy consumption and/or increasing network capacity

• Terminology:
• power control: a wireless channel perspective - optimize the transmission power 

to for a wireless transmission 
• topology control: a system level perspective - optimize the choice of 

transmission power to achieve a global property

2

Monday, November 21, 11



Energy optimization
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Energy optimization
• How do nodes waste energy?

• idle listening 
• overhearing 
• transmitting at higher power than necessary
• receiving corrupted packets
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How do topology and power control work?
• Decide if a node should be ON or OFF

• motivation: it is sufficient for only a subset of nodes to be active at a time to 
ensure connectivity

• consequence: 
• reduces the energy consumption 
• increases channel capacity [why?]

• Determine the optimal transmission power
• motivation: 

• a higher than necessary transmission power ⇒ interference + contention

• a lower than necessary transmission power ⇒ packet loss

• consequences:
• increases channel capacity
• reduces energy consumption [is it effective?]
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Today’s lecture
• SPAN: energy-efficient coordination algorithm

• Benjie Chen, Kyle Jamieson, Hari Balakrishnan, and Robert Morris
• MIT
• MOBICOM

• Robust Topology Control for Indoor Wireless Sensor Networks,
• G. Hackmann, O. Chipara and C. Lu
• WUSTL
• SenSys
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Problem formulation
• Goals:

• minimize the energy consumed by a node
• while having a minimal impact on message delay and channel capacity

• Approach: we will determine what nodes to turn off while maintaining 
connectivity

6

Monday, November 21, 11



Protocol design
• SPAN assigns nodes with two roles

• coordinators: remain awake to maintain connectivity
• non-coordinator: enter power saving mode

• Role assignments are rotated to maximized network life-time

• State maintenance:
• each node maintains 

• a list of its coordinators 
• a list of the coordinators of its neighbors

• information exchanged in periodic beacons
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Selecting coordinators
• A node n is eligible to become coordinator if

• two neighbors of n cannot reach each other either directly or via one (or two) 
coordinators

• Properties: 
• enforces that the connected topology will be connected
• no optimality guarantee

• Unresolved issue:
• multiple nodes deciding to be coordinators at the same time
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• Selecting the back-off for announcements based on topology considerations
• i   - number nodes      
• Ci - number of additional connected pairs if i becomes a coordinator

• nodes with higher utility u should volunteer sooner

• where R is a random number in [0, 1]
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Coordinating announcements

u =
Ci

C(Ni, 2)

delay = ((1� u) +R) ⇤Ni
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Coordinating announcements (2)
• Incorporating energy availability considerations

• Er the amount of energy remaining out of Em the total amount of energy 

• nodes will less energy will volunteer less frequently
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delay = ((1� Er

Em
) + (1� u) +R) ⇤Ni
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Motivation
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Motivation
• Goal: reducing transmission power while maintaining satisfactory link quality
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Motivation
• Goal: reducing transmission power while maintaining satisfactory link quality

• But it’s challenging:
• Links have irregular and probabilistic properties
• Link quality can vary significantly over time
• Human activity and multi-path effects in 

indoor networks
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Outline
• Empirical study
• Algorithm
• Implementation and evaluation
• Conclusion
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368 links (70.2%) receive
NO packets at -25 dBm
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Compared to 82 links (15.6%)
@ -5 dBm

18

Monday, November 21, 11



368 links (70.2%) receive
NO packets at -25 dBm

Compared to 82 links (15.6%)
@ -5 dBm

105 links (20.2%) receive
≥ 95% of packets at -25 dBm
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Is Per-Link Topology Control Beneficial?
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Insight	  1:	  Transmission	  power	  should	  be	  set	  on	  a	  per-‐link	  
basis	  to	  improve	  link	  quality	  and	  save	  energy.
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Impact of Transmission Power on Contention?
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Impact of Transmission Power on Contention?

Low signal strength
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Impact of Transmission Power on Contention?

High
contention

Low signal strength

20

Monday, November 21, 11



Impact of Transmission Power on Contention?

High
contention

Low signal strength

Insight	  2:	  Robust	  topology	  control	  algorithms	  must	  avoid	  
increasing	  contenEon	  under	  heavy	  network	  load.
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Is Dynamic Power Adaptation Necessary?
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Can Link Stability Be Predicted?
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Can Link Stability Be Predicted?

Insight	  3:	  Robust	  topology	  control	  algorithms	  must	  adapt	  
their	  transmission	  power	  in	  order	  to	  maintain	  good	  link	  

quality	  and	  save	  energy.
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Are Link Indicators Robust Indoors?
• Two instantaneous metrics are often proposed as indicators of link reliability:

• Received Signal Strength Indicator (RSSI)
• Link Quality Indicator (LQI)

• Can you pick an RSSI or LQI threshold that predicts whether a link has high 
PRR or not?
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Are Link Indicators Robust Indoors?
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Are Link Indicators Robust Indoors?

RSSI	  threshold	  =	  -‐85	  dBm,	  PRR	  threshold	  =	  0.9

4%	  false	  posiEve	  rate
62%	  false	  negaEve	  rate
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Are Link Indicators Robust Indoors?

RSSI	  threshold	  =	  -‐85	  dBm,	  PRR	  threshold	  =	  0.9

4%	  false	  posiEve	  rate
62%	  false	  negaEve	  rate

RSSI	  threshold	  =	  -‐84	  dBm,	  PRR	  threshold	  =	  0.9

66%	  false	  posiEve	  rate
6%	  false	  negaEve	  rateInsight	  4:	  Instantaneous	  LQI	  and	  RSSI	  are	  not	  robust	  

esEmators	  of	  link	  quality	  in	  all	  environments.
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Summary of Insights

• Set transmission power on a per-link basis
• Avoid increasing contention under heavy network load
• Adapt transmission power online

• LQI and RSSI are not robust estimators of link quality in all environments
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Adaptive and Robust Topology control (ART)
• ART:

• Adjusts each link’s power individually 
• Detects and avoids contention at the sender
• Tracks link qualities in a sliding window, adjusting transmission power at a per-

packet granularity
• Does not rely on LQI or RSSI as link quality estimators

• Is simple and lightweight by design
• 392 bytes of RAM, 1582 bytes of ROM, often zero network overhead 
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ART Algorithm Outline
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Adaptive and Robust Topology control (ART)
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Power Level = 7

Target PRR = 80%

Initializing
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Adaptive and Robust Topology control (ART)
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Selecting Bounds
• PRR threshold p is converted into bound on TX failures 

• What if we want to try out a lower power setting?  One bound d not sufficient
• Link quality is often bimodal when switching power settings
• If d - 1 failures happen in steady state, and all transmissions fail in trial state, then 

PRR would be lower than p

• Pick a tighter bound                                  for moving in and out of trial stated� =
2p

p + 1
· w

d = (1� p) · w
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Avoiding Contention
• Naïve policy: When link quality falls below threshold, then increase power level
• But what if this makes things worse?

• Remember, higher power → more contention

• Initially increase power when link quality is too low, but remember how many 
failures were recorded in window

• If # of failures is worse than last time, then flip direction and decrease power 
instead
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Implementation Details
• Implemented using TinyOS 2.1 CVS on top of the MAC Layer Architecture 

[Klues 07]
• Sits below routing layer -> has been tested with CTP

• Deployed on Jolley Hall testbed for three experiments:
• Link-level
• High contention
• Data collection (not presented here)
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Link-Level Performance
• Selected 29 links at random from 524 detected in empirical study
• Transmitted packets round-robin over each link in batches of 100, cycled for 24 

hours (15000 packets/link) 

PRR Avg. Current

Max Power 56.7% (σ = 2.5%) 17.4 mA (σ = 0)
ART 58.3% (σ = 2.1%) 14.9 mA (σ = 0.32)
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Handling High Contention
• Select 10 links at random from testbed
• Send packets over all 10 links simultaneously as possible (batches of 200 

packets for 30 min.)

• Compare again against PCBL and max-power
• Also run ART without “gradient” optimization to isolate its effect on PRR
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Handling High Contention

0

0.3

0.5

0.8

1.0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

CD
F(
Pa

ck
et
	  R
ec
ep

tio
n	  
Ra

te
)

Packet	  Reception	  Rate Max-‐Power
PCBL
ART
ART	  (w/o	  gradient)

Monday, November 21, 11



Handling High Contention

0

0.3

0.5

0.8

1.0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

CD
F(
Pa

ck
et
	  R
ec
ep

tio
n	  
Ra

te
)

Packet	  Reception	  Rate Max-‐Power
PCBL
ART
ART	  (w/o	  gradient)

Monday, November 21, 11



Handling High Contention

0

0.3

0.5

0.8

1.0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

CD
F(
Pa

ck
et
	  R
ec
ep

tio
n	  
Ra

te
)

Packet	  Reception	  Rate Max-‐Power
PCBL
ART
ART	  (w/o	  gradient)

Monday, November 21, 11



Conclusions
• Our empirical study shows important new negative results: 

• RSSI and LQI are not always robust indicators of link quality indoors
• Profiling links even for several hours is insufficient for identifying good links
• Inherent assumptions of existing protocols!

• ART is a new topology control algorithm which is robust in complex indoor 
environments

• ART achieves better energy efficiency than max-power without bootstrapping 
or link starvation
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