
MLA: MAC Layer
Architecture

Octav Chipara

Original slides by Chenyang Lu

• Power management is critical for wireless sensor networks
• Limited energy source
• Lifetime from months to years

• Gap between protocols and systems
• Significant advance in power management protocols
• Significant challenges to integrate them in real systems
• Minimum support for power management in OS

• Need unified architectures for flexible power management!

Challenges

2

Diversity of MAC Protocols
• Conflicting application requirements

• Energy
• Latency
• Throughput

• Radio is a major consumer of energy
• Need different MACs to meet different requirements

3

Habitat Monitoring Tracking Structural Health Health Care

Current Solution
• Design a new MAC protocol as a monolithic stack

• S-MAC
• BMAC
• ZMAC
• XMAC
• WiseMAC
• T-MAC
• SCP
• Funnel-MAC
• Crankshaft
• 802.15.4
• DRAND
• ……………

4

Send/Receive
Logic

Send/Receive
Interfaces

Backoff Control
Interfaces

Sleep Scheduling Protocol

Clear Channel
Assessment

Backoff Controller

Radio State
Machine

Sleep Scheduling
Interfaces

Problem with Current Solution

5

No separation between power management &
core radio functionality

Send/Receive
Logic

Send/Receive Interfaces Sleep Scheduling Interfaces
Backoff Control

Interfaces

Sleep Scheduling Protocol

Clear
Channel

Assessment

Backoff Controller

Radio
State

Machine

Problem with Current Solution

6

All features jumbled into one big
monolithic implementation

Send/Receive
Logic

Send/Receive
Interfaces

Backoff Control
Interfaces

Duty Cycling Protocol

Clear Channel
Assessment

Radio State
Machine

Backoff Controller

Sleep Scheduling
Interfaces

• Hard to develop new MAC protocols
• No clear separation of concerns
• Need intimate knowledge of entire stack

• Hard to maintain multiple MAC stacks as OS evolves
• Protocols not reusable across radio/processor platforms

7

Problem: Monolithic Radio Stack

MLA: MAC Layer Architecture
• Separation of sleep sleeping from radio core
• Components for sleep scheduling protocols

• Reusable ➜ ease development & maintenance of protocols
• Platform independent ➜reduce porting effort

8

Radio CoreTimers

Sleep Scheduling

MLA: MAC Layer Architecture
• Components implement common features of MAC protocols

• Hardware-independent: portable across platforms
• Hardware-dependent: portable interfaces, platform specific

implementations
• Simplifies porting to a new platform

• Re-implement hardware-dependent components
• Once per platform

• Hardware independent components stay the same
• Support diverse MAC protocols

• CSMA (contention-based), TDMA (scheduling-based), Hybrid
• Comparable efficiency to monolithic implementations

9

MLA architecture

10

nodes to send data with very short preambles. Z-MAC em-
ploys a TDMA-style slot allocation for all nodes, but allows
nodes to contend for access to other nodes’ slots using chan-
nel polling. This approach combines TDMA’s low channel
contention with channel polling’s high throughput. Finally,
nodes equipped with Funneling MAC contend for channel
access in the majority of the network via CSMA/CA, while
using TDMA in regions close to sink nodes, where nodes
experience high contention. Funneling MAC alleviates con-
tention in the most active areas of the network, without re-
quiring other nodes to create and maintain TDMA schedules.

From the various approaches presented above, a set of
common techniques can be seen to emerge. MLA identi-
fies these techniques — such as periodic channel polling and
time synchronization — and encapsulates them inside a set
of reusable, optimized components. Through the use of these
components, MLA is able to simplify the implementation of
existing MAC protocols on new platforms as well as facili-
tate the development of completely new MAC protocols.

3 Design of the MLA
Creating a low-level yet hardware-independent

component-based architecture poses three significant
design challenges. First, the architecture must present a
clean interface to upper layers, exposing as few hardware
details as possible. Second, the radio stack must export
needed low-level functionality using a set of platform-
independent interfaces. Third, functionality common across
MAC protocols must be identified and implemented inside
a set of optimized, reusable components. In this section, we
discuss how we have met these challenges and present the
interfaces and components that we identify as necessary for
an effective component-based MAC architecture.

Though MLA’s architectural design is not inherently tied
to the TinyOS operating system, we use TinyOS terminology
and naming conventions throughout this section. TinyOS’s
component-based design offers a well-known vocabulary for
discussing interactions among the components in MLA. We
express the interfaces described in this section using nesC
syntax [13] for analogous reasons.

For the purposes of discussion, we assume the use of
packet radios (e.g., the CC2420 radio used on TelosB and
MicaZ motes). We choose to focus on packet radios, since
industry standards like 802.15.4 reflect a shift away from bit
radios (e.g., the CC1000 radio used on Mica2 motes). This
decision does not generally affect MLA’s design, with the
exception of how preamble packets are sent and received by
the MAC layer. We defer a more detailed discussion of this
artifact to Section 3.3.3.
3.1 Overview of the Architecture

We define two types of components for use in MLA.
High-level, hardware-independent components are aimed at
supporting flexibility by allowing different MAC protocol
features to be composed together in a platform indepen-
dent manner. Low-level, hardware-dependent components
provide abstract, platform independent interfaces to features
otherwise specific to a particular radio or microprocessor
platform. Though the implementation of these hardware-
dependent components is inherently platform specific, they

MacC

Radio Core

MacControlC

Send
Receive

Param2

AsyncSend
AsyncReceive

Param1 Param2 Param3

SplitControl

ReceiveSend

SplitControl

Interface to Upper Layers

ChannelMonitor
RadioPowerControl

Param1 Param3

Figure 1. The application developer’s view of MLA

export interfaces which support the development of fully
platform independent high-level components. In this way,
porting the set of protocols developed in MLA to a new plat-
form is confined to providing new implementations of these
low-level components alone.

Figure 1 provides an overview of how these components
can be used to build sophisticated MAC protocols within
MLA. Various components are composed together inside of a
more general MacC configuration, using a set of unified inter-
faces provided by the radio, and exposing a set of (partially)
unified interfaces to the upper layers. The following sections
elaborate on these various interfaces, as well as provide de-
tailed descriptions of the components that provide them.
3.2 Interfaces with Upper Layers

The interfaces which MLA provides to upper layers are
driven by two specific design goals. First, the MAC proto-
cols’s runtime behavior should be as transparent as possible
to the user. Application developer effort is best spent de-
veloping applications which treat packet I/O as a black box;
the fact that packet transmission may be delayed for power-
savings purposes or due to radio contention should not affect
the application’s core behavior. Second, the application de-
veloper should not need to be aware of the MAC protocol’s
internal composition. Developers should be able to treat the
MAC protocol as a single coherent entity, and hence be able
to insert, replace, or remove a MAC protocol with as little
effort as possible.

We achieve both of these goals by exposing all MAC-
level interfaces to the application through two distinct com-
ponents, as shown in Figure 1. First, each MAC protocol de-
fines a MacC configuration that composes any resuable MLA
components and any protocol specific components together.
In order to make its operation as transparent to the user as
possible, the MacC component uses a fixed set of low-level in-
terfaces (described later in Section 3.4) and produces corre-
sponding application-level packet I/O (Send/Receive) and
power control interfaces (SplitControl).

Upper layers call the start() and stop() commands of
the SplitControl interface in order to enable/disable the

B-MAC: An Example Protocol

11

Preamble

Sender:

Receiver:

Check the
Channel

Sleep

Check the
Channel and receive

Check the
Channel

Sleep

Data

Data

B-MAC

12

Preamble

Sender:

Receiver:

Check the
Channel

Sleep

Check the
Channel and receive

Check the
Channel

Sleep

Data

DataReceiver performs
periodic CCA check

B-MAC

13

Preamble

Sender:

Receiver:

Check the
Channel

Sleep

Check the
Channel and receive

Check the
Channel

Sleep

Data

Data

Sender sends
preambles

equal to CCA check
period

Receiver performs
periodic CCA check

B-MAC

14

Preamble

Sender:

Receiver:

Check the
Channel

Sleep

Check the
Channel and receive

Check the
Channel

Data

Data

Sleep

Sender sends
preambles

equal to CCA check
period

Receiver performs
periodic CCA check

Receiver receives
data if channel

busy when performing
check

B-MAC: What Does It Need?
• Method of turning the radio on and off
• Method of checking the channel for radio activity (CCA)
• Periodic Timer to listen for radio activity
• A way of sending / receiving preambles
• A way of sending / receiving data

15

Check the
Channel

Sleep

Check the
Channel and receive

Check the
Channel

Data

Sleep

Breakdown of B-MAC
• What does it need?

• Method of turning the radio on and off
• Method of checking the channel for radio activity (CCA)

16

Radio Core

Breakdown of B-MAC
• What does it need?

• Method of turning the radio on and off
• Method of checking the channel for radio activity (CCA)
• Periodic Timer to listen for radio activity

17

Timers Radio Core

Channel Poller

Breakdown of B-MAC
• What does it need?

• Method of turning the radio on and off
• Method of checking the channel for radio activity (CCA)
• Periodic Timer to listen for radio activity
• A way of sending preambles and data

18

Timers Radio Core

Channel Poller

Bmac Sender

Preamble Sender

Breakdown of B-MAC
• What does it need?

• Method of turning the radio on and off
• Method of checking the channel for radio activity (CCA)
• Periodic Timer to listen for radio activity
• A way of sending preambles and data
• A way of receiving data and filtering out preambles

19

Timers Radio Core

Channel Poller

Bmac Sender

Preamble Sender LPL Listener

Bmac Preamble Filter

BMAC - details

20

SenderC

Radio Core

ListenerC

Channel

PollerC

Channel
Monitor

AsyncReceive

Async
Receive

RadioPower
Control

LowPowerListening

MacCLow
Pow
er

Listening
Lo
w
Po
w
er

Li
st
en
in
g

C
ha
nn
el

Po
lle
r

AsyncSend

Async
Send

MacControlC

LowPowerListening

FixedSleepLpl

ListenerC

BmacFilterP

Async
Receive

AsyncReceive

RadioPower
Control

BmacSenderP

Preamble

SenderC

AsyncSend

AsyncSend

RadioPower
Control RadioPower

Control

Figure 3. Composition of the B-MAC protocol; unshaded
boxes represent reusable components, and shaded boxes
represent protocol-specific components

top of all five MAC layer implementations. We refer the
reader back to Section 3.4.5 for details on this component.

4.1 B-MAC
B-MAC, shown in Figure 3, is the simplest MAC pro-

tocol implemented in MLA. It employs a B-MAC spe-
cific BmacSenderP component for intercepting outgoing
packets from upper layers. It buffers these packets, in-
vokes PreambleSenderC’s sendPreamble command, sends
the buffered packet, and turns off the radio using the
RadioPowerControl interface. To simplify implementa-
tion, BmacSenderP uses a copy of the buffered data packet
to serve as the preamble packet. The number of pream-
ble packets to send is obtained from ChannelPollerC’s
LowPowerListening interface, since B-MAC sends pream-
bles for the entire duration of LPL sleep interval.

B-MAC includes a small BmacFilterP component which
emulates two aspects of the monolithic cc2420 stack’s be-
havior. First, it counts the number of consecutive over-
heard packets which are destined for other nodes. When
this count reaches a certain threshold, BmacFilterP starts
FixedSleepLplListenerC’s timeout alarm. This optimiza-
tion allows nodes that overhear a transmission to go back to
sleep early, without waiting for the preamble to end. Second,
it intercepts incoming packets and holds them in a queue un-
til no radio activity is detected (i.e., until it has received the
final packet containing data at the end of a senders preamble
stream). These behaviors are not part of the original B-MAC
specification [6]; the first is taken from X-MAC, and the sec-
ond is unique to the monolithic cc2420 stack. Nevertheless,
we implement both behaviors for consistency with the exist-
ing monolithic stack.

4.2 X-MAC
X-MAC extends B-MAC by adding optimizations to

end the preamble stream as soon as possible. As a re-
sult, X-MAC’s composition closely mirrors that of B-MAC,
with two distinct differences. As seen in Figure 4, we
first replace BmacSenderP with XmacSenderP, which sends
preambles in accordance with X-MAC’s early-ACK opti-
mization. XmacSenderP is identical in implementation to
BmacSenderP, except that it responds to resendPreamble
events with RESEND WITH CCA before the recipient ACKs a
preamble packet, and DO NOT RESEND thereafter. With this

SenderC

Radio Core

ListenerC

Channel

PollerC

Channel
Monitor

AsyncReceive

Async
Receive

RadioPower
Control

LowPowerListening

MacCLow
Pow
er

Listening Lo
w
Po
w
er

Li
st
en
in
g

C
ha
nn
el

Po
lle
r

AsyncSend

Async
Send

MacControlC

LowPowerListening

FixedSleepLpl

ListenerC

XmacFilterP

Async
Receive

AsyncReceive

RadioPower
Control

XmacSenderP

Preamble

SenderC

AsyncSend

AsyncSend

RadioPower
Control RadioPower

Control

Figure 4. Composition of the X-MAC protocol

SenderC

Radio Core

PeriodicLpl

ListenerC

ChannelMonitor

AsyncReceive

RadioPower
Control

MacC

Lo
wP
ow
er

Lis
ten
ing

Ch
an
ne
l

Po
ller

AsyncSendRadioPower
Control

SyncInterval

LowPowerListening

ScpSync

SenderP

ScpSync

ReceiverP

LowPower
Listening

AsyncSend

Async
Receive

LowPowerListening

Alarm Alarm

ScpSenderP

Preamble

SenderC

AsyncSend

AsyncSend

RadioPower
Control

Sync
Interval

Channel

PollerC

Async
Receive

AsyncSend

MacControlC

Figure 5. Composition of the SCP protocol

optimization, the sender node will terminate the preamble as
soon as the recipient ACKs one packet, allowing both the
sender and receiver to go back to sleep early.

Second, X-MAC does not queue incoming packets, since
the sender will end the preamble as soon as one ACK is re-
ceived. X-MAC’s introduces an XmacFilterP component,
which is analogous to the BmacFilterP component except
that it excludes this queue.

4.3 SCP
Like X-MAC, SCP reuses several MLA components used

by B-MAC. SCP also introduces new components to embed
and extract timestamps for incoming and outgoing packets.
As shown in Figure 5, the ScpSyncSenderP component ap-
pends each outgoing packet with a 2-byte counter represent-
ing the time remaining on ChannelPollerC’s internal alarm
(i.e., how long until the node performs its next CCA check).
ScpSyncReceiverP reads these timestamps from incoming
packets and adjusts the local ChannelPollerC’s alarm ac-
cordingly. This adjustment ensures that all nodes wake for
CCA checks simultaneously. The ScpSyncSenderP period-
ically sends explicit time synchronization packets if no other
data is sent during some interval; the application may cus-
tomize this interval using the SyncInterval interface ex-
ported through the MacControlC component.

Low-latency IO

21

• Low-latency is essential for TDMA and contention-based protocols
• expose the async receive and sends from the radio layer

• provides hooks for low-latency operation
• the usual warnings about asynchronous context still apply

In Section 4.6 we discuss how this challenge can be over-
come so that augmenting an existing radio stack to provide
platform-independent ChannelMonitor support simply in-
volves wrapping the radio specific CCA check routine with
this interface.

3.4.3 CCA Control
MAC protocols with tight timing constraints, such as

TDMA protocols, require strict bounds on packet latencies.
However, packet backoff intervals can contribute an unpre-
dictable amount of latency if backoff decisions are left en-
tirely to the discretion of the radio stack. Specifically, the
radio may apply an initial backoff; perform a CCA check
to see if the shared medium is free; and apply an additional
backoff if contention is detected. To achieve the timing re-
quirements that some MAC protocols require, they must be
able to set these backoff intervals appropriately, or even dis-
able them altogether.

The CcaControl interface (similar to the MacControl
interface provided in [6]) allows a MAC protocol to con-
trol the radio layer’s CCA checks and subsequent back-
off behavior. Before each packet is sent, the radio layer
fires a getInitialBackoff event to allow the upper layer
to specify the packet’s initial backoff time. Likewise, the
getCongestionBackoff event is fired when a transmission
must back off due to channel contention. This event not only
allows upper layers to change the default congestion back off
time, but also indicates to the MAC protocol that a packet
has experienced contention, allowing it to cancel the pend-
ing transmission if the protocol requires. Finally, the getCca
command allows contention-free protocols to turn off CCA
checks entirely, keeping packet latency to a minimum. All
three of these events pass along the corresponding default
values defined by the radio, so that the MAC layer can selec-
tively leave them unchanged.

interface CcaControl {
async event bool getCca(msg, default);
async event uint16_t getInitialBackoff(msg, default);
async event uint16_t getCongestionBackoff(msg, default);

}

3.4.4 Low-Cost Packet Resending
MAC protocols often send multiple copies of packets in

tight loops, e.g., to create a long preamble out of shorter
packets. In many of these situations, the cost of resending
a packet should be as small as possible; e.g., the packets in
a preamble should have minimal gaps between them. Some
radio hardware, such as the CC2420, specifically offer sup-
port for this activity: they can quickly resend the last packet,
skipping time-consuming activities like loading the hardware
packet buffer. Our Resend interface exposes this capability
in a hardware-independent fashion. The resend command
resends the last packet sent over the radio using the fastest
retransmission path supported by the radio hardware. In the
absence of native radio support, packet resending can be em-
ulated using a simple one-packet buffer.

3.4.5 Low-Latency I/O
In order to achieve maximum power efficiency, many

MAC protocols expect to send packets with as short a de-
lay as possible. In particular, TDMA-based protocols and
some scheduled contention-based protocols stamp outgoing
packets with time synchronization information. To preserve
the accuracy of these timestamps, the MAC layer must be
able to send and process clock synchronization information
in a very time-sensitive fashion.

This low latency can be achieved by exposing radio hard-
ware events to the MAC layer with as thin a layer as possible.
In general, existing radio stacks do not follow this approach.
Instead, asynchronous hardware interrupts are converted into
synchronous tasks or threads, whose execution can be de-
ferred for an indeterminate length of time. This policy is sen-
sible at the application layer: executing I/O-handling code
within the context of a hardware interrupt is potentially dan-
gerous, and can prevent the radio from responding in a timely
fashion. However, this trade-off is not acceptable at the MAC
layer: when hardware interrupts fire in the middle of a long-
running computation, the corresponding tasks or threads pro-
duced to handle them often face arbitrary delays.

Radio Core

Low Power MAC

AsyncIOAdapter

AsyncReceive

Interface to
Upper Layers

Receive Send

AsyncSend

Figure 2. Asynchronous to synchronous I/O adaptation

MLA therefore exposes the radio’s send and receive op-
erations through AsyncReceive and AsyncSend interfaces,
as shown in Figure 2. These interfaces are similar to the cor-
responding synchronous Receive and Send interfaces used
in TinyOS, but are invoked or reachable directly from inter-
rupt handlers (i.e., asynchronous context) rather than tasks
or threads (i.e., synchronous context).

For the reasons listed above, MLA does not expose these
radio events directly to the upper layers. All I/O events
that the MAC layer does not consume are passed through
an AsyncIOAdapter, a component which converts asyn-
chronous I/O events into their synchronous counterparts by
posting tasks or scheduling a thread. Monolithic radio
stacks generally use a similar adapter internally; we simply
move this logic outside of the radio stack so that both our
hardware-independent and hardware-dependent components
can interface with the radio in a timely fashion. This subtle,
but important, change allows components developed above
the core radio stack to perform operations on incoming and

Component Library

22

Hardware Independent Hardware Dependent

Preamble Sender Radio Core

LPL Listener Local Time

Channel Poller Alarm

Slot Handlers (TDMA/CSMA)

Time Synchronization
Low Level Dispatcher
Asynchronous I/O Adapter

CSMA Protocols

Component Library

23

Hardware Independent Hardware Dependent

Preamble Sender Radio Core

LPL Listener Local Time

Channel Poller Alarm

Slot Handlers (TDMA/CSMA)

Time Synchronization

Low Level Dispatcher

Asynchronous I/O Adapter

TDMA Protocols

Component Library

24

Hardware Independent Hardware Dependent

Preamble Sender Radio Core

LPL Listener Local Time

Channel Poller Alarm

Slot Handlers (TDMA/CSMA)

Time Synchronization

Low Level Dispatcher

 Asynchronous I/O Adapter

Hybrid Protocols

Evaluation
• All evaluations performed on TelosB motes in TinyOS 2.0.1
• Implemented 5 MAC protocols

• B-MAC, X-MAC, SCP-Wustl, Pure TDMA, SS-TDMA
• Measure

• Reusability of components among protocols
• Memory footprint compared to monolithic implementations
• Throughput
• Latency
• Energy Consumption

25

Code Reuse

26

0

375

750

1125

1500

B-MAC X-MAC SCP-Wustl Pure TDMA SS-TDMA

Li
ne

s
of

 c
od

e

Reused
Protocol-Specific

Reusability of Components

27

B-MAC X-MAC SCP-Wustl Pure-TDMA SS-TDMA
Channel Poller
LPL Listener

Preamble Sender

Time Synchronization
TDMA Slot Handler
CSMA Slot Handler
Low Level Dispatcher
Async I/O Adapter
Alarm
Local Time
Radio Core
Other Components 3 3 4 2 2
Reused Components 6 6 8 7 8

Memory Footprint (TelosB)

28

0

4600

9200

13800

18400

B-MAC X-MAC

Monolithic
MLA

0

233

465

698

930

B-MAC X-MAC

Monolithic
MLA

ROM Overhead RAM Overhead

Throughput (BMAC)

29

0

0

1

1

2

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (k

bi
ts

/s
)

Number of sending nodes

B-MAC (MLA)
B-MAC (Monolithic)

Throughput

30

0

13

25

38

50

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (k

bi
ts

/s
)

Number of sending nodes

X-MAC (MLA)
X-MAC (Monolithic)

Latency

31

Since no monolithic implementations currently exist for
SCP in TinyOS 2.0, it is impossible to provide a fair com-
parison with its MLA implementation. Instead, we compare
its MLA implementation to the rest of the protocols and ver-
ify that the results obtained are consistent with the expected
operation of SCP. SCP’s throughput is an average of 81%
higher than MLA’s B-MAC implementation. SCP is able
to achieve higher throughput than B-MAC for two reasons.
First, SCP performs an extra back-off between preamble and
payload which B-MAC does not perform. This additional
back-off interval reduces the number of collisions under high
contention. Moreover, SCP includes optimizations for han-
dling bursty traffic that allow nodes to transmit more than
one packet per LPL interval.

Both TDMA protocols perform better than B-MAC and
worse than X-MAC. Pure TDMA has a linear increase in
throughput as the number of nodes increases, since exactly
one send slot is allocated to each sender node. SS-TDMA
achieved higher throughput than Pure TDMA since it al-
lows unallocated slots to be stolen for sending. SS-TDMA’s
throughput increases as more nodes are added, since multi-
ple nodes may be able to share the same stolen slots. Adding
more nodes also shrinks the performance gap with Pure
TDMA, since there are fewer unallocated slots. SS-TDMA’s
throughput levels off after more than 4 senders, due to in-
creased contention for stolen slots.
5.3 Latency

We evaluated the latencies of B-MAC, X-MAC, and SCP
on a multi-hop network. We placed 6 nodes in a line, spaced
1 m apart. The first mote injected a packet into the net-
work every 3 seconds. Each subsequent mote forwarded the
packet to its next neighbor. When a packet reached the end
of the line, the last node reversed the packet’s direction, and
the nodes forwarded the packet back to the first node. We
recorded each packet’s round-trip time at each of the first
five nodes. We computed the average latency and its stan-
dard deviation over 50 round trips.

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5

of hops

L
a
te

n
c
y
 (

m
s
)

B-MAC (MLA)

B-MAC (mono., orig.
CCA)

B-MAC (mono., new
CCA)

X-MAC (MLA)

X-MAC (mono., orig.
CCA)

X-MAC (mono., new
CCA)

SCP (MLA)

Figure 10. The average packet latency of contention-
based MAC implementations

The results are presented in Figure 10. SCP serves as a
useful baseline, since we expect the average latency to in-
crease by 100 ms at each hop4. Our experimental results fit

4Though SCP includes optimizations for reducing multi-hop la-

this prediction well. On rare occasion, a node would falsely
detect activity on the radio, and hold onto the packet for an
extra 100 ms before forwarding it. This adds a small average
delay above the expected 100 ms at each hop.

Also as expected, B-MAC and X-MAC have linearly-
increasing average latencies, with X-MAC having a much
smaller slope. Our implementations of B-MAC and X-MAC
perform comparably with the monolithic implementations.
Combined with the throughput measurements presented in
the previous section, these results demonstrate that the per-
formance impact of MLA’s component-based architecture on
MAC protocols is negligible.

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10

of senders

L
a
te

n
c
y
 (

m
s
)

Pure TDMA (MLA)

SS-TDMA (MLA)

Figure 11. The average packet latency of TDMA-based
MAC implementations

Since Pure TDMA and SS-TDMA are designed for
single-hop networks, we evaluated their latency in a sep-
arate single-hop network. For these protocols, we repeat
the throughput experiments performed for B-MAC, X-MAC,
and SCP, and record the average latency of each packet trans-
mitted. Again, we use a single sink node and vary the num-
ber of sender nodes from one to ten.

Pure TDMA has an average packet latency of 163.0 ms,
regardless of the number of senders. This is because each
node attempts to send a new packet immediately after the
previous packet is sent. Because each node is only allowed
to send one packet per slot, it must wait 160 ms for the next
frame before it can transmit again. In contrast, SS-TDMA
has an average latency of 28.6 ms. Unlike Pure TDMA, SS-
TDMA’s latency increases as the number of nodes increases.
This is because nodes try to steal unallocated slots in order
to transmit the packet more quickly. As the number of nodes
increases, so does the contention for those slots.
5.4 Duty Cycle

To measure the duty cycle of the various MAC layer im-
plementations, we augmented the radio stacks to count the
time that various hardware components were active. Specifi-
cally, we used a 32 KHz hardware counter to record the time
spent executing each of the three stages involved in turning
on the CC2420 radio: enabling the voltage regulator, turn-
ing on the oscillator, and finally powering the radio into re-
ceive mode. We collected this data during a separate run of
the latency benchmark application, which emulates a typical
low-to-medium load application. We do not consider Pure
TDMA or SS-TDMA in this experiment, as they have fixed
duty cycles by design.

Figure 12 shows the average duty cycle of the six nodes.
Our B-MAC and X-MAC implementations had 17% and

tency, they only take effect when a single node produces multiple
packets within one LPL interval.

Duty cycle

32

0

5

10

15

20

25

30

35

B
-M

A
C

(M
L
A
)

B
-M

A
C

(m
o
n
o
li
th

ic

+
 o

ri
g
in

a
l

C
C
A
)

B
-M

A
C

(m
o
n
o
li
th

ic

+
 n

e
w

C
C
A
)

X
-M

A
C

(M
L
A
)

X
-M

A
C

(m
o
n
o
li
th

ic

+
 o

ri
g
in

a
l

C
C
A
)

X
-M

A
C

(m
o
n
o
li
th

ic

+
 n

e
w

C
C
A
)

S
C
P
 (

M
L
A
)

MAC protocol

D
u

ty
 c

y
c
le

 (
%

)

Voltage Regulator

Oscillator

Radio

Figure 12. The average duty cycle of various MAC im-
plementations

18% higher duty cycles than their respective monolithic
counterparts. When the monolithic stack is augmented with
the portable CCA routine, the difference in duty cycle be-
tween the two stacks becomes insignificant. Specifically,
when using the same CCA routine, there is a 4% difference
between the B-MAC implementations and a 3% difference
between the X-MAC implementations. In the case of B-
MAC, the MLA implementation actually outperformed that
of the monolithic stack. These results indicate that the dif-
ferences in the duty cycles are caused by our particular im-
plementation of the CCA routine instead of the overall MLA
architecture. We expect that the difference between the two
CCA routines could be reduced by further tuning the portable
CCA check’s length and sensitivity.

The duty cycle is highly dependent on the senstivity of the
CCA check routine. Tuning the duration of this CCA check
allows the developer to achieve a desired tradeoff between
performance and the duty cycle. As described in Section
3.4.2, MLA’s ChannelMonitor interface allows developers
to tune the duration (in ms) of the CCA check in a platform-
independent fashion, using the underlying LocalTime in-
terface. In contrast, platform-dependent hand-tuning of the
CCA check, as is done inside of the monolithic cc2420
stack, can potentially offer better energy efficiency at the
cost of extensive re-tuning for each new sensor platform.
In the future, we will consider ways for developers to op-
tionally associate a MAC protocol implementation with a
platform-dependent CCA routine within MLA. This capa-
bility would allow developers to achieve optimal energy ef-
ficiency on specific sensor platforms, while still permitting
the MAC protocol to fall back on (potentially less-efficient)
platform-independent tuning on other platforms.

Our implementation of SCP exhibits a 11% lower duty
cycle than our B-MAC implementation. This difference is
due to the fact that SCP can turn the sender’s radio off af-
ter sending a short preamble and a single payload packet.
However, because we have not yet implemented SCP’s over-
hearing avoidance optimization, SCP still pays the penalty of
keeping the radio on for the entire polling interval if it over-
hears a preamble. This prevents our implementation of SCP
from achieving a duty cycle comparable to X-MAC.

6 Conclusion
We have developed MLA, a component-based archi-

tecture for the MAC layer. MLA consists of high-level,
hardware independent components as well as low-level,
hardware-dependent components. We have implemented
MLA on the TinyOS 2.0.1 operating system, and evaluated
its flexibility through the implementation of five representa-
tive MAC protocols that span the protocol design space. Em-
pirical results show that our architecture can achieve up to
73% code reuse, while achieving comparative performance
and memory footprint to monolithic implementations of the
same protocols. These results demonstrate the reusability,
flexibility, and efficiency of our component-based architec-
ture in supporting a diverse MAC protocols for use in wire-
less sensor networks.
Acknowledgement

This work is supported by NSF NeTS-NOSS Grant CNS-
0627126. We would also like to thank Lama Nachman and
the reviewers for their valuable feedback.
7 References

[1] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker, and I. Stoica, “A
unifying link abstraction for wireless sensor networks,” in SenSys, 2005.

[2] K. Klues, G. Xing, and C. Lu, “Towards a unified radio power management
architecture for wireless sensor networks,” in WWSNA, 2007.

[3] ——, “Link layer support for flexible radio power management in wireless sen-
sor networks,” in IPSN, 2007.

[4] C. T. Ee, et. al., R. Fonseca, S. Kim, D. Moon, and A. Tavakoli, “A modular
network layer for sensornets,” in OSDI, 2006.

[5] W. Ye, F. Silva, and J. Heidemann, “Ultra-low duty cycle MAC with scheduled
channel polling,” in SenSys, 2006.

[6] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access for wireless
sensor networks,” in SenSys, 2004.

[7] W. Ye, J. Heidemann, and D. Estrin, “Medium access control with coordi-
nated adaptive sleeping for wireless sensor networks,” IEEE/ACM Trans. Netw.,
vol. 12, no. 3, 2004.

[8] T. van Dam and K. Langendoen, “An adaptive energy-efficient MAC protocol for
wireless sensor networks,” in SenSys, 2003.

[9] IEEE Computer Society, “Part 15.4: wireless medium access control (MAC) and
physical layer (PHY) specifications for low-rate wireless personal area networks
(LR-WPANs),” 2003.

[10] I. Rhee, A. Warrier, J. Min, and L. Xu, “DRAND: distributed randomized TDMA
scheduling for wireless ad-hoc networks,” in MobiHoc, 2006.

[11] I. Rhee, A. Warrier, M. Aia, and J. Min, “Z-MAC: a hybrid MAC for wireless
sensor networks,” in SenSys, 2005.

[12] G.-S. Ahn, E. Miluzzo, A. T. Campbell, S. G. Hong, and F. Cuomo, “Funneling-
MAC: A localized, sink oriented MAC for boosting fidelity in sensor networks,”
in SenSys, 2006.

[13] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler, “The nesC
language: A holistic approach to networked embedded systems,” in PLDI, 2003.

[14] P. Levis, “TinyOS 2.0 overview.” [Online]. Available: http://www.tinyos.net/
dist-2.0.0/tinyos-2.0.0/doc/html/overview.html

[15] [Online]. Available: http://tinyos.cvs.sourceforge.net/tinyos/tinyos-2.x-contrib/
wustl/upma/

[16] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-MAC: a short preamble
MAC protocol for duty-cycled wireless sensor networks,” in SenSys, 2006.

MLA: Summary
• Component-based, low-power MAC architecture

• Increases flexibility
• Simplifies development
• Reduces porting effort

• Provides evidence contrary to the existing philosophy that radio
stacks must be monolithic to be efficient

• Bridge the gap between algorithms/protocols and systems.

• Code: tinyos-2.x-contrib/wustl/upma

33

Solve the Real Problems
• Hard to develop new MAC protocols?

• RI-MAC (SenSys’08) built on top of MLA
• More built on MLA

• Hard to maintain multiple MAC stacks as OS evolves?
• Upgrading MLA for TinyOS 2.0.1->2.0.2->2.1 took several hours
• Multiple MAC protocols survived upgrade without any change!

• Protocols not reusable across radio/processor platforms?
• Supports both Telos and MicaZ

• TinyOS 2.1 version available from TinyOS “contrib” CVS

34

References
• K. Klues, G. Hackmann, O. Chipara and C. Lu, A Component-Based

Architecture for Power-Efficient Media Access Control in Wireless
Sensor Networks, SenSys'07.

• K. Klues, G. Xing and C. Lu, Link Layer Support for Unified Radio
Power Management in Wireless Sensor Networks, IPSN'07.

35

