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Two practical routing protocols

e Taming the Underlying Challenges of Reliable Multihop Routing
in Sensor Networks.

e Alec Woo, Terence Tong, David Culler -- Berkeley

e Collection Tree Protocol (CTP)

e Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss
Philip Levis -- Stanford

e With a little help from
e RSSI is Under Appreciated. Kannan Srinivasan and Philip Levis.

e Four-Bit Wireless Link Estimation. Rodrigo Fonseca, Omprakash
Gnawali, Kyle Jamieson, Philip Levis



Routing in the wireless domain

¢ A fundamental challenge for wireless networks (including WSNSs)
¢ years of research efforts to develop a robust solution

e Challenges
e dynamics wireless channels
e multiple optimization goals (reliability, delay, energy)
® mobile users
e [imited memory (particularly on WSNSs)



Anatomy of a routing protocol

* Link estimation
e identify good quality links

e Path cost metrics
e determine the quality of a path

e State maintenance
¢ achieving a consistent state across nodes
® minimizing overhead
¢ [imited memory



Link Estimators



Empirical properties of wireless links
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e Effective region - good link quality, short distances
e Transitional region - high variability in link quality, long distances
¢ these links may be essential for efficient routing solutions



Empirical properties of wireless links
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e Link variability
e due to changes in the noise levels over time
e due to mobility



Link Quality Estimation

¢ |dentify good links
e ETX: Expected Transmission Count [Mobicom 2003]
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ETX and EWMA

Beacons

ETX Estimate

(alpha = 0.8) 2.0



ETX and EWMA

Beacons

ETX Estimate

(alpha = 0.8) 2.0



ETX and EWMA

Beacons

ETX Estimate

(alpha = 0.8) 2.0



ETX and EWMA

Beacons

ETX Estimate

1.0

(alpha = 0.8) 2.0

t1



ETX and EWMA

Beacons

1.0

ETX Estimate ‘

(alpha = 0.8) 2.0 “1 8



ETX and EWMA
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ETX and EWMA
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WMEWMA Estimator

e Link quality is measured as the percent of packets that arrived
undamaged on a link.

e Compute an average success rate over a time period, T, and
smoothes with an exponentially weighted moving average (EWMA)

e Average calculation

Packets Received in t
max(Packets Expected in t,Packets Received in t)

e Tuning parameters:
e Time window t and history size of the estimator (Y
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WMEWMA tracks the empirical trace fairly well
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Figure 3: WMEWMA(¢t = 30,a = 0.6) with stable

setting using empirical traces.
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WMEWMA tracks the empirical trace fairly well
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setting using empirical traces.

Is this a good estimator?
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WMEWMA Critique

e Advantages:
¢ simple algorithm
e minimal memory usage

e Disadvantages
® it requires at least W packets before making a quality estimation
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WMEWMA Critique

e Advantages:
¢ simple algorithm
e minimal memory usage

e Disadvantages
® it requires at least W packets before making a quality estimation

Can we estimate link quality based on PHY
measurements?
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Is RSSI indicative of PRR?
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Is RSSI indicative of PRR?
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Is RSSI indicative of PRR?
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Is RSSI indicative of PRR?
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Noise floor at different nodes
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Is LQI indicative of PRR?
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Is LQI indicative of PRR?
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Is LQI indicative of PRR?
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Average LQI
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Errors in using LQI as an indicator of PRR
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Using PHY layer information

e PHY layer indicators are attractive => provide instant feedback
e Our current understanding:
e RSSI may be used to determine if a node is the connected region

e RSSI is not very useful in determining the quality in the transitional
region

e | QI has poor correlation with PRR due to poor resolution (few bits)

e Research is ongoing on how to incorporate LQI and RSSI
information into link estimators

18



Using PHY layer information

e PHY layer indicators are attractive => provide instant feedback
e Our current understanding:
e RSSI may be used to determine if a node is the connected region

e RSSI is not very useful in determining the quality in the transitional
region

e | QI has poor correlation with PRR due to poor resolution (few bits)

e Research is ongoing on how to incorporate LQI and RSSI
information into link estimators

Can we integrate information from multiple
layers?
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State of the Art Today

e Not all information used
e Coupled designs

e MLQI
e Physical layer (LQI)
e Coupled implementation

Network Layer

19



Scope

¢ |dentify the information different layers of the stack can provide

e Define a narrow interface between the layers and the link estimator

e Describe an accurate and efficient estimator implemented using the

four bit interface

Network Layer

T 3

Compare Pin
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Layers and Information

e Better estimator with information from different layers?
¢ Physical Layer - packet decoding quality
¢ | ink Layer - packet acknowledgements
e Network Layer - relative importance of links

Network Layer

21



PHY Info Not Sufficient
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PHY Info Not Sufficient
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PHY Info Not Sufficient
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PHY Info Not Sufficient
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PHY Info Not Sufficient
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Physical Layer

e Decoding Quality
® Agile
® Free
e Asymmetric (receive) quality
e Radio-specific
e Examples
e | QIl, RSSI, SNR

Network Layer
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Link Layer

e Outcome of unicast packet
transmission

e Higher quality links
e Successful TX
e Successful ACK reception

e Example
e EAR [Mobicom 2006]

Network Layer

vivd
ACK
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Network Layer

e |s a link useful?

o Keep

useful links in the table

e Network layer decides
e Geographic routing

e Geographically diverse links

e Co

lection
_ink to the parent

_ink on a good path

Network Layer
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The Interfaces

LE
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The Interfaces

Network Layer
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Interface Detaills

Network Layer

T 3

Compare Pin

PIN

Keep this link in the
table
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Interface Detaills
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Interface Detaills

COMPARE

Is this a useful link?

Network Layer
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Interface Detaills

COMPARE PIN |
Is this a useful link? Keep this link in the
Network Layer table

T 3

Compare  Pin

ACK WHITE
A packet transmission Packets on this
on this link was channel experience

acknowledged | few errors
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The 4-bit link estimator
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The 4-bit link estimator

e Combines information from data packets and beacons

e Uses feedback from the
e phy layer - white-list a link as having low prob. of decoding errors
¢ link layer - acknowledgments
e network - what links to estimate

e Hybrid estimator
e ETX for unicast packets: window size / num of acked unicast pkts
e Beacon packets: EWMA(window size/num of received beacons)
e Combined using: EWMA

28



Using ACK

Beacons H

1.5

4BETX 5.0

4.3

I:I Received/Acked Packet

:Bi Lost/Unacked Packet

29



Using ACK

Beacons H :Hi H :Hi
1.5
4B ETX 5.0 4.3
ACK

I:I Received/Acked Packet

:Bi Lost/Unacked Packet

29



Using ACK
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Using ACK
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Using ACK
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Using ACK
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Neighbor Table
Management



Neighbor Table

e Maintain link estimation statistics and routing information of each
neighbor

* [ssue:

e Density can be high but memory is limited

e At high density, many links are poor or asymmetric
e Question:

e Can we use constant memory to maintain a set of good neighbors
regardless of cell density?

e when table becomes full,
¢ should we add new neighbor?
e |f sO, evict which old neighbor?
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Management Algorithm: FREQUENCY

e When we hear a node, if
¢ |n table: increment a counter for this node
e Not in table
e |[nsert if table is not full
e down-sample if table is full

e down-sample scheme: P table size T

™ # of neighbours N
e |f successful, insert only if some nodes can be evicted
e Eviction: (FREQUENCY)
e Decrement counter for each table entry
* Nodes with counter = 0 can be evicted
e Otherwise, all nodes stay in the table
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FREQUENCY is very effective

e utilize 50% to 70% of the table space to maintain a set of good

neighbors
e Even for densities much greater than the table size
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at different densities with a table size of 40 entries.

Good neighbor: nodes most useful for routing
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