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Overview
• Concurrency Control:

• Concurrency of I/O operations alone, not of threads in general
• Synchronous vs. Asynchronous I/O

• Energy Management:
• Power state of devices needed to perform I/O operations
• Determined by pending I/O requests using Asynchronous I/O
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Overview

The more workload information an 
application can give the OS, the more energy it 

can save when scheduling that workload

• Concurrency Control:
• Concurrency of I/O operations alone, not of threads in general
• Synchronous vs. Asynchronous I/O

• Energy Management:
• Power state of devices needed to perform I/O operations
• Determined by pending I/O requests using Asynchronous I/O
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Outline
• Background Information
• Platform and Application
• Driver architecture
• Evaluation
• Conclusion
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Motivation
• Difficult to manage energy in traditional OSs

• Hard to tell OS about future application workloads
• All logic pushed out to the application
• API extensions for hints?

6



Existing OS Approaches
• Dynamic CPU Voltage Scaling

• Vertigo	 	 - Application workload classes
• Grace OS	 	 - Explicit real-time deadlines

• Disk Spin Down
• Coop-IO	 	 - Application specified timeouts  
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A little application knowledge can help us alot



• Domain in need of unique solution to this problem
• Harsh energy requirements
• Very small source of power (2 AA batteries)
• Must run unattended from months to years

• First generation sensornet OSes (TinyOS, Contiki, Mantis, ...)
• Push all energy management to the application
• Optimal energy savings at cost of application complexity

Sensor Networks
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ICEM: Integrated Concurrency and Energy Management

• A device driver architecture that automatically manages energy
• Implemented in TinyOS 2.0 -- all drivers follow it
• Introduces Power Locks, split-phase locks with integrated energy and 

configuration management
• Defines three classes of drivers: dedicated, shared, virtualized
• Provides a component library for building drivers

• Advantages of using ICEM
• Energy efficient – At least 98.4% as hand-tuned implementation
• Reduces code complexity – 400 vs. 68 lines of code
• Enables natural decomposition of applications
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Outline
• Introduction and Motivation
• Platform and Application
• ICEM architecture
• Evaluation
• Conclusion
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• Six major I/O devices
• Possible Concurrency

• I2C, SPI, ADC
• Energy Management

• Turn peripherals on only when needed 
• Turn off otherwise

The Tmote Platform
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Representative Logging Application

Every 12 hours:
  For all new entries:
    Send current sample
    Read next sample

Flash

Consumer

Sensors Radio

Every 5 minutes:
  Write prior samples
  Sample photo active
  Sample total solar
  Sample temperature
  Sample humidity

Producer
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Code Complexity

Every 5 minutes:
  Log prior readings
  sample humidity
  sample total solar
  sample photo active
  sample temperature              

ICEM Application
Every 5 minutes:             
  Turn on SPI bus             
  Turn on flash chip           
  Turn on voltage reference 
  Turn on I2C bus
  Log prior readings
  Start humidity sample
  Wait 5ms for log             
  Turn off flash chip         
  Turn off SPI bus              
  Wait 12ms for vref         
  Turn on ADC
  Start total solar sample
  Wait 2ms for total solar
  Start photo active sample
  Wait 2ms for photo active
  Turn off ADC
  Turn off voltage reference
  Wait 34ms for humidity
  Start temperature sample
  Wait 220ms for temperature
  Turn off I2C bus

Hand-Tuned Application



Outline
• Introduction and Motivation
• Platform and Application
• ICEM architecture
• Evaluation
• Conclusion
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Split-Phase I/O Operations
• Split-phase I/O operations

• Implemented within a single thread of control
• Application notified of I/O completion through direct upcall
• Driver given workload information before returning control
• Example: read()        readDone()
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Application

Driver

read()  readDone() 

I/O request I/O interrupt

void readDone(uint16_t val) {
  next_val = val;
  read();
}



ICEM Architecture
• Defines three classes of drivers

• Virtualized – provide only functional interface
• Dedicated – provide functional and power interface
• Shared  – provide functional and lock interface
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Virtualized Device Drivers
• Provide only a Functional interface

• Assume multiple users
• Implicit concurrency control through buffering requests
• Implicit energy management based on pending requests
• Implemented for higher-level services that can tolerate longer latencies
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Energy:	
 	
 Implicit
Concurrency:	
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Virtualized



Dedicated Device Drivers
• Provide Functional and Power Control interfaces

• Assume a single user
• No concurrency control

• Explicit energy management 
• Low-level hardware and bottom-level abstractions have a dedicated 
driver
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Shared Device Drivers
• Provide Functional and Lock interfaces

• Assume multiple users
• Explicit concurrency control through Lock request
• Implicit energy management based on pending requests
• Used by users with stringent timing requirements
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Concurrency: Explicit
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ICEM Architecture
• Defines three classes of drivers

• Virtualized – provide only functional interface
• Dedicated – provide functional and power interface
• Shared  – provide functional and lock interface

• Power Locks split-phase locks with integrated energy and configuration 
management
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ICEM Architecture
• Defines three classes of drivers

• Virtualized – provide only functional interface
• Dedicated – provide functional and power interface
• Shared  – provide functional and lock interface

• Power Locks: split-phase locks with integrated energy and configuration 
management

• Component library
• Arbiters  – manage I/O concurrency
• Configurators – setup device specific configurations
• Power Managers – provide automatic power management
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Component Library
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n Implement ArbiterConfigure interface

n Call hardware specific configuration from dedicated driver



Component Library

Power
Control

HW-Specific
Configuration

Arbiter

Arbiter
Configure

Default
Owner

Configurator Power Manager

Lock

n Implement DefaultOwner interface

n Power down device when device falls idle

n Power up device when new lock request comes in

n Currently provide Immediate and Deferred policies



Shared Driver Example
• Msp430 USART (Serial Controller)

• Three modes of operation – SPI, I2C, UART
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Shared Driver Example
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Virtualized Driver Example
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Outline
• Introduction and Motivation
• Platform and Application
• ICEM architecture
• Evaluation
• Conclusion
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Applications

• Hand Tuned  – Most energy efficient
• ICEM  – All concurrent operations
• Serial +  – Optimal serial ordering 
• Serial -  – Worst case serial ordering

Every 12 hours:
  For all new entries:
    Send current sample
    Read next sample

Flash

Consumer

Sensors Radio

Every 5 minutes:
  Write prior samples
  Sample photo active
  Sample total solar
  Sample temperature
  Sample humidity

Producer



Tmote Energy Consumption
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Sampling Power Trace

Overhead of ICEM to Hand-Tuned Implementation
	
 = ADC Timeout + Power Lock Overheads
With 288 samples per day
	
 ≈ 2.9 mAs/day 
 ≈ 1049 mAs/year

  Insignificant compared to total
  5.60%  of total sampling energy
  0.03% of total application energy
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Evaluation Conclusions
• Conclusions about the OS

• Small RAM/ROM overhead
• Small computational overhead
• Efficiently manages energy when given enough information

• Conclusions for the developer
• Build drivers short power down timeouts
• Submit I/O requests in parallel
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Conclusion
• ICEM: Integrated Concurrency and Energy Management

• Device driver architecture for low power devices
• At least 98.4% as energy efficient as hand-tuned implementation of 

representative application
• Simplifies application and driver development
• Questions the assumption that applications must be responsible for all 
energy management and cannot have a standardized OS with a simple 
API

74



83

Questions?



84

Questions?

• SourceForge TinyOS CVS repository:
w http://sourceforge.net/cvs/?group_id=28656 

• Library components and interfaces
w tinyos-2.x/tos/interfaces
w tinyos-2.x/tos/lib/power
w tinyos-2.x/tos/system

• Example Drivers
w Atmega128 ADC: tos/chips/atm128/adc 
w MTS300 Photo: tos/sensorboards/mts300 
w MSP430 USART0: tos/chips/msp430/usart 
w Storage: tos/chips/stm25p 
w CC2420: tos/chips/cc2420
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Hardware
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Future Work

• Compile-time deadlock detection
• Conditional I/O Operations

if(Temp.read() > 30) Humidity.read()
• Improved OS scheduling
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Disclaimers

• Omission of MCU power management discussion 
• Run time checks on arbiter operations
• Implementing ICEM in threaded OS
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Microbenchmarks: Overhead

• Per request MCU cycle overhead (locking, unlocking)

Worst Case  = 371 cycles
  ≈ 93 µs on Tmote
  ≈ 0.168 mAms

 Very small
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Tmote Current Consumption

Average current consumption for application operations
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Sampling Power Trace

Overhead of ICEM over Hand-Tuned Implementation
 = ADC Timeout + Arbiter Overheads
= (536uA * 17ms) + (1920uA * 0.45ms)
 = 9976 uAms/sample
 ≈ 0.01mAs / sample
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Virtualized Driver Example
• Flash Storage

w Two storage abstractions – Log, Block

Arbiter

Immediate
Power ManagerSPI User

Log UserBlock User

Sector

Block Virtualizer Log Virtualizer
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• Sensornet applications have the capability of 
exploiting high levels of concurrency
w Must do so without threads (i.e no concept 

of an execution entity) 
w Require extreme low-power operation

• Traditional systems not well suited 
w Blocking application level I/O calls
w Thread scheduling in the device driver

Problem
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