Routing:
Collection Tree Protocol

Original slides by Omprakash Gnawal



Collection

e Anycast route to the sink(s)

e collects data from the network to a small
number of sinks

e network primitive for other protocols
e A distance vector protocol

Why focus on a few sinks?
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Control and Data Rate Mismatch

e Can lead to poor performance
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CTP Noe’s Approach

e Enable control and data plane interaction

¢ Two mechanisms for efficient and agile topology maintenance
e datapath validation
e adaptive beaconing

Control Data
Plane Plane



Outline

e Control plane
e datapath validation
e adaptive beacons
e Data plane
® Queuing
e transmit time
e cache
e Evaluation

e Conclusion



Data path validation



Datapath validation

e Use data packets to validate the topology
® inconsistencies
® |loops
e Receiver checks for consistency on each hop
e transmitter’s cost is in the header
e Same time-scale as data packets
¢ validate only when necessary
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Routing Loops

e Cost does not decrease
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Routing Consistency

¢ Next hop should be closer to the destination
¢ Maintain this consistency criteria on a path

Vie {0,k—1}, ETX(n;) >ETX(nj;1)

¢ Inconsistency due to stale state
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Detecting Routing Loops

e Datapath validation
e cost in the packet
® receiver checks

¢ Inconsistency

¢ |arger cost than
on the packet

¢ On Inconsistency
e don’t drop the packets
¢ signal the control plane
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Routing Consistency



How Fast to Send Beacons?

¢ Using a fixed rate beacon interval
e (Can be too fast
e Can be too slow
o Agility-efficiency tradeoff

e Agile+Efficient possible?
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Routing as Consistency

¢ Routing as a consistency problem
e costs along a path must be consistent

¢ Use consistency protocol in routing
¢ |everage research on consistency protocols
¢ trickle
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Trickle

¢ Detecting inconsistency

e code propagation: version number mismatch

e does not work for routing: use path consistency
e Control propagation rate

¢ start with a small interval

e double the interval up to some max

¢ reset to the small interval when inconsistent
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Control Traffic Timing

e Extend Trickle to time routing beacons

¢ Reset the interval
e ETX(receiver) >= ETX(sender)
e significant decrease in gradient [found better link]
e “Pull” bit - no valid route

— *
Increasing interval  Reset interval
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Adaptive Beacon Timing
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Adaptive vs Periodic Beacons
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Adaptive vs Periodic Beacons
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Node Discovery

Tutornet
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Efficient and agile at the same time
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Data Plane



Data plane

e Goals: efficient, robust, and reliable forwarding

¢ Mechanisms
e per client queueing
e hybrid send queue
e transmit timer
e transmit cache
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Data plane mechanisms

e Queueing discipline
e Per-client queueing [top-level]
e each client may have one outstanding packet
e achieves better fairness than a shared queue
e Hybrid send queue [lower-level]
e contains both route-through and locally-generated traffic
e duplicate packets are dropped [i.e., not inserted in the queue]

e Transmission Cache
e for each transmitted packet insert (src, seq, THL)
e determine if a packet is duplicate
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Transmit Timer

e Self-interference between packets may be a problem
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Increased likelihood of collisions
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Transmit Timer

¢ Rate control: delay the transmission of packets

e the transmission of consecutive packets is randomized between (1.5, 2.5)
packet times

¢ |s this good enough?
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Evaluation



Experiments

12 testbeds
20-310 nodes

7 hardware
platforms

e 4 radio
technologies

¢ 6 link layers

Testbed Platform  Nodes Physical size

m? or m?
Tutornet (16) Tmote 91 50x25x10
Wymanpark Tmote 47 80x10
Motelab Tmote 131 40x20x15
Kansei1? TelosB 310 40 %20
Mirage Mica2dot 35 5020
NetEye Tmote 125 6 x4
Mirage MicaZ 86 5020
Quanto Epic-Quanto 49 35x30
Twist Tmote 100 30x13x17
Twist eyesIFXv2 102 30x13x17
Vinelab Tmote 48 60 %30
Blaze? Blaze 20 30x30

Variations in hardware, software, RF environment, and topology
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Evaluation Goals

e Reliable?

e Packets delivered to the sink
o Efficient?

e TX required per packet delivery
e Robust?

e Performance with disruption

29



CTP Noe Trees
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Reliable, Efficient, and Robust

Testbed Delivery Ratio
Wymanpark 0.9999
Vinelab 0.9999
Tutornet 0.9999
NetEye 0.9999
Kansei 0.9998
Mirage-MicaZ 0.9998
Quanto 0.9995
Blaze 0.9990
Twist-Tmote 0.9929
Mirage-Mica2dot 0.9895
Twist-eyes|FXv?2 0.9836
Motelab 0.9607
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High end-to-end delivery ratio
(but not on all the testbeds!)
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Reliable, Efficient, and Robust
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Reliable, Efficient, and Robust
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Reliable, Efficient, and Robust
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Reliable, Efficient, and Robust
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Reliable, Efficient, and Robust
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Reliable, Efficient, and Robust
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Reliable, Efficient, and Robust
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Node ID
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Node ID
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Tutornet Delivery Ratio > 0.99

High delivery ratio despite serious network-wide disruption
(most loss due to reboot while buffering packet)
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CTP Noe Performance Summary

e Reliability
e Delivery ratio > 90% in all cases
e Efficiency
e | ow cost and 5% duty cycle
¢ Robustness
¢ Functional despite network disruptions
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Conclusion

e “Hard” networks — good protocols

e Tutornet & Motelab
¢ Wireless routing benefits from data and control plane interaction
e Lessons applicable to distance vector routing

e Datapath validation & adaptive beaconing

Data trace from all the testbeds available at

http://sing.stanford.edu/gnawali/ctp/

38



Prior Work

Control Plane Data Plane
ETX, MT, Flush, RMST,
MultiHopLQl, CODA, Fusion,
EAR, LOF, AODV, IFRC, RCRT
DSR, BGP, RIP,
OSPF, Babel
Link Layer
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