Routing: Collection Tree Protocol

Original slides by Omprakash Gnawal

Collection

• Anycast route to the sink(s)

- collects data from the network to a small number of sinks
- network primitive for other protocols
- A distance vector protocol

Why focus on a few sinks?

distance vector vs link state

Common Architecture

Wireless Link Dynamics

Wireless Link Dynamics

Control and Data Rate Mismatch

Can lead to poor performance

Control and Data Rate Mismatch

Can lead to poor performance

CTP Noe's Approach

- Enable control and data plane interaction
- Two mechanisms for efficient and agile topology maintenance
 - datapath validation
 - adaptive beaconing

Outline

Control plane

- datapath validation
- adaptive beacons

Data plane

- queuing
- transmit time
- cache
- Evaluation
- Conclusion

Data path validation

Datapath validation

- Use data packets to validate the topology
 - inconsistencies
 - loops
- Receiver checks for consistency on each hop
 - transmitter's cost is in the header
- Same time-scale as data packets
 - validate only when necessary

Cost does not decrease

Routing Consistency

- Next hop should be closer to the destination
- Maintain this consistency criteria on a path

$$\forall i \in \{0, k-1\}, ETX(n_i) > ETX(n_{i+1})$$

Inconsistency due to stale state

Datapath validation

- cost in the packet
- receiver checks

- larger cost than on the packet
- On Inconsistency
 - don't drop the packets
 - signal the control plane

Datapath validation

- cost in the packet
- receiver checks

- larger cost than on the packet
- On Inconsistency
 - don't drop the packets
 - signal the control plane

Datapath validation

- cost in the packet
- receiver checks

- larger cost than on the packet
- On Inconsistency
 - don't drop the packets
 - signal the control plane

Datapath validation

- cost in the packet
- receiver checks

- larger cost than on the packet
- On Inconsistency
 - don't drop the packets
 - signal the control plane

Datapath validation

- cost in the packet
- receiver checks

- larger cost than on the packet
- On Inconsistency
 - don't drop the packets
 - signal the control plane

Datapath validation

- cost in the packet
- receiver checks

- larger cost than on the packet
- On Inconsistency
 - don't drop the packets
 - signal the control plane

Datapath validation

- cost in the packet
- receiver checks

- larger cost than on the packet
- On Inconsistency
 - don't drop the packets
 - signal the control plane

Datapath validation

- cost in the packet
- receiver checks

- larger cost than on the packet
- On Inconsistency
 - don't drop the packets
 - signal the control plane

Datapath validation

- cost in the packet
- receiver checks

- larger cost than on the packet
- On Inconsistency
 - don't drop the packets
 - signal the control plane

• Datapath validation

- cost in the packet
- receiver checks

- larger cost than on the packet
- On Inconsistency
 - don't drop the packets
 - signal the control plane

• Datapath validation

- cost in the packet
- receiver checks

- larger cost than on the packet
- On Inconsistency
 - don't drop the packets
 - signal the control plane

• Datapath validation

- cost in the packet
- receiver checks
- Inconsistency
 - larger cost than on the packet
- On Inconsistency
 - don't drop the packets
 - signal the control plane

• Datapath validation

- cost in the packet
- receiver checks

- larger cost than on the packet
- On Inconsistency
 - don't drop the packets
 - signal the control plane

Datapath validation

- cost in the packet
- receiver checks

- larger cost than on the packet
- On Inconsistency
 - don't drop the packets
 - signal the control plane

• Datapath validation

- cost in the packet
- receiver checks

- larger cost than on the packet
- On Inconsistency
 - don't drop the packets
 - signal the control plane

• Datapath validation

- cost in the packet
- receiver checks

- larger cost than on the packet
- On Inconsistency
 - don't drop the packets
 - signal the control plane

Datapath validation

- cost in the packet
- receiver checks

- larger cost than on the packet
- On Inconsistency
 - don't drop the packets
 - signal the control plane

Datapath validation

- cost in the packet
- receiver checks

- larger cost than on the packet
- On Inconsistency
 - don't drop the packets
 - signal the control plane

• Datapath validation

- cost in the packet
- receiver checks

- larger cost than on the packet
- On Inconsistency
 - don't drop the packets
 - signal the control plane

• Datapath validation

- cost in the packet
- receiver checks

- larger cost than on the packet
- On Inconsistency
 - don't drop the packets
 - signal the control plane

Datapath validation

- cost in the packet
- receiver checks

- larger cost than on the packet
- On Inconsistency
 - don't drop the packets
 - signal the control plane

• Datapath validation

- cost in the packet
- receiver checks

- larger cost than on the packet
- On Inconsistency
 - don't drop the packets
 - signal the control plane

Routing Consistency

How Fast to Send Beacons?

• Using a fixed rate beacon interval

- Can be too fast
- Can be too slow
- Agility-efficiency tradeoff
- Agile+Efficient possible?

Routing as Consistency

- Routing as a consistency problem
 - costs along a path must be consistent
- Use consistency protocol in routing
 - leverage research on consistency protocols
 - trickle

Trickle

Detecting inconsistency

- code propagation: version number mismatch
- does not work for routing: use path consistency
- Control propagation rate
 - start with a small interval
 - double the interval up to some max
 - reset to the small interval when inconsistent

Control Traffic Timing

- Extend Trickle to time routing beacons
- Reset the interval
 - ETX(receiver) >= ETX(sender)
 - significant decrease in gradient [found better link]
 - "Pull" bit no valid route

Adaptive Beacon Timing

Tutornet

Infrequent beacons in the long run

Adaptive Beacon Timing

Tutornet

Infrequent beacons in the long run

Adaptive Beacon Timing

Tutornet

Infrequent beacons in the long run

Adaptive vs Periodic Beacons

Adaptive vs Periodic Beacons

Node Discovery

Data Plane

Data plane

• Goals: efficient, robust, and reliable forwarding

• Mechanisms

- per client queueing
- hybrid send queue
- transmit timer
- transmit cache

Data plane mechanisms

• Queueing discipline

- Per-client queueing [top-level]
 - each client may have one outstanding packet
 - achieves better fairness than a shared queue
- Hybrid send queue [lower-level]
 - contains both route-through and locally-generated traffic
 - duplicate packets are dropped [i.e., not inserted in the queue]

Transmission Cache

- for each transmitted packet insert (src, seq, THL)
- determine if a packet is duplicate

Transmit Timer

• Self-interference between packets may be a problem

Transmit Timer

• Rate control: delay the transmission of packets

- the transmission of consecutive packets is randomized between (1.5, 2.5) packet times
- Is this good enough?

Evaluation

Experiments

- 12 testbeds
- 20-310 nodes
- 7 hardware platforms
- 4 radio technologies
- 6 link layers

Testbed	Platform	Nodes	Physical size m^2 or m^3
Tutornet (16)	Tmote	91	$50 \times 25 \times 10$
Wymanpark	Tmote	47	80×10
Motelab	Tmote	131	$40 \times 20 \times 15$
Kansei ^a	TelosB	310	40×20
Mirage	Mica2dot	35	50×20
NetEye	Tmote	125	6×4
Mirage	MicaZ	86	50×20
Quanto	Epic-Quanto	49	35×30
Twist	Tmote	100	$30 \times 13 \times 17$
Twist	eyesIFXv2	102	$30 \times 13 \times 17$
Vinelab	Tmote	48	60×30
$Blaze^b$	Blaze	20	30×30

Variations in hardware, software, RF environment, and topology

Evaluation Goals

• Reliable?

- Packets delivered to the sink
- Efficient?
 - TX required per packet delivery
- Robust?
 - Performance with disruption

CTP Noe Trees

Testbed	Delivery Ratio	
Wymanpark	0.9999	
Vinelab	0.9999	
Tutornet	0.9999	
NetEye	0.9999	
Kansei	0.9998	
Mirage-MicaZ	0.9998	
Quanto	0.9995	
Blaze	0.9990	
Twist-Tmote	0.9929	
Mirage-Mica2dot	0.9895	
Twist-eyesIFXv2	0.9836	
Motelab	0.9607	

Testbed	Delivery Ratio	
Wymanpark	0.9999]
Vinelab	0.9999	
Tutornet	0.9999	
NetEye	0.9999	
Kansei	0.9998	
Mirage-MicaZ	0.9998]
Quanto	0.9995]
Blaze	0.9990]
Twist-Tmote	0.9929	
Mirage-Mica2dot	0.9895	
Twist-eyesIFXv2	0.9836	
Motelab	0.9607]

Delivery Ratio	
0.9999]
0.9999	
0.9999	
0.9999	
0.9998	
0.9998	
0.9995	
0.9990	
0.9929	
0.9895	False
0.9836	ack
0.9607] <retransmit< td=""></retransmit<>
	Delivery Ratio 0.9999 0.9999 0.99999 0.99998 0.99998 0.99998 0.99998 0.99995 0.99990 0.99929 0.9895 0.9836 0.9836 0.9607

Testbed	Delivery Ratio	
Wymanpark	0.9999]
Vinelab	0.9999	
Tutornet	0.9999	
NetEye	0.9999	
Kansei	0.9998	
Mirage-MicaZ	0.9998	
Quanto	0.9995	
Blaze	0.9990	
Twist-Tmote	0.9929	
Mirage-Mica2dot	0.9895	False
Twist-eyesIFXv2	0.9836	ack
Motelab	0.9607	Retransmit

High end-to-end delivery ratio (but not on all the testbeds!)

High delivery ratio across time (short experiments can be misleading!) 28

Tutornet

Low duty-cycle with low-power MACs

30

High delivery ratio despite serious network-wide disruption (most loss due to reboot while buffering packet)

CTP Noe Performance Summary

• Reliability

- Delivery ratio > 90% in all cases
- Efficiency
 - Low cost and 5% duty cycle
- Robustness
 - Functional despite network disruptions

Conclusion

- "Hard" networks → good protocols
 - Tutornet & Motelab
- Wireless routing benefits from data and control plane interaction
- Lessons applicable to distance vector routing
 - Datapath validation & adaptive beaconing
- Data trace from all the testbeds available at
- http://sing.stanford.edu/gnawali/ctp/

Control Plane

ETX, MT, MultiHopLQI, EAR, LOF, AODV, DSR, BGP, RIP, OSPF, Babel

Data Plane

Flush, RMST, CODA, Fusion, IFRC, RCRT

Link Layer

4