Real-Time Video Quality of Experience Monitoring for HTTPS and QUIC

M. Hammad Mazhar

Zubair Shafiq

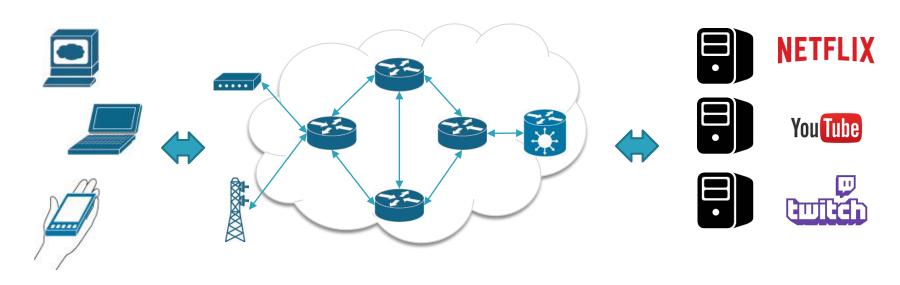
@HmdMazhar

@zubair_shafiq

The University of Iowa

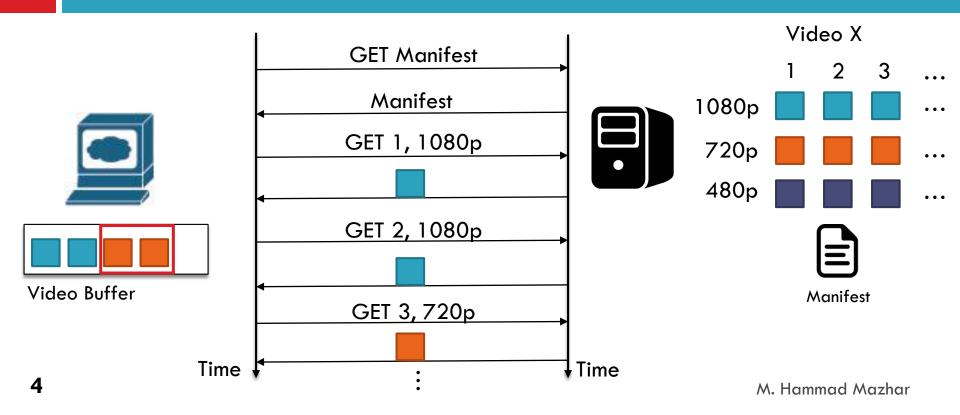
Overview - Video Streaming

- □ 72% of all consumer Internet traffic was video in 2016
- □ Forecasted to grow up to 81% by 2021.



Today's Internet is a 'video' Internet

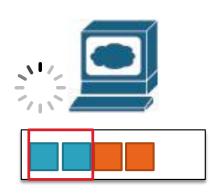
Overview - Ecosystem


Users

Internet Service Provider Networks

Content Providers

M. Hammad Mazhar


Overview - Adaptive Video Streaming

Overview - Quality of Experience Metrics

- Used to objectively measure user experience.
- Startup Delay
- Average Quality = Φ0θβρ
- Rebuffering

QoE metrics

Overview - Network Management

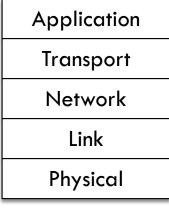
QoE metrics

Application

Transport

Network

Link


Physical

User

HTTPS

QUIC

ISP

LTE

QoE i

Networks

QoE metrics

Application

Transport

Network

Link

Physical

Content Provider

Challenge - Encryption on the rise

- HTTPS page loads increased from 45% (2016) to 69% (2018).
- YouTube is increasingly using QUIC for mobile video delivery.

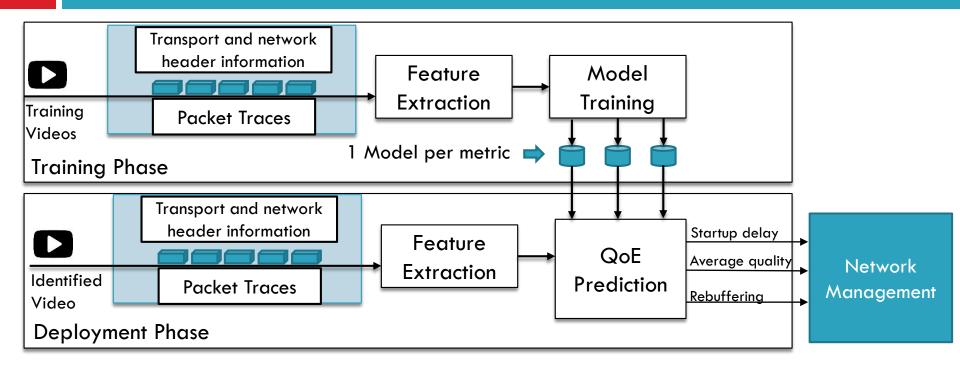
End-to-end encryption eliminates QoE monitoring.

Problem Statement

Predict QoE metrics in real-time for encrypted video traffic.

Assumptions:

- Video stream detection on encrypted traffic (machine learning, traffic analysis, etc)
- Network/Transport layer info. collection


Our Contributions

Machine learning for QoE metric prediction

Prediction at 10 second time scales

Network/transport layer features.

Proposed Approach

10

Features

	Window	Packet
Network Layer	Byte Counts Packet Counts Throughput Idle Time	Packet Inter-arrival times Bytes per packet
Transport Layer	TCP Flag Counts Out-of-order bytes/packets TCP Goodput Retransmission ratio Starting/Ending bytes-in-flight	Retransmissions per packet Receive Window RTT Bytes-in-Flight

QoE Metric Prediction

- We view it as a binary classification problem
- \square Startup delay: is it below k seconds?
- Average Quality: is it above a set resolution?
- □ Rebuffering: has rebuffering occurred?

Evaluation – Data Collection

- Selenium with Google Chrome for YouTube video streaming.
- Packet capture with tcpdump
- Network shaping with tc and netem
- Ground truth QoE metrics with YouTube IFrame API

Evaluation - Machine Learning

- Supervised machine learning using decision trees.
- Avoid overfitting with AdaBoost ensemble metaclassification.
- Evaluated under 10-fold cross validation.

Results

$$Precision = \frac{TP}{TP + FP}$$

Recall
$$=\frac{TP}{TP+FN}$$

QoE Metric	HTTPS		QUIC	
	Precision	Recall	Precision	Recall
Startup Delay	82%	82%	85%	85%
Average Quality	85%	86%	72%	72%
Rebuffering	90%	90%	80%	80%

More results and insights in paper

Limitations

- Differences across video providers
 - Solution: Unique models per provider
- Sensitive to changes in video delivery for same provider
 - Solution: Online Learning
- Models provide actionable insights, but not root causes

Conclusion

 Machine learning based QoE prediction for encrypted video streams

Features based on the transport/network layer

□ Achieve 90% accuracy for HTTPS, 85% for QUIC

Questions?

- □ Find me on Twitter: @HmdMazhar
- □ Email: <u>muhammadhammad-mazhar@uiowa.edu</u>
- □ Site: <u>cs.uiowa.edu/~mmazhar</u>