Empirical Risk Minimization

Without loss of generality, we restrict our attention to (1) if \(r(w) \) is a Lipschitz continuous function.

1. ERM for Lipschitz continuous random functions
 Assume \(f(w, z) \) is a G-Lipschitz continuous function w.r.t. \(w \) for any \(z \in Z \). If \(r(w) \) is present, it can be absorbed into \(f(w, z) \). It is notable that we do not assume \(f(w, z) \) is convex in terms of \(w \) or any \(z \).

 \[
 P(\bar{w}) - P_{z} \leq O\left(\frac{d \log n + \log(1/\delta)}{n}\right)^{1/2},
 \]
 where \(a = \delta(\log(32/2\alpha e^{2})) + \log(1/\delta))\) is a constant.

2. ERM for non-negative, Lipschitz continuous and smooth convex random functions
 Besides the Lipschitz continuity, we further assume \(f(w, z) \) is a non-negative and L-smooth convex function w.r.t. \(w \) for any \(z \in Z \). It is notable that we do not assume \((r(w)) \) is smooth.

 \[
 P(\bar{w}) - P_{z} \leq O\left(\frac{d \log n + \log(1/\delta)}{n}\right)^{1/2} + \frac{(\log(32/2\alpha e^{2})) + \log(1/\delta))\) is a constant.
 \]

Efficient SA for Lipschitz Continuous Random Functions

Algorithm 1 SSG(\(w_1, \gamma, T, W)\)

1. Require: \(w_1 \in W \), \(\gamma > 0 \) and \(T \)
2. Ensure: \(w_T \)
3. for \(k = 1, \ldots, T \) do
 1. \(w_{k+1} = B(w_k, \gamma g) \)
4. end for
5. return \(w_T \)

Algorithm 2 ASA(\(w_1, \gamma, n_0, R_0)\)

1. Set \(R_0 = 2R_0, w_0 = w, m = \frac{1}{2} \log \frac{2R_0}{\epsilon} \)\) - 1, \(n_0 = \lfloor m \rfloor \)
2. for \(k = 1, \ldots, n \) do
 1. \(\gamma_k = \gamma \) and \(R_k = R_{k-1}/2 \)
 2. \(w_0 = \text{SSG}(w_0, \gamma_k, n_0, W \cap B(w_0, R_{k-1})) \)
3. end for
4. return \(w_m \)

ASA for G-Lipschitz continuous random functions. Suppose \(w_m - w^*_w \leq R_0 \), where \(w^*_w \) is the closest optimal solution to \(w \). Define \(a = \max(\alpha(e^{G^2}(R_0/2^2))) \).

For \(n \geq 100 \) and any \(\delta \in (0, 1) \), with probability at least \(1 - \delta \), we have

\[
P(\bar{w}_m) - P_{z} \leq O\left(\frac{d \log n + \log(\log(n/\delta))}{n}\right)^{1/2}.
\]