
Some Performance Improvements for the R Engine

Luke Tierney

Department of Statistics & Actuarial Science
University of Iowa

February 19, 2015

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 1 / 37

Introduction

R is widely used in the field of statistics and beyond, especially in
university environments.

R was originally developed by Robert Gentleman and Ross Ihaka in
the early 1990’s for a Macintosh computer lab at U. of Auckland, NZ.

Since 1997 R is developed and maintained by the R-core group, with
21 member are located in 11 different countries.

The S language, on which R is based, was originally developed at Bell
Labs to support flexible data analysis.

As S evolved, it was developed into a full language that also supports
development of software for new methodology.

R has become the primary framework for developing and making
available new statistical methodology.

Many (over 7,000) extension packages are available through CRAN,
Bioconductor, and similar repositories.

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 2 / 37

Introduction

Many powerful features are incorporated in S and R, including

vectorized arithmetic
missing data support
atomic vectors (conceptually) passed by value
first class functions
lexical scope (a key addition in R)
lazy evaluation of arguments

These features are valuable for specifying analyses and developing
new data analysis software.

These features also present challenges to the implementation of R.

This talk will outline

some directions in which the implementation is being improved
some tools to help with developing good software in R

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 3 / 37

Byte Code Compilation
Background

The standard R evaluation mechanism

parses code into a parse tree when the code is read
evaluates code by interpreting the parse trees.

Most lower level languages (e.g. C, Fortran) compile their source
code to native machine code.

Some intermediate level languages (e.g. Java, C#) and many
scripting languages (e.g. Perl, Python) compile to byte code for a
virtual machine.

Many other strategies are possible.

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 4 / 37

Byte Code Compilation
Background

Byte code is the machine code for a virtual machine.

Virtual machine code can then be interpreted by a simpler, more
efficient interpreter.

Virtual machines, and their machine code, are usually specific to the
languages they are designed to support.

Various strategies for further compiling byte code to native machine
code are also sometimes used.

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 5 / 37

Byte Code Compilation
Background

Efforts to add byte code compilation to R have been underway for
some time.

The first release of the compiler occurred with R 2.13.0.

The compiler and virtual machine in the current release produce good
improvements in a number of cases.

A number of improvements have been made to the virtual machine in
the development version to be released as R 3.2.0 in April 2015.

Further improvements are currently being explored.

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 6 / 37

Byte Code Compilation
Compiler Operation

The compiler can be called explicitly to compile single functions or
files of code:

cmpfun compiles a function
cmpfile compiles a file to be loaded by loadcmp

It is also possible to have package code compiled when a package is
installed.

Use --byte-compile when installing or specify the ByteCompile option in
the DESCRIPTION file.
Since R 2.14.0 R code in all base and recommended packages is
compiled by default.

Alternatively, the compiler can be used in a JIT mode where

functions are compiled on first use
loops are compiler before they are run

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 7 / 37

Byte Code Compilation
Compiler Operation

The current compiler includes a number of optimizations, such as

constant folding
special instructions for most SPECIALs, many BUILTINs
inlining simple .Internal calls: e.g.

dnorm(y, 2, 3)

is replaced by

.Internal(dnorm(y, mean = 2, sd = 3, log = FALSE))

special instructions for many .Internals

The compiler is currently most effective for code used on scalar data
or short vectors where interpreter overhead is large relative to actual
computation.

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 8 / 37

Byte Code Compilation
A Simple Example

R Code

f <- function(x) {

s <- 0.0

for (y in x)

s <- s + y

s

}

VM Assembly Code

LDCONST 0.0

SETVAR s

POP

GETVAR x

STARTFOR y L2

L1: GETVAR s

GETVAR y

ADD

SETVAR s

POP

STEPFOR L1

L2: ENDFOR

POP

GETVAR s

RETURN

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 9 / 37

Byte Code Compilation
Some Performance Results

Timings for some simple benchmarks on an x86 64 Ubuntu laptop:

Benchmark Interp. Comp. Speedup Comp. (3.2.0) Speedup
sum 19.64 4.37 4.50 3.00 6.55
p1 10.17 3.24 3.14 0.74 13.82
conv 17.35 5.43 3.19 1.82 9.53
rem 14.37 5.53 2.60 2.33 6.18

Interp., Comp. are for the current released version of R

Comp. (3.2.0): upcoming release R 3.2.0 using

separate instructions for vector, matrix indexing
typed stack to avoid allocating intermediate scalar values

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 10 / 37

Byte Code Compilation
Future Directions

The current virtual machine uses a stack based design.

An alternative approach might use a register-based design.

Some additional optimizations currently being explored:

avoiding the allocation of intermediate values when possible
more efficient variable lookup mechanisms
more efficient function calls
possibly improved handling of lazy evaluation

Some promising preliminary results are available.

Other possible directions include

Partial evaluation when some arguments are constants
Intra-procedural optimizations and inlining
Declarations (sealing, scalars, types, strictness)
Machine code generation using LLVM or other approaches

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 11 / 37

Reducing Value Duplication

Conceptually, arguments are passed to functions by value, not by
reference.

This means programmers can modify their local view of an object
without corrupting the original value:

> x <- 1

> f <- function(y) { y[1] <- 2; y }

> f(x)

[1] 2

> x

[1] 1

This helps greatly in writing reliable software.

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 12 / 37

Reducing Value Duplication

A price is that objects often need to be duplicated, which

takes time
increases memory use

This does not matter much for small objects, but can be prohibitive
for large ones.

Up to R 3.0.3 R used a simple mechanism to avoid duplicating:

if an object might be reached from more than one R variable then it is
duplicated before modifying it.

This mechanism has two drawbacks:

full duplication is often not necessary
it is too conservative

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 13 / 37

Reducing Value Duplication

R 3.1.0 includes changes contributed by Michael Lawrence that use
shallow duplication in many cases.

This only duplicates the parts of larger hierarchical objects that need
to be modified.

This significantly improves speed and memory use in particular in
Bioconcductor applications.

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 14 / 37

Reducing Value Duplication

An experiment currently underway is to replace the internal
mechanism to detect when duplication might be needed by reference
counting.

This will allow duplicating objects to be avoided in many more
situations.

It may allow replacement functions like [<-.data.frame that are
written in R to avoid duplicating in some cases

Reference counting will also likely be easier to maintain than the
current mechanism.

This may adopted for R 3.3.0.

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 15 / 37

Large Vector Support

Big Data is a hot topic

Some categories:

fit into memory
fit on one machine’s disk storage
require multiple machines to store

Smaller large data sets can be handled by standard methods if enough
memory is available.

Very large data sets require specialized methods and algorithms.

R should be able to handle smaller large data problems on machines
with enough memory.

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 16 / 37

Large Vector Support
Initial Objectives

The R integer data type is equivalent to C int.

This is now essentially universally a signed 32-bit type.

This type is also used for the length of a vector or total size of an
array.

This design decision made sense when R started out nearly 20 years
ago:

most machines and operating systems were 32-bit
this matched the interface provided by external C/FORTRAN code

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 17 / 37

Large Vector Support
Initial Objectives

This design limits the number of elements in an array to
231 − 1 = 2, 147, 483, 647.

For numeric (double precision) data this means the largest possible
vector is about 16 GB.

This is not yet a major limitation for typical users.

It is a limitation for some users and will become more limiting over
time.

We need a way to raise this limit that meets several goals:

avoid having to rewrite too much of R itself
avoid requiring package authors to rewrite too much C code
avoid having existing compiled C code fail if possible
allow incrementally adding support for procedures where it makes sense

For now, keep 231 − 1 limit on matrix rows and columns.

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 18 / 37

Large Vector Support
Current Design

C level changes:

Preserve existing memory layout
Use special marker in length field to identify long vectors
LENGTH accessor (returning int) signals an error for long vectors
Long vector aware code uses XLENGTH to return R xlen t.

R code should not need to be changed:

double precision indices can be used for subsetting
length will return double for long vectors
.C and .Fortran will signal errors for long vectors.

Documentation on how to add long vector support to a package is
available in the manuals.

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 19 / 37

Large Vector Support
Progress So Far

A number of internal functions now support long vectors.

Some statistical functions with long vector support:

random number generators
mean
sort
fivenum
lm.fit
glm.fit

The function dist can handle more than 216 observations by returning
a long vector result.

Many matrix and array functions already support large arrays:

colSums, colMeans
rowSums, rowMeans

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 20 / 37

Large Vector Support
Open Issues

Converting existing methods to support large vectors is fairly straight
forward, however:

more numerically stable algorithms may be needed
faster/parallel algorithms may be needed
the ability to interrupt computations may become important
statistical usefulness may not scale to larger data

The size where these issues become relevant is likely much lower!

Future work will consider

whether to add a separate 64-bit integer type, or change the basic R
integer type to 64 bits
possibly adding 8 and 16 bit integer types
arithmetic and overflow issues that these raise
whether to allow numbers of rows and columns in matrices to exceed
231 − 1 as well

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 21 / 37

Parallelizing Vector and Matrix Operations

Most modern computers feature two or more processor cores.

It is expected that tens of cores will be available soon.

Two ways to take advantage of multiple cores:
Explicit parallelization:

uses some form of annotation to specify parallelism
packages snow, multicore, parallel.

Implicit parallelization:

automatic, no user action needed

Implicit parallelization is particularly suited to

basic vectorized math functions
basic matrix operations (e.g. colSums)
linear algebra computations (threaded BLAS)

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 22 / 37

Parallelizing Vector and Matrix Operations
Performance Implications

Basic idea for a P-core system:

run P worker threads
place 1/P of the work on each thread

Idealized view: this produces a P-fold speedup.

Actual speedup is less:

there is synchronization overhead
sequential code and use of shared resources (memory, bus, . . .)
actual workloads are uneven

Result: parallel code can be slower!

Parallelizing will only pay off if data size n is large enough.

For some functions, e.g. qbeta, n ≈ 10 may be large enough.
For some, e.g. qnorm, n ≈ 1000 is needed.
For basic arithmetic operations n ≈ 30000 may be needed.

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 23 / 37

Parallelizing Vector and Matrix Operations
Implementation Issues

OpenMP provides a convenient way to implement parallelism at the
C/FORTRAN level.

Good performance of the synchronization barrier is critical for
fine-grained parallelization.

On Linux/gcc OpenMP performance is very good.

On Mac OS X and Windows gcc’s OpenMP barrier performance was
not adequate.

With recent improvements performance on Mac OS X and Windows
should be competitive with Linux.

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 24 / 37

Parallelizing Vector and Matrix Operations
Implementation Issues

Care is needed to make sure that all functions called from worker
threads are thread-safe.

Some things that are not thread-safe:

use of global variables
R memory allocation
signaling warnings and errors
user interrupt checking
creating internationalized messages (calls to gettext)

Random number generation is also problematic.

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 25 / 37

Parallelizing Vectorized Operations
Some Experimental Results

n

tim
es

2e−05

3e−05

4e−05

5e−05

0 100 200 300

qnorm
linux

pgamma
linux

qnorm
mac

0 100 200 300

2e−05

3e−05

4e−05

5e−05

pgamma
mac

1
2
4
8

●

●

●

●

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 26 / 37

Parallelizing Vectorized Operations
Some Experimental Results

Some observations:

Run times are roughly linear in vector length.
Intercepts (reflecting fixed costs and synchronization overhead for
different numbers of threads) on a given platform are roughly the same
for all functions.
Relative slopes (marginal time per element) are roughly independent of
OS/architecture.

A simple calibration strategy:

Compute relative slopes once, or average across several setups.
For each OS/architecture combination compute the intercepts.

The appropriate time to run calibration code is still open.

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 27 / 37

Parallelizing Vectorized Operations
Some Notes

An experimental package pnmath0 that parallelizes many basic
vectorized math functions is available at

http://www.stat.uiowa.edu/~luke/R/experimental/

The functions colSums and dist in the current R distribution can run
in parallel but do not by default.

Hopefully more will be included in the R distribution before too long.

Still need to find clean way for a user to control the maximal number
of threads allowed.

Also need to resolve whether slight changes of results are acceptable,
especially in reductions.

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 28 / 37

http://www.stat.uiowa.edu/~luke/R/experimental/

Some Profiling Tools

For many computations performance is not an issue.

In cases where a computation is to slow, a first step is to identify the
bottle neck.

Profiling can be a valuable aid.

R includes a sampling-based profiling mechanism.

At regular intervals the functions on the call stack are recorded in a
file.

A recent addition allows the line and file information for each call to
be recorded as well.

A basic facility for examining R profile data is provided by
summaryRprof.

Joint work with Riad Jarjour is developing a more extensive set of
tools.

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 29 / 37

Some Profiling Tools

Based on examining facilities in other languages we have identified a
range of filtering, summary, and visualization tools that can be useful.

Filtering allows the programmer to, for example,

focus on a subset of the functions called
drop outer functions that are not of direct interest
drop functions that are only called infrequently

Summaries include

function level summaries
call level summaries
source line level summaries
source code annotation
hot path identification

Visualizations include

call graphs
time graphs
call tree visualizations

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 30 / 37

Some Profiling Tools
Examples

Read in profile data from a linear model fit using lm.fit:

> pd <- readProfileData("Rprof-lmfit-new.out")

> pd0 <- filterProfileData(pd, select = "system.time", focus = TRUE)

Function summaries:

> head(funSummary(pd0), 5)

total.pct gc.pct self.pct gcself.pct

system.time (lmfit.R:4) 89.32 18.50 0.00 0.00

lm.fit 89.21 18.39 0.00 0.00

.Call (lmsrc.R:30) 39.65 2.97 39.65 2.97

c (lmsrc.R:64) 20.93 10.57 20.93 10.57

structure (lmsrc.R:64) 7.60 0.77 7.60 0.77

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 31 / 37

Some Profiling Tools
Examples

Hot path summary:
> hotPaths(pd)

path total.pct self.pct

source 99.78 0.00

. withVisible 99.78 0.00

. . eval 99.78 0.00

. . . eval 99.78 0.00

. . . . system.time 89.32 0.00

. lm.fit 89.21 0.00

.Call 39.65 39.65

. c 25.55 25.55

. structure 7.60 7.60

. list 7.38 7.38

. rep.int 4.30 4.30

. names<- 2.53 2.53

. - 2.20 2.20

. gc 0.11 0.11

. . . . rnorm 9.25 9.25

...

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 32 / 37

Some Profiling Tools
Examples

Source summary:
> srcSummary(pd0)

total.pct gctotal.pct source

lmfit.R:4 89.32 18.50 system.time(for (i in 1:5) lm.fit(X, y))

lmsrc.R:30 39.65 2.97 z <- .Call(C_Cdqrls, x, y, tol)

lmsrc.R:39 8.92 0.66 nmeffects <- c(dn[pivot[r1]], rep.i ...

lmsrc.R:55 2.53 0.55 names(z$effects) <- nmeffects

lmsrc.R:58 2.20 0.66 r1 <- y - z$residuals

lmsrc.R:64 35.90 13.55 c(z[c("coefficients", "residuals", ...

annotateSource shows a full file with line annotation.

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 33 / 37

Some Profiling Tools
Examples

A call graph:

-
20 (2.2%)

 of 20 (2.2%)

c
232 (25.55%)

 of 232 (25.55%)

.Call
360 (39.65%)

 of 360 (39.65%)

gc
1 (0.11%)

 of 1 (0.11%)

list
67 (7.38%)

 of 67 (7.38%)

lm.fit
0 (0%)

 of 810 (89.21%)

 20 232 360 67

names<-
23 (2.53%)

 of 23 (2.53%)

 23

rep.int
39 (4.3%)

 of 39 (4.3%)

 39

structure
69 (7.6%)

 of 69 (7.6%)

 69

system.time
0 (0%)

 of 811 (89.32%)

 1 810

An alsternative style:

- c .Call

gc

list

lm.fit

names<- rep.int structure

system.time

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 34 / 37

Some Profiling Tools
Notes

These profiling tools are a work in progress.

They should be available in a package proftools later this year.

We are also working on a graphical interface based on gWidgets2.

This GUI should be available in a package proftols-GUI later this
year as well.

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 35 / 37

Conclusions
Synergy

There is synergy among these areas of development; for example:

Many functions applied to large data are excellent candidates for
parallelization.
The compiler may be able to fuse operations and allow more efficient
parallelization at the fused operation level.
The compiler may also be able to compile certain uses of sweep and
apply functions.
Profiling tools will help in refining where our implementations need

Exploring these opportunities will be a goal of work over the coming
year.

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 36 / 37

Conclusions
Maintainability

R is currently developed and maintained by statisticians for
statisticians.

More sophisticated approaches may be needed to move R forward.

More sophisticated implementation approaches have to be balanced
with maintainability.

To be successful a novel approach needs either

longer term developer commitment
sufficient training for those with a longer term commitment

Getting the balance right represents an interesting challenge.

We are starting some collaborations with computer scientists that will
allow us to explore these issues.

Luke Tierney (U. of Iowa) Performance Improvements University of Iowa 37 / 37

	Introduction
	Byte Code Compilation
	Background
	Compiler Operation
	A Simple Example
	Some Performance Results
	Future Directions

	Reducing Value Duplication
	Large Vector Support
	Initial Objectives
	Current Design
	Progress So Far
	Open Issues

	Parallelizing Vector and Matrix Operations
	Performance Implications
	Implementation Issues
	Some Experimental Results
	Some Notes

	Some Profiling Tools
	Conclusions

