Some Performance Improvements for the R Engine

Luke Tierney

Department of Statistics & Actuarial Science University of Iowa

February 19, 2015

- R is widely used in the field of statistics and beyond, especially in university environments.
- R was originally developed by Robert Gentleman and Ross Ihaka in the early 1990's for a Macintosh computer lab at U. of Auckland, NZ.
- Since 1997 R is developed and maintained by the R-core group, with 21 member are located in 11 different countries.
- The S language, on which R is based, was originally developed at Bell Labs to support flexible data analysis.
- As S evolved, it was developed into a full language that also supports development of software for new methodology.
- R has become the primary framework for developing and making available new statistical methodology.
- Many (over 7,000) extension packages are available through CRAN, Bioconductor, and similar repositories.

- Many powerful features are incorporated in S and R, including
 - vectorized arithmetic
 - missing data support
 - atomic vectors (conceptually) passed by value
 - first class functions
 - lexical scope (a key addition in R)
 - lazy evaluation of arguments
- These features are valuable for specifying analyses and developing new data analysis software.
- These features also present challenges to the implementation of R.
- This talk will outline
 - some directions in which the implementation is being improved
 - $\bullet\,$ some tools to help with developing good software in R

- The standard R evaluation mechanism
 - parses code into a parse tree when the code is read
 - evaluates code by interpreting the parse trees.
- Most lower level languages (e.g. C, Fortran) compile their source code to native machine code.
- Some intermediate level languages (e.g. Java, C#) and many scripting languages (e.g. Perl, Python) compile to byte code for a virtual machine.
- Many other strategies are possible.

- Byte code is the machine code for a *virtual machine*.
- Virtual machine code can then be interpreted by a simpler, more efficient interpreter.
- Virtual machines, and their machine code, are usually specific to the languages they are designed to support.
- Various strategies for further compiling byte code to native machine code are also sometimes used.

- Efforts to add byte code compilation to R have been underway for some time.
- The first release of the compiler occurred with R 2.13.0.
- The compiler and virtual machine in the current release produce good improvements in a number of cases.
- A number of improvements have been made to the virtual machine in the development version to be released as R 3.2.0 in April 2015.
- Further improvements are currently being explored.

- The compiler can be called explicitly to compile single functions or files of code:
 - cmpfun compiles a function
 - cmpfile compiles a file to be loaded by loadcmp
- It is also possible to have package code compiled when a package is installed.
 - Use --byte-compile when installing or specify the ByteCompile option in the DESCRIPTION file.
 - Since R 2.14.0 R code in all base and recommended packages is compiled by default.
- Alternatively, the compiler can be used in a JIT mode where
 - functions are compiled on first use
 - loops are compiler before they are run

fm

- The current compiler includes a number of optimizations, such as
 - constant folding
 - special instructions for most SPECIALs, many BUILTINs
 - inlining simple .Internal calls: e.g.

dnorm(y, 2, 3)

is replaced by

.Internal(dnorm(y, mean = 2, sd = 3, log = FALSE))

- special instructions for many .Internals
- The compiler is currently most effective for code used on scalar data or short vectors where interpreter overhead is large relative to actual computation.

Byte Code Compilation A Simple Example

R Code

S

}

VM Assembly Code

LDCONST 0.0 SETVAR s POP GETVAR x STARTFOR y L2 L1: GETVAR s GETVAR y ADD SETVAR s POP STEPFOR L1 L2: ENDFOR POP GETVAR s RETURN

Timings for some simple benchmarks on an x86_64 Ubuntu laptop:

Benchmark	Interp.	Сотр.	Speedup	Comp. (3.2.0)	Speedup
sum	19.64	4.37	4.50	3.00	6.55
p1	10.17	3.24	3.14	0.74	13.82
conv	17.35	5.43	3.19	1.82	9.53
rem	14.37	5.53	2.60	2.33	6.18

Interp., Comp. are for the current released version of R *Comp. (3.2.0):* upcoming release R 3.2.0 using

- separate instructions for vector, matrix indexing
- typed stack to avoid allocating intermediate scalar values

- The current virtual machine uses a stack based design.
- An alternative approach might use a register-based design.
- Some additional optimizations currently being explored:
 - avoiding the allocation of intermediate values when possible
 - more efficient variable lookup mechanisms
 - more efficient function calls
 - possibly improved handling of lazy evaluation

Some promising preliminary results are available.

- Other possible directions include
 - Partial evaluation when some arguments are constants
 - Intra-procedural optimizations and inlining
 - Declarations (sealing, scalars, types, strictness)
 - Machine code generation using LLVM or other approaches

- Conceptually, arguments are passed to functions by value, not by reference.
- This means programmers can modify their local view of an object without corrupting the original value:

```
> x <- 1
> f <- function(y) { y[1] <- 2; y }
> f(x)
[1] 2
> x
[1] 1
```

• This helps greatly in writing reliable software.

- A price is that objects often need to be duplicated, which
 - takes time
 - increases memory use
- This does not matter much for small objects, but can be prohibitive for large ones.
- Up to R 3.0.3 R used a simple mechanism to avoid duplicating:
 - if an object might be reached from more than one R variable then it is duplicated before modifying it.
- This mechanism has two drawbacks:
 - full duplication is often not necessary
 - it is too conservative

- R 3.1.0 includes changes contributed by Michael Lawrence that use *shallow duplication* in many cases.
- This only duplicates the parts of larger hierarchical objects that need to be modified.
- This significantly improves speed and memory use in particular in Bioconcductor applications.

- An experiment currently underway is to replace the internal mechanism to detect when duplication might be needed by reference counting.
- This will allow duplicating objects to be avoided in many more situations.
- It may allow replacement functions like [<-.data.frame that are written in R to avoid duplicating in some cases
- Reference counting will also likely be easier to maintain than the current mechanism.
- This may adopted for R 3.3.0.

- *Big Data* is a hot topic
- Some categories:
 - fit into memory
 - fit on one machine's disk storage
 - require multiple machines to store
- Smaller large data sets can be handled by standard methods if enough memory is available.
- Very large data sets require specialized methods and algorithms.
- R should be able to handle smaller large data problems on machines with enough memory.

- The R integer data type is equivalent to C int.
- This is now essentially universally a signed 32-bit type.
- This type is also used for the length of a vector or total size of an array.
- This design decision made sense when R started out nearly 20 years ago:
 - most machines and operating systems were 32-bit
 - $\bullet\,$ this matched the interface provided by external C/FORTRAN code

- This design limits the number of elements in an array to $2^{31} 1 = 2,147,483,647.$
- For numeric (double precision) data this means the largest possible vector is about 16 GB.
- This is not yet a major limitation for typical users.
- It is a limitation for some users and will become more limiting over time.
- We need a way to raise this limit that meets several goals:
 - avoid having to rewrite too much of R itself
 - avoid requiring package authors to rewrite too much C code
 - avoid having existing compiled C code fail if possible
 - allow incrementally adding support for procedures where it makes sense
- For now, keep $2^{31} 1$ limit on matrix rows and columns.

• C level changes:

- Preserve existing memory layout
- Use special marker in length field to identify long vectors
- LENGTH accessor (returning int) signals an error for long vectors
- Long vector aware code uses XLENGTH to return R_xlen_t.
- R code should not need to be changed:
 - double precision indices can be used for subsetting
 - length will return double for long vectors
 - .C and .Fortran will signal errors for long vectors.
- Documentation on how to add long vector support to a package is available in the manuals.

- A number of internal functions now support long vectors.
- Some statistical functions with long vector support:
 - random number generators
 - mean
 - sort
 - fivenum
 - Im.fit
 - glm.fit
- The function dist can handle more than 2¹⁶ observations by returning a long vector result.
- Many matrix and array functions already support large arrays:
 - colSums, colMeans
 - rowSums, rowMeans

- Converting existing methods to support large vectors is fairly straight forward, however:
 - more numerically stable algorithms may be needed
 - faster/parallel algorithms may be needed
 - the ability to interrupt computations may become important
 - statistical usefulness may not scale to larger data
- The size where these issues become relevant is likely much lower!
- Future work will consider
 - whether to add a separate 64-bit integer type, or change the basic R integer type to 64 bits
 - possibly adding 8 and 16 bit integer types
 - arithmetic and overflow issues that these raise
 - whether to allow numbers of rows and columns in matrices to exceed $2^{31}-1 \mbox{ as well}$

- Most modern computers feature two or more processor cores.
- It is expected that tens of cores will be available soon.
- Two ways to take advantage of multiple cores:
 - Explicit parallelization:
 - uses some form of annotation to specify parallelism
 - packages snow, multicore, parallel.
 - Implicit parallelization:
 - automatic, no user action needed
- Implicit parallelization is particularly suited to
 - basic vectorized math functions
 - basic matrix operations (e.g. colSums)
 - linear algebra computations (threaded BLAS)

- Basic idea for a *P*-core system:
 - run P worker threads
 - place 1/P of the work on each thread
- Idealized view: this produces a P-fold speedup.
- Actual speedup is less:
 - there is synchronization overhead
 - sequential code and use of shared resources (memory, bus, ...)
 - actual workloads are uneven
- Result: parallel code can be slower!
- Parallelizing will only pay off if data size *n* is large enough.
 - For some functions, e.g. qbeta, $n \approx 10$ may be large enough.
 - For some, e.g. qnorm, $n \approx 1000$ is needed.
 - For basic arithmetic operations $n \approx 30000$ may be needed.

- OpenMP provides a convenient way to implement parallelism at the C/FORTRAN level.
- Good performance of the synchronization barrier is critical for fine-grained parallelization.
- On Linux/gcc OpenMP performance is very good.
- On Mac OS X and Windows gcc's OpenMP barrier performance was not adequate.
- With recent improvements performance on Mac OS X and Windows should be competitive with Linux.

- Care is needed to make sure that all functions called from worker threads are thread-safe.
- Some things that are not thread-safe:
 - use of global variables
 - R memory allocation
 - signaling warnings and errors
 - user interrupt checking
 - creating internationalized messages (calls to gettext)
- Random number generation is also problematic.

Parallelizing Vectorized Operations Some Experimental Results

n

Luke Tierney (U. of Iowa)

Some observations:

- Run times are roughly linear in vector length.
- Intercepts (reflecting fixed costs and synchronization overhead for different numbers of threads) on a given platform are roughly the same for all functions.
- Relative slopes (marginal time per element) are roughly independent of OS/architecture.
- A simple calibration strategy:
 - Compute relative slopes once, or average across several setups.
 - For each OS/architecture combination compute the intercepts.

The appropriate time to run calibration code is still open.

• An experimental package pnmath0 that parallelizes many basic vectorized math functions is available at

http://www.stat.uiowa.edu/~luke/R/experimental/

- The functions colSums and dist in the current R distribution can run in parallel but do not by default.
- Hopefully more will be included in the R distribution before too long.
- Still need to find clean way for a user to control the maximal number of threads allowed.
- Also need to resolve whether slight changes of results are acceptable, especially in reductions.

- For many computations performance is not an issue.
- In cases where a computation is to slow, a first step is to identify the bottle neck.
- Profiling can be a valuable aid.
- R includes a sampling-based profiling mechanism.
- At regular intervals the functions on the call stack are recorded in a file.
- A recent addition allows the line and file information for each call to be recorded as well.
- A basic facility for examining R profile data is provided by summaryRprof.
- Joint work with Riad Jarjour is developing a more extensive set of tools.

Some Profiling Tools

- Based on examining facilities in other languages we have identified a range of filtering, summary, and visualization tools that can be useful.
- Filtering allows the programmer to, for example,
 - focus on a subset of the functions called
 - drop outer functions that are not of direct interest
 - drop functions that are only called infrequently
- Summaries include
 - function level summaries
 - call level summaries
 - source line level summaries
 - source code annotation
 - hot path identification
- Visualizations include
 - call graphs
 - time graphs
 - call tree visualizations

- Read in profile data from a linear model fit using Im.fit:
 - > pd <- readProfileData("Rprof-lmfit-new.out")</pre>
 - > pd0 <- filterProfileData(pd, select = "system.time", focus = TRUE)</pre>

• Function summaries:

<pre>> head(funSummary(pd0),</pre>	5)			
	total.pct	gc.pct	<pre>self.pct</pre>	gcself.pct
<pre>system.time (lmfit.R:4)</pre>	89.32	18.50	0.00	0.00
lm.fit	89.21	18.39	0.00	0.00
.Call (lmsrc.R:30)	39.65	2.97	39.65	2.97
c (lmsrc.R:64)	20.93	10.57	20.93	10.57
<pre>structure (lmsrc.R:64)</pre>	7.60	0.77	7.60	0.77

Some Profiling Tools Examples

Hot path summary: hotPaths(pd)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
path	total.pct	self.pct
source	99.78	0.00
. withVisible	99.78	0.00
eval	99.78	0.00
eval	99.78	0.00
system.time	89.32	0.00
lm.fit	89.21	0.00
Call	39.65	39.65
c	25.55	25.55
structure	7.60	7.60
list	7.38	7.38
rep.int	4.30	4.30
names<-	2.53	2.53
	2.20	2.20
gc	0.11	0.11
rnorm	9.25	9.25

. . .

• Source summary:

> srcSummary(pd0)

	total.pct	gctotal.pct	source
lmfit.R:4	89.32	18.50	<pre>system.time(for (i in 1:5) lm.fit(X, y))</pre>
<pre>lmsrc.R:30</pre>	39.65	2.97	z <call(c_cdqrls, td="" tol)<="" x,="" y,=""></call(c_cdqrls,>
<pre>lmsrc.R:39</pre>	8.92	0.66	<pre>nmeffects <- c(dn[pivot[r1]], rep.i</pre>
<pre>lmsrc.R:55</pre>	2.53	0.55	<pre>names(z\$effects) <- nmeffects</pre>
<pre>lmsrc.R:58</pre>	2.20	0.66	r1 <- y - z\$residuals
<pre>lmsrc.R:64</pre>	35.90	13.55	<pre>c(z[c("coefficients", "residuals",</pre>

• annotateSource shows a full file with line annotation.

• A call graph:

• An alsternative style:

- These profiling tools are a work in progress.
- They should be available in a package **proftools** later this year.
- We are also working on a graphical interface based on gWidgets2.
- This GUI should be available in a package proftols-GUI later this year as well.

- There is synergy among these areas of development; for example:
 - Many functions applied to large data are excellent candidates for parallelization.
 - The compiler may be able to fuse operations and allow more efficient parallelization at the fused operation level.
 - The compiler may also be able to compile certain uses of sweep and apply functions.
 - Profiling tools will help in refining where our implementations need
- Exploring these opportunities will be a goal of work over the coming year.

- R is currently developed and maintained by statisticians for statisticians.
- More sophisticated approaches may be needed to move R forward.
- More sophisticated implementation approaches have to be balanced with maintainability.
- To be successful a novel approach needs either
 - longer term developer commitment
 - sufficient training for those with a longer term commitment
- Getting the balance right represents an interesting challenge.
- We are starting some collaborations with computer scientists that will allow us to explore these issues.