Markov Chain Monte Carlo Using the Ratio-of-Uniforms Transformation

Luke Tierney Department of Statistics & Actuarial Science University of Iowa

Basic Ratio of Uniforms Method

Introduced by Kinderman and Monahan (1977).

- Suppose f is a (possibly unnormalized) density
- Suppose V, U are uniform on

$$\mathscr{A} = \{(v, u) : 0 < u < \sqrt{f(v/u)}\}$$

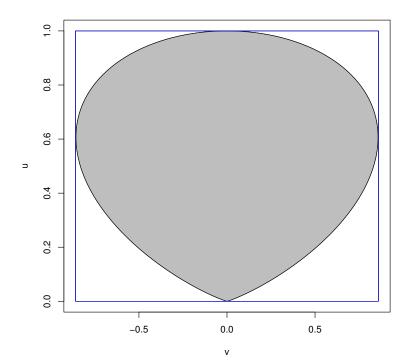
• Then X = V/U has density (proportional to) f(x)

Example: Standard Normal Distribution

• Suppose

$$f(x) = \frac{1}{2\pi}e^{-x^2/2}$$

- Then \mathscr{A} is bounded.
- Can use rejection sampling from an enclosing rectangle.



Some Generalizations

• If $f(x) = f_0(x)f_1(x)$ and V, U has density proportional to $f_0(v/u)$ on

$$\mathscr{A} = \{(v, u) : 0 < u < \sqrt{f_1(v/u)}\}$$

then X = V/U has density proportional to f

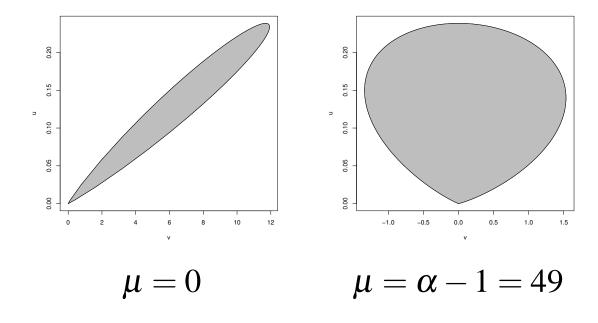
• If V, U are uniform on

$$\mathscr{A} = \{(v, u) : 0 < u < \sqrt{f(v/u + \mu)}\}$$

then $X = V/U + \mu$ has density proportional to f

Some Generalizations (cont.)

- Choosing μ as the mode of f often works well.
- For a Gamma($\alpha = 50$) density $f(x) \propto x^{49}e^{-x}$:



Higher Dimensions

Stefănescu and Văduva (1987); Wakefield, Gelfand and Smith (1991) If V, U are uniform on

$$\mathscr{A} = \{ (v, u) : v \in \mathbb{R}^d, 0 < u < \sqrt[d+1]{f(v/u + \mu)} \}$$

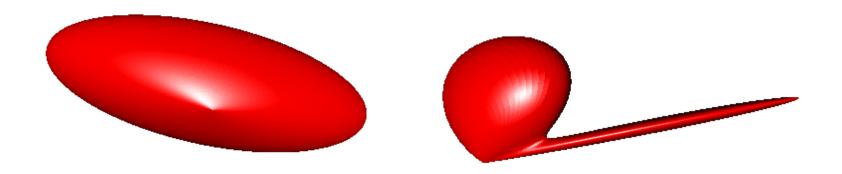
then $X = V/U + \mu$ has density proportional to f

- Can rejection sample from hyper-rectangle
 - Usually not practical in higher dimensions
- Alternative: Sample *A* by MCMC

Bormio 2005

Higher Dimensions (cont.)

Some Regions for d = 2:



Bivariate Normal, $\rho = 0.73$

Variance Components

Some Properties of the Region \mathscr{A}

- \mathscr{A} is bounded if f(x) and $||x||^{d+1}f(x)$ are bounded.
- \mathscr{A} is convex if f(x) is log concave.
- If $f(x) = f_0(x)f_1(x)$ and

$$\mathscr{A} = \{ (v, u) : 0 < u < \sqrt[d+1]{f_1(v/u + \mu)} \}$$

and f_1 is log concave, then

- \mathscr{A} is convex
- \mathscr{A} is bounded if and only if $\int f_1(x) dx < \infty$.

Leydold (2001); Hörmann, Leydold, Derflinger (2004)

Auxiliary Variable Approach

Suppose *X* has density proportional to f(x) on \mathbb{R}^d

• Let U|X = x have density $\frac{rd+1}{f(x)}u^{rd}$ for $0 < u < \sqrt[rd+1]{f(x)}$ where r > -1/d. Then X, U have joint density

$$f_{X,U}(x,u) \propto f(x)u^{rd}/f(x) = u^{rd}$$

for $0 < u < \sqrt[rd+1]{f(x)}$.

• Let $V = XU^r$. Then V, U have joint density

$$f_{V,U}(v,u) \propto u^{rd} |J(v,u)| = u^{rd} u^{-rd} = 1$$

for $0 < u < \sqrt[rd+1]{f(v/u^r)}$.

Auxiliary Variable Approach (cont.)

Generalized RU sampler: $X = V/U^r$ with V, U uniform on

$$\mathscr{A}_r = \{(u, v) : 0 < u < \sqrt[rd+1]{f(v/u^r)}\}$$

- r = 1: standard RU sampler
- r = 0: slice sampler

A Simple Gibbs Sampler Approach

Alternate sampling V|U = u and U|V = v

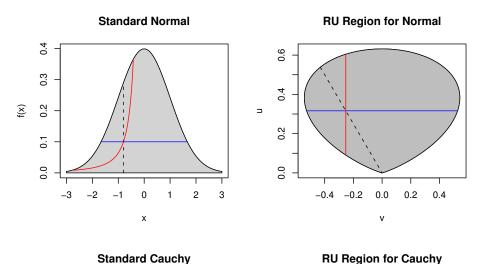
• Sampling V|U = u is equivalent to

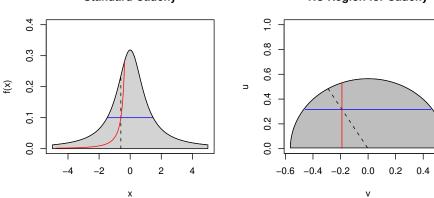
sample X|U = uset $V = Xu^{rd}$

- Sampling V|U = u or X|U = u
 - may not be practically feasible for large *d*
 - may be theoretically useful to consider

Call this the simple RU sampler.

Slice and RU Sampler Comparison





0.6

Other MCMC Approaches

Updating V and U separately:

- Updating V:
 - by any method that leaves V|U = u or X|U = u invariant
 - one or more coordinates at a time, or all at once
 - Neal (2003) describes many approaches
- Updating *U*:
 - for log convex f can use adaptive rejection
 - again, methods from Neal (2003) can be used

Other MCMC Approaches (cont.)

Marginal updating of *X*:

- update to X_n by any method that is invariant for f
- generate $U_0|X = x_n$ as in the auxiliary variable approach
- compute $V = X_n U_0$
- choose U_1 by a method that leaves U|V = v invariant
- compute $X_{n+1} = V/U_1 = X_n U_0/U_1$

This is a random rescaling of X_n that leaves f invariant

Other MCMC Approaches (cont.)

Joint sampling of V, U.

- Hit and run (random direction) methods
 - uniform conditionals for log concave f
 - other univariate uniform samplers when *A* is not convex
- Random walk Metropolis-Hastings methods
 - For symmetric, e.g. Gaussian, proposal acceptance probability is zero or one.
- Shape/scaling of *A* is important.

Other MCMC Approaches (cont.)

Suppose g is an approximation to f with RU region \mathscr{B} , and q(y|x) is a symmetric proposal kernel. Let

$$\widetilde{q}(y|x) = \lambda \frac{1}{|\mathscr{B}|} \mathbb{1}_{\mathscr{B}}(y) + (1-\lambda)q(y|x)$$

Then the Metropolis-Hastings acceptance probabilities are

$$\alpha(x,y) = \begin{cases} 1 & \text{if } x \in \mathscr{A} \cap \mathscr{B} \text{ or } y \in \mathscr{A} \cap \mathscr{B}^{c} \\ \left(1 + \frac{\lambda}{1-\lambda} \frac{1}{|\mathscr{B}|q(y|x)}\right)^{-1} & \text{if } x \in \mathscr{A} \cap \mathscr{B}^{c} \text{ and } y \in \mathscr{A} \cap \mathscr{B} \\ 0 & \text{otherwise} \end{cases}$$

Theoretical Properties

Uniform ergodicity: $\pi(x) \propto f(x)$, $\pi P = \pi$ and

$$\|P^n(x,dy) - \pi(dy)\|_{\mathsf{TV}} \le M\rho^n$$

for some $M < \infty$ and $\rho < 1$

- If *f* is log concave with mode at the origin, then the simple RU Gibbs sampler is uniformly ergodic.
- If *f* is log concave, then the hit-and-run sampler is uniformly ergodic.
- If f and $||x||^{rd+1}f(x)$ are bounded then Gaussian MH samplers are uniformly ergodic.

A Simple Example

Suppose f(x) is a density on \mathbb{R}^d with

$$f(x) \propto \left(\frac{2}{1+\|x\|^2}\right)^{d+1}$$

The RU region \mathscr{A} is the sphere

$$\mathscr{A} = \{(v, u) : \|v\|^2 + (u - 1)^2 \le 1\}$$

Simple RU sampler, run of 10,000, d = 10, 20, 50, 100, 200:

• absolute lag one autocorrelations are around 0.03

A Simple Example (cont.)

- Gaussian random walk Metropolis-Hastings:
 - optimal proposal SD seems to be around $1.5/d^{0.9}$
 - absolute lag *d* autocorrelations are around 0.5
- Hit and run:
 - absolute lag *d* autocorrelations are around 0.35
- Coordinate-wise Gaussian random walk M-H:
 - optimal proposal SD seems to be around $2.4/\sqrt{d}$
 - absolute lag one autocorrelations are around 0.6
- Coordinate-wise Gibbs:
 - absolute lag one autocorrelations are around 0.35

Further Work and Open Questions

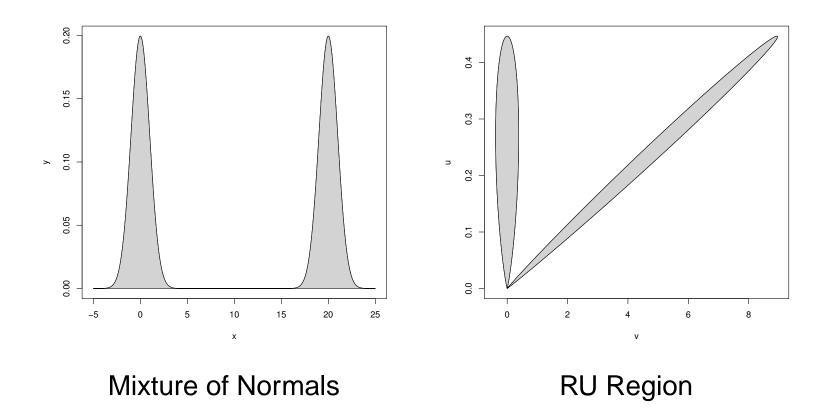
- Computational issues
 - numerical considerations
 - computational efficiency
 - efficient single coordinate updates
- Transformations and parameterization
 - location scale choices for f
 - scaling of U
 - nonlinear transformations, e.g. logs
 - opportunities for adaptive methods

Further Work and Open Questions (cont.)

- Use with marginals and conditionals
 - sample joint conditionals for blocking
 - sample marginals if available (variance components)
- Multi-modality issues
 - \mathscr{A} is connected at the origin
 - allows transitions between modes

A Multi-Modal Target Density

Two well-separated modes:



Further Work and Open Questions (cont.)

- Diagnostic uses
 - maybe useful for discovering additional modes
 - unbounded behavior may indicate improper f
- Theoretical considerations
 - explicit transition kernels and convergence rates
 - perfect sampling opportunities
 - hybrids to make other samplers uniformly ergodic

Conclusions

- The value of the ratio of uniforms transformation for random variate generation is well known
- It also has interesting uses in MCMC construction.
- Its simplicity leads to interesting theoretical properties.
- With good scaling there is promise for good practical results.
- More work and experience is needed to fully understand the practical and theoretical value.