
Code Analysis and Parallelizing Vector Operations in R

Luke Tierney

Department of Statistics & Actuarial Science
University of Iowa

DSC 2007
February, 2007

Luke Tierney (U. of Iowa) Code Analysis and Parallelization DSC 2007 1 / 17

Introduction

R is a language for interactive data analysis and graphics.

Some features intended to make interactive use easier:

Named arguments.
Partial matching of argument names.
Lazy evaluation of arguments and use of argument expressions.

R is also

a powerful high level language
well suited to expressing complex statistical computations

Two concerns:

correctness of code
performance

Luke Tierney (U. of Iowa) Code Analysis and Parallelization DSC 2007 2 / 17

Improving Correctness of R Code

The R package system provides an infrastructure for testing:

examples are run
code in a tests directory is run

by R CMD check.

Unit testing frameworks have been developed, e.g. RUnit.

Testing is essential there are issues:

Most tests need to be created manually.
Complete coverage is hard to achieve.

Static code analysis is a useful supplement.

Luke Tierney (U. of Iowa) Code Analysis and Parallelization DSC 2007 3 / 17

Static Code Analysis

Static code analysis examines source code without executing it.

Analysis can look at

individual expressions
larger patterns of expressions
relationships among functions and modules

For C, for example,

compilers carry out basic code analysis and report errors
more sophisticated tools have been developed recently
these have been used successfully on the Linux kernel

Most code analysis involves approximations

not all issues can be detected (undecidable)
there are false positives
being able to tune specificity/sensitivity is helpful
methods of ranking possible issues are useful
statistical error ranking methods have been studies (Engler et al.)

Luke Tierney (U. of Iowa) Code Analysis and Parallelization DSC 2007 4 / 17

Code Analysis for R

The R language presents some unusual challenges:

Whether a variable is global or local may depend on data.

Functions can create new variables in their callers.

used in glm.fit with family$initialize

Functions can remove variables from their callers.

Some functions use nonstandard evaluation of some arguments.

library, curve, link functions

Evaluation context may not be statically available

with function

Luke Tierney (U. of Iowa) Code Analysis and Parallelization DSC 2007 5 / 17

The codetools Package
Outline

codetools analyzes expressions in the context of visible definitions.

Some of the things it can detect:

Calls not consistent with visible function definitions.
Bad assignment expressions.
Improper use of ..., next, or break.
Undefined functions or variables used.
Calls with no visible function definition.
Local variables assigned but not used.
Parameters changed by assignment.
Multiple incompatible definitions of a local function.

Luke Tierney (U. of Iowa) Code Analysis and Parallelization DSC 2007 6 / 17

The codetools Package
Usage

The two main functions are

checkUsage for checking individual R functions.
checkUsagePackage for checking a (loaded) package.

A range of arguments are provided select classes of warnings:

all: enable all warnings.
suppressLocal: suppress all local variable warnings.
suppressParamUnused: suppress warnings about unused parameters.
suppressLocalUnused: suppress warnings about unused local variables
suppressUndefined: suppress warnings about undefined variables.
...

A better approach to managing which warnings to show is needed.

Luke Tierney (U. of Iowa) Code Analysis and Parallelization DSC 2007 7 / 17

The codetools Package
Some Examples

A function definition with some possible errors:

g<-function(x, exp = TRUE) {

if (exp)

exp(x+3) + ext(z-3)

else

log(x, bace=2)

}

The code analysis:

> checkUsage(g, name = "g")

g: no visible global function definition for ’ext’

g: no visible binding for global variable ’z’

g: possible error in log(x, bace = 2): unused argument(s) (bace = 2)

Luke Tierney (U. of Iowa) Code Analysis and Parallelization DSC 2007 8 / 17

The codetools Package
Some Examples

Running checkUsagePackage on base in R 2.4.1 produces

> checkUsagePackage("base")

...

substring: local variable ’x’ assigned but may not be used

...

The definition of substring is

substring <- function (text, first, last = 1e+06)

{

if (!is.character(text))

x <- as.character(text)

n <- max(lt <- length(text), length(first), length(last))

if (lt && lt < n)

text <- rep(text, length.out = n)

substr(text, first, last)

}

An obscure bug, but a bug nonetheless.

Luke Tierney (U. of Iowa) Code Analysis and Parallelization DSC 2007 9 / 17

The codetools Package
Current Applications and Availability

Currently codetools is being used

by a number of programmers for checking their packages
for screening of CRAN submissions
in the weaver package

Current version is available at
http://www.stat.uiowa.edu/~luke/R/codetools

May be made available via CRAN soon.

Should eventually be integrated into R and be available within
R CMD check.

Luke Tierney (U. of Iowa) Code Analysis and Parallelization DSC 2007 10 / 17

http://www.stat.uiowa.edu/~luke/R/codetools

The codetools Package
Future Directions

Develop a framework for adding rules, checks.

Look at larger units than expressions.

Explore allowing declarations to clarify ambiguities, intent?

Identify common idioms that

are often errors (e.g. FAQ 7.31)
represent common inefficiencies

Interactive features, such as

call graph display
editor integration support

...

Luke Tierney (U. of Iowa) Code Analysis and Parallelization DSC 2007 11 / 17

Parallelizing Vector Operations

Multi-core processors are becoming increasingly common:

Many laptops have dual core processors.
Quad core workstations are available and affordable.

In principle this allows speedups by a factor of 2 or 4.

This is attractive if “free,” but
maybe not enough to justify extra user programming.
Useful if it can be activated automatically.

Already possible in linear algebra by using a threaded BLAS.

Possible candidates for automatic parallelization:

Vectorized arithmetic operations.
Some uses of apply family and sweep.

Luke Tierney (U. of Iowa) Code Analysis and Parallelization DSC 2007 12 / 17

Parallelizing Vector Operations
An Idealized View

Basic idea for computing f(x[1:n]) on a two-processor system:

Run two worker threads.
Place half the computation on each thread.

Ideally this would produce a two-fold speed up.

Parallel

Sequential n

n/2

n/2

Luke Tierney (U. of Iowa) Code Analysis and Parallelization DSC 2007 13 / 17

Parallelizing Vector Operations
A More Realistic View

Reality is a bit different:

Parallel

Sequential

n/2

n/2

n

There is synchronization overhead.

Parallelizing will only pay off if n is large enough.

For some functions, e.g. qbeta, n ≈ 10 may be large enough.
For some, e.g. qnorm, n ≈ 1000 is needed.
For basic arithmetic operations n ≈ 30000 may be needed.

Careful tuning to insure improvement will be needed.

Luke Tierney (U. of Iowa) Code Analysis and Parallelization DSC 2007 14 / 17

The Connection: Compilation

Developing a byte code compiler for R is an ongoing project.

The current codetools implementation is a by-product.

Compilation will also be useful for parallelizing vector operations:

Many vector operations occur in compound expressions, like

exp(-0.5*x^2)

A compiler may be able to fuse these operations:

SQUARE

SQUARE

SCALE

SCALE EXP

EXP

EXPSQUARE SCALE

SQUARE SCALE EXP

Compiled, fused

Interpreted

Sequential SQUARE SCALE EXP

Compilation may also allow many simple uses of apply functions and
sweep to be parallelized.

Luke Tierney (U. of Iowa) Code Analysis and Parallelization DSC 2007 15 / 17

Challenges

Tuning issues:

Hardware/OS may play a role.
Competing system usage may be important.
Performance may vary with inputs.
Load balancing may be useful.

Error handling and user interrupts.

Parallelization interface for package use.

Extensible byte code for package use.

Generic functions and non-default methods.

Declarations may be useful.

Luke Tierney (U. of Iowa) Code Analysis and Parallelization DSC 2007 16 / 17

Summary

Two concerns:

correctness
performance

There is a strong synergy:

Code analysis tools help with automated performance improvement.
They may also be able to suggest opportunities for rewriting.

Work on code analysis has progressed, but much more can be done.

Parallelization work is just starting but seems promising.

Hopefully there will be significant progress in the near future.

Luke Tierney (U. of Iowa) Code Analysis and Parallelization DSC 2007 17 / 17

	Introduction
	Code Analysis for R
	Parallelizing Vector Operations
	Summary

