next up previous
Link to Statistics and Actuarial Science main page
Next: Assignment 9 Up: 22S:194 Statistical Inference II Previous: Assignment 8

Solutions

9.1
Since $ L \le U$,

$\displaystyle \{L \le \theta \le U\}^{c} = \{L > \theta\} \cup \{U < \theta\}$    

Also

$\displaystyle \{L > \theta\} \cap \{U < \theta\} = \emptyset$    

So

$\displaystyle P(\{L \le \theta \le U\}^{c}) = P(L > \theta) + P(U < \theta) = \alpha_{1} + \alpha_{2}$    

and thus

$\displaystyle P(L \le \theta \le U) = 1 - \alpha_{1} - \alpha_{2}$    

9.2
This can be interpreted conditionally or unconditionally. Given $ {X}_{1},\ldots,{X}_{n}$,

$\displaystyle P(X_{n+1} \in \overline{x} \pm 1.96/\sqrt{n}\vert\overline{x})$ $\displaystyle = P(Z \in \overline{x}-\theta \pm 1.96/\sqrt{n})$    
  $\displaystyle \le P(Z \in 0 \pm 1.96/\sqrt{n})$    
  $\displaystyle < 0.95$   if $ n > 1$    
  $\displaystyle \le 0.95$   if $ n=1$    

Equality holds only if $ n=1$ and $ \overline{x}=\theta$.

Unconditionally,

$\displaystyle P(X_{n+1} \in \overline{X} \pm 1.96/\sqrt{n})$ $\displaystyle = P(Z-\overline{Z} \in 0 \pm 1.96/\sqrt{n}$    
  $\displaystyle = P\left(Z' \in 0 \pm \frac{1.96}{\sqrt{n}\sqrt{1+1/n}}\right)$    
  $\displaystyle = P(Z' \in 0 \pm 1.96/\sqrt{n+1})$    
  $\displaystyle < 0.95$   for $ n \ge 1$    

9.4
In this problem

$ X_{i}$ are $ i.i.d.$ $ N(0,\sigma_{X}^{2})$    
$ Y_{i}/\sqrt{\lambda_{0}}$ are $ i.i.d.$ $ N(0,\sigma_{X}^{2})$    

a.

$\displaystyle \Lambda$ $\displaystyle = \frac{\left(\frac{n+m}{\sum X_{i}^{2}+\sum Y_{i}^{2}/\lambda_{0...
...X_{i}^{2}}\right)^{n/2}\left(\frac{m}{\sum Y_{i}^{2}/\lambda_{0}}\right)^{m/2}}$    
  $\displaystyle = C T^{n/2}(1-T)^{m/2}$    

with

$\displaystyle T = \frac{1}{1+\frac{\sum Y_{i}^{2}}{\lambda_{0}\sum X_{i}^{2}}} = \frac{1}{1+\frac{m}{n}F}$    

So $ \Lambda < k$ if and only if $ F < c_{1}$ or $ F > c_{2}$.
b.
$ F/\lambda_{0} \sim F_{m,n}$. Choose $ c_{1}, c_{2}$ so $ c_{1} = F_{m,n,1-\alpha_{1}}$, $ c_{2} = F_{m,n,\alpha_{2}}$, $ \alpha_{1}+\alpha_{2}=\alpha$, and $ f(c_{1})=f(c_{2})$ for

$\displaystyle f(t) = \left(\frac{1}{1+\frac{m}{n}t}\right)^{n/2} \left(1-\frac{1}{1+\frac{m}{n}t}\right)^{m/2}$    

c.

$\displaystyle A(\lambda)$ $\displaystyle = \{X,Y: c_{1} \le F \le c_{2}\}$    
  $\displaystyle = \left\{X,Y: c_{1} \le \frac{\sum Y_{i}^{2}/m}{\lambda\sum X_{i}^{2}/n} \le c_{2}\right\}$    
$\displaystyle C(\lambda)$ $\displaystyle = \left\{\lambda: \frac{\sum Y_{i}^{2}/m}{c_{2}\sum X_{i}^{2}/n} \le \lambda \le \frac{\sum Y_{i}^{2}/m}{c_{1}\sum X_{i}^{2}/n}\right\}$    
  $\displaystyle = \left[\frac{\sum Y_{i}^{2}/m}{c_{2}\sum X_{i}^{2}/n},\frac{\sum Y_{i}^{2}/m}{c_{1}\sum X_{i}^{2}/n}\right]$    

This is a $ 1-\alpha$ level CI.

9.12
All of the following are possible choices:
  1. $ \sqrt{n}(\overline{X}-\theta)/S \sim t_{n-1}$
  2. $ (n-1)S^{2}/\theta \sim \chi^{2}_{n-1}$
  3. $ \sqrt{n}(\overline{X}-\theta)/\sqrt{\theta} \sim N(0,1)$
The first two produce the obvious intervals.

For the third, look for those $ \theta$ with

$\displaystyle -z_{\alpha/2} < Q(X,\theta) = \frac{\overline{X}-\theta}{\sqrt{\theta/n}} < z_{\alpha/2}$    

If $ \overline{x} \ge 0$, then $ Q(x,\cdot)$ is decreasing, and the confidence set is an interval.
\includegraphics[height=2.5in]{week10fig1.eps}

If $ \overline{x} < 0$, then $ Q(X,\theta)$ is negative with a single mode. If $ \overline{x}$ is large enough (close enough to zero, then the confidence set is an interval, corresponding to the two solutions to $ Q(x,\theta) = -z_{\alpha/2}$.

If $ \overline{x}$ is too small, then there are no solutions and the confidence set is empty.

\includegraphics[height=3.5in]{week10fig2.eps}

9.13

a.
$ U = \log X \sim \exp(1/\theta)$, $ \theta U \sim \exp(1)$. So

$\displaystyle P(Y/2 < \theta < Y)$ $\displaystyle = P(1/2 < \theta U < 1)$    
  $\displaystyle = e^{-1}-e^{-1/2} = 0.239$    

b.
$ \theta U \sim \exp(1)$.

$\displaystyle P(-\log(1-\alpha/2) < \theta U < -\log(\alpha/2))$ $\displaystyle = 1-\alpha$    
$\displaystyle P\left(\frac{-\log(1-\alpha/2)}{U} < \theta < \frac{-\log(\alpha/2)}{U}\right)$ $\displaystyle = 1-\alpha$    
$\displaystyle [-\log(1-\alpha/2)Y,-\log(\alpha/2)Y]$ $\displaystyle = [0.479 Y, 0.966 Y]$    

c.
The interval in b. is a little shorter,

$\displaystyle \frac{b}{a} = \frac{0.487}{0.5}$    

though it is not of optimal length.


next up previous
Link to Statistics and Actuarial Science main page
Next: Assignment 9 Up: 22S:194 Statistical Inference II Previous: Assignment 8
Luke Tierney 2003-05-04