next up previous
Link to Statistics and Actuarial Science main page
Next: Assignment 8 Up: 22S:194 Statistical Inference II Previous: Assignment 7

Solutions

8.31
a.
The joint PMF of the data is

$\displaystyle f(x\vert\lambda) = \frac{\lambda^{\sum x_{i}} e^{-n\lambda}}{\prod x_{i}!}$    

For $ \lambda_{2} > \lambda_{1}$,

$\displaystyle \frac{f(x\vert\lambda_{2})}{f(x\vert\lambda_{1})} = \left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{\sum x_{i}} e^{n(\lambda_{1}-\lambda_{2})}$    

is increasing in $ \sum x_{i}$, so has MLR. So a test which rejects the null hypothesis if $ \overline{X} > c$ is UMP of its size.

b.
If $ \lambda=1$, then $ \overline{X} \sim$   AN$ (1,1/n)$, so $ c \approx 1+z_{\alpha}/\sqrt{n}$.

If $ \lambda=2$, then $ \overline{X} \sim$   AN$ (2,2/n)$, so

$\displaystyle P(\overline{X} > 1+z_{\alpha}/\sqrt{n}\vert\lambda=2)$ $\displaystyle \approx P\left(Z > \left(\frac{z_{\alpha}}{\sqrt{n}}-1\right)\sqrt{\frac{n}{2}}\right)$    
  $\displaystyle = P\left(Z > \frac{z_{\alpha}}{\sqrt{2}}-\sqrt{\frac{n}{2}}\right)$    

For $ \alpha = 0.05$, $ z_{\alpha} = 1.645$.

For $ \beta(2)=0.9$,

$\displaystyle \frac{z_{\alpha}}{\sqrt{2}}-\sqrt{\frac{n}{2}} = -z_{0.1} = -1.282$    

so

$\displaystyle n = (z_{\alpha}+\sqrt{2}z_{1-\beta})^{2} = (1.645+\sqrt{2} \times 1.282)^{2} = 11.27$    

so this suggest using $ n=12$.

It might be better to use the variance-stabilizing transformation $ \sqrt{\overline{X}}$. Either way, use of the CLT is a bit questionable.

8.34
a.
$ T \sim f(t-\theta)$, $ T_{0} \sim f(t)$. So

$\displaystyle P(T > c\vert\theta) = P(T_{0}+\theta > c)$    

This is increasing in $ \theta$.
b.
First approach: MLR implies that $ T > c$ is UMP of $ \theta_{1}$ against $ \theta_{2}$ for size $ \alpha=P(T>c\vert\theta_{1})$. Since $ \phi'(t) \equiv \alpha$ is size $ \alpha$ and $ \beta'(t)=E[\phi'(T)\vert\theta] = \alpha$ for all $ \theta$, UMP implies that $ \beta(\theta_{2}) \ge
\beta'(\theta_{2}) = \alpha = \beta(\theta_{1})$.

Second approach: Let $ \alpha=P(T>c\vert\theta_{1})$, $ h(t) =
g(t\vert\theta_{2})/g(t\vert\theta_{1})$. Then

$\displaystyle P(T>c\vert\theta_{2})-\alpha$ $\displaystyle = E[\phi(T)-\alpha\vert\theta_{2}]$    
  $\displaystyle = \frac{E[(\phi(T)-\alpha)h(T)\vert\theta_{1}]}{E[h(T)\vert\theta_{1}]}$    
  $\displaystyle \ge \frac{h(c)E[\phi(T)-\alpha\vert\theta_{1}]}{E[h(T)\vert\theta_{1}]}$    
  $\displaystyle = \frac{h(c)(\alpha-\alpha)}{E[h(T)\vert\theta_{1}]}$    
  $\displaystyle = 0$    

Can also go back to the NP proof.

8.49
LATEX2Html is giving me grief about this one-it is available in the pdf version.
a.
The $ p$-value is $ P(X \ge 7\vert\theta=0.5) = 1 - P(X \le
6\vert\theta = 0.5) = 0.171875$. This can be computed in R with
> 1 - pbinom(6,10,0.5)
[1] 0.171875
b.
The $ p$-value is $ P(X \ge 3\vert\lambda=1) = 1 - P(X \le
2\vert\lambda=1) = 0.0803014$. This can be computed in R with
> 1 - ppois(2, 1)     
[1] 0.0803014
c.
If $ \lambda=1$ then the sufficient statistic $ T = X_1 +
X_2 + X_3$ has a Poisson distribution with mean $ \lambda_T = 3$. The observed value of $ T$ is $ t = 9$, so the $ p$-value is $ P(T \ge
9\vert\lambda_T = 3) = 1 - P(T \le 8\vert\lambda_T = 3) = 0.001102488$.

8.54
a.
From problem 7.22 the posterior distribution of $ \theta\vert x$ is normal with mean and variance

$\displaystyle E[\theta\vert X=x]$ $\displaystyle = \frac{\tau^2}{\tau^2+\sigma^2/n} \overline{x}$    
Var$\displaystyle (\theta\vert X=x)$ $\displaystyle = \frac{\tau}{1+n\tau^2/\sigma^2}$    

So

$\displaystyle P(\theta \le 0\vert x) = P\left(Z \le - \frac{(\tau^2/(\tau^2+\si...
...ft(Z \ge \frac{\tau}{\sqrt{(\sigma^2/n)(\tau^2+\sigma^2/n)}}\overline{x}\right)$    

b.
The $ p$-value is

$\displaystyle P(\overline{X} \ge \overline{x}\vert\theta = 0) = P\left(Z \ge \frac{1}{\sigma/\sqrt{n}}\overline{x}\right)$    

c.
For $ \tau = \sigma = 1$ the Bayes probability is larger than the $ p$-value for $ \overline{x} > 0$ since

$\displaystyle \frac{1}{\sqrt{(\sigma^2/n)(1+\sigma^2/n)}} < \frac{1}{\sqrt{1/n}}$    

d
. As $ n \to \infty$,

$\displaystyle \frac{\tau}{\sqrt{(\sigma^2/n)(\tau^2+\sigma^2/n)}}\overline{x} =...
...}{\sqrt{(\sigma^2/n)(1+\sigma^2/(\tau^2n))}}\overline{x} \to \frac{1}{\sigma/n}$    

and therefore $ P(\theta \le 0\vert x)$ converges to the $ p$-value.

8.55
LATEX2Html is giving me grief about this one-it is available in the pdf version.
8.56
LATEX2Html is giving me grief about this one-it is available in the pdf version.


next up previous
Link to Statistics and Actuarial Science main page
Next: Assignment 8 Up: 22S:194 Statistical Inference II Previous: Assignment 7
Luke Tierney 2003-05-04