
A Simple Implementation of Name Spaces for R

Luke Tierney
Department of Statistics and Actuarial Science

University of Iowa

May 29, 2003

1 Introduction

This document presents the implementation of name space support provided in R 1.7. Some minor changes
in the current development verison have also been incorporated. A pdf version1 of this document is also
available.

Name spaces provide a means for packages to control the way global variables in their function defini-
tions are resolved and to control which local definitions are to be available outside the package. Packages
with name spaces export variables with certain values. A package with a name space can import variables
exported by other packages with name spaces. Functions defined within a name space are defined in an en-
vironment consisting of the internal name space frame, which is enclosed in a (set of) imported frames.2 All
name spaces import thebase name space. Thebase name space is a special name space that is enclosed
by the global environment. For example, a function defined in a name spacebar that importsfoo will be
defined in an environment that looks like this:

| bar internals |

| foo exports |

| base exports |

| .GlobalEnv |

| package:pkg1 |

...

| package:base |

The variables inbase appear twice: once as a statically determined import (static in the sense that its
position in the environment is fixed) and once at the end of the dynamic global environment (where the
search index of base varies as packages are attached and detached).3

1See URLmorenames.pdf .
2The implementation fuses all explicit imports into a single frame. This means that a non-function in a more recent import will

mask a function in an earlier import. I think I consider this a feature, not a bug.
3In his comments on the first draft of this proposal, John Chambers suggested that it might be cleaner to not include.Glob-

alEnv , so that all globals must be found in explicit imports or in base. I agree with this in principle. Unfortunately the need to

1

May 29, 2003 morenames.nw 2

Name spaces are sealed once they are created. Sealing means that imports and exports cannot be changed
and that internal variable bindings cannot be changed. Sealing is important if a compiler is to be able
to clearly identify what a global variable refers to in order, for example, to handle a reference to certain
functions in base in a special way. Sealing also allows a simpler implementation strategy for this name
space mechanism.

2 Creating a Package With a Name Space

There are currently two different ways to create a package with a name space. The primary approach is to
use aNAMESPACEfile with directives describing the name space. An alternative is based on including name
space directives in the package code. Eventually we will settle on one of these approaches and eliminate the
other. But for the moment both are supported.

2.1 Using a NAMESPACE File

A package has a name space if it has aNAMESPACEfile in its root directory. This file specifies the imports
and exports of the name space. These examples should make the syntax used inNAMESPACEfiles clear.

Suppose we want to create a packagefoo with internal definitions for a variablex and a functionf .
The code file is

2a 〈foo/R/foo.R2a〉≡ 3d.

x <- 1
f <- function(y) c(x,y)

If we want to export onlyf , then theNAMESPACEfile is just
2b 〈foo/NAMESPACE2b〉≡ 3e.

export(f)

A second packagebar has a code file that looks like
2c 〈bar/R/bar.R2c〉≡

c <- function(...) sum(...)
g <- function(y) f(c(y, 7))
h <- function(y) y+9

The definition ofc masks the function in base.f is not defined inbar but is imported fromfoo . Only g
andh are exported. Thus theNAMESPACEfile looks like

2d 〈bar/NAMESPACE2d〉≡
import(foo)
export(g, h)

Finally, a third packagebaz has an empty code filebaz.R

2e 〈baz/R/baz.R2e〉≡
empty file

The purpose ofbaz is to import some of the exports offoo andbar and re-export them, using renaming
in one case:bar ’s exportg is imported under the internal namehh , and the internal variablehh is exported
under the namegg .4

accommodateUseMethod dispatch means, I think, that this is not possible for now. Some additional discussion of the interactions
of name spaces withUseMethod dispatch is given in Section 4.

4Renaming seems like a useful option, but it may turn out to create to many complications and need to be dropped.

May 29, 2003 morenames.nw 3

2f 〈baz/NAMESPACE2f〉≡
import(foo)
importFrom(bar, hh = g)
export(f, gg = hh)

A user accesses a package with a name space like any other package by callinglibrary to load it and
attach it to the search path. This recursively loads any packages required to satisfy import specifications, but
these implicitly loaded packages will not be attached to the search path. So for thebaz package,

3a 〈R session3a〉≡ 3b.

> library(baz)
> search()

[1] ".GlobalEnv" "package:baz" "package:methods" "package:ctest"
[5] "package:mva" "package:modreg" "package:nls" "package:ts"
[9] "Autoloads" "package:base"

> loadedNamespaces()
[1] "bar" "base" "baz" "foo"

Loadingbaz with library causes it to be loaded and its exports attached. In addition,foo andbar
are loaded but not attached. Only the exports ofbaz are available in the attached frame. Their printed
representations show the name spaces in which they were defined.

3b 〈R session3a〉+≡ /3a 3c.
> ls("package:baz")
[1] "f" "gg"
> f
function (y)
c(x, y)
<environment: namespace:foo>
> gg
function (y)
f(c(y, 7))
<environment: namespace:bar>

Calling gg produces a result consistent with the definitions ofc in the two settings: inbar the functionc
is defined to be equivalent tosum, but in foo the variablec refers to the standard functionc in base.

3c 〈R session3a〉+≡ /3b 4d.
> gg(6)
[1] 1 13

A name space file can also register a method for S3 method dispatch. Iffoo includes the definition
3d 〈foo/R/foo.R2a〉+≡ /2a

print.foo <- function(x, ...) cat("<a foo>\n")

and theNAMESPACEfile includes
3e 〈foo/NAMESPACE2b〉+≡ /2b 3f.

S3method(print,foo)

then theprint.foo function is registered as theprint method for classfoo . It is not necessary to
export the method. The need for this is discussed in Section 4.

Finally, a shared library can be registered for loading by adding a directive of the form
3f 〈foo/NAMESPACE2b〉+≡ /3e

useDynLib(foo)

to theNAMESPACEfile. The name space loading mechanism will load this library withlibrary.dynam
when the name space is loaded. This eliminates the need for most load hook functions.

May 29, 2003 morenames.nw 4

Loading and attaching are separate processes for packages with name spaces: if packagefoo is loaded
to satisfy the import request frombar thenfoo is not attached to the global search path. As a result, instead
of the single hook function.First.lib two hook functions are needed,.onLoad and .onAttach .
Most packages will need at most.onLoad . These variables should not be exported.

2.2 Specifying Exports and Imports in Package Code

The second approach to adding a name space to a packagefoo is to add the line

Namespace: foo

to theDESCRIPTIONfile. The name specified must match the package name.5 Then calls to the functions
.Import , .ImportFrom , .Export , and .S3method can be placed directly in the package code.6

The code files for three packagesfoo1 , bar1 , andbaz1 analogous to the three example packages of the
previous section would be

4a 〈foo1/R/foo1.R4a〉≡
x <- 1
f <- function(y) c(x,y)
print.foo <- function(x, ...) cat("<a foo>\n")
.S3method(print,foo)
.Export(f)
.onLoad <- function(lib, pkg) library.dynam("foo", pkg, lib)

4b 〈bar1/R/bar1.R4b〉≡
.Import(foo1)
c <- function(...) sum(...)
g <- function(y) f(c(y, 7))
h <- function(y) y+9
.Export(g, h)

4c 〈baz1/R/baz1.R4c〉≡
.Import(foo1)
.ImportFrom(bar1, hh = g)
.Export(f, gg = hh)

This approach may allow us to use.Import in base, thus allowing some functionality to be moved out
of base into packages and allowing those packages to use private functions in their definitions.7

One issue that has not been resolved is how to track documentation of functions that have been imported
and then re-exported.

3 Using Name Spaces With Existing Packages

To use name spaces with an existing package aNAMESPACEfile has to be added to the package. For a
package that does not use other packages theNAMESPACEfile will only contain export directives. The
directive can be constructed usingls . For example, forctest a reasonable directive can be built with

5R CMD checkwill check for this in R 1.8.
6Perhaps a.UseDynLib function should also be provided.
7For implementation reasons all variabls in base are exported.

May 29, 2003 morenames.nw 5

4d 〈R session3a〉+≡ /3c 6.

> as.call(c(as.name("export"), ls("package:ctest")))
export("ansari.test", "ansari.test.default", "ansari.test.formula",

"bartlett.test", "bartlett.test.default", "bartlett.test.formula",
...

"wilcox.test.default", "wilcox.test.formula")

This leaves out only one of the internal variables:.First.lib , which should be replaced by.onLoad
or auseDynLib directive.

To support adding name spaces to existing packages with many public variables it is useful to have an
export directive that allows variables to be exported as patterns. TheexportPattern directive can be
used as

exportPattern("ˆtrellis\\.")

for example. The arguments are patterns that are processed by callingls on the internal name space en-
vironment withall=TRUE ; this means imports are not picked up by the pattern. This is just one of many
possible approaches. Using this approach, a package that wants to export all variables except those begin-
ning with a dot could use

5 〈NAMESPACE file to export varialbles not beginning with a period5〉≡
exportPattern("ˆ[ˆ\\.]")

as itsNAMESPACEfile, together with auseDynLib directive or a definition for.onLoad .
A package that needs other packages that have name spaces should remove calls torequire from the

sources and replace them withimport directives in theNAMESPACEfile.
It may also be necessary to make some changes to the content of a.First.lib function, in addition to

renaming it as.onLoad , when converting to using a name space. Many existing.First.lib functions
do something like

pkgEnv <- pos.to.env(match(paste("package:",pkgname,sep=""), search()))
assign("foo", bar, envir = pkgEnv)

to obtain the package environment. This can be replaced by

pkgEnv <- topenv()

The functiontopenv returns the environment to be used for top level definitions—either the first name
space internal environment found searching from the environment wheretopenv is called, or.Glob-
alEnv .

One other issue that may need to be addressed is the registration of methods forUseMethod dispatch.
Some tools for locating these would be useful.

For now, packages that use name spaces must not be installed with--save . Section 5 discusses this
issue, which should not be too hard to resolve.

4 UseMethod Dispatching and Method Registration

There is no hope, as far as I can see, of having a notion of private classes withUseMethod dispatch—the
name-pasting that goes on in dispatch makes this impossible. So class names are globally scoped. The issue
is making sure that methods are reasonably scoped, in particular that methods that are defined can be found.

When a generic function usesUseMethod to dispatch to an appropriate method the environment
searched for methods is the environment in which the generic is called. This means that methods are found
if they are defined in the local environment of the call or in the global search path. Without name spaces,

May 29, 2003 morenames.nw 6

essentially all methods are going to be accessible from.GlobalEnv (i.e. they are in base, in loaded
packages, or in the top level.GlobalEnv frame itself).

Suppose a package/name spacep1 defines and exports a print methodprint.C for a classC. Suppose
a package/name spacep2 importsp1 and exports a functionf that returns an object of classCand the user
executes

library(p2)
print(f())

The library call loads and attaches the package/name spacep2 . It also loadsp1 as a dependency, but
p1 is not attached. Hence theprint.C method ofp1 is not visible at the call site ofprint . The only
way around this I can see is an explicit method registration mechanism.

A very simple method registration mechanism has been developed to overcome this problem. After
searching the call environment, the top frame of the definition environment for the generic is examined
for the existence of a variable containing a methods table. If this exists and is an environment, then it is
searched for a method definition. For internal functions the defining environment is taken to be.Base-
NamespaceEnv . For example,

6 〈R session3a〉+≡ /4d
> .S3method(print, C, function(x) cat("<C>\n"))
> .S3method(as.character, C, function(x) "<--C-->")
> x<-structure(list(1), class="C")
> x
<C>
> as.character(x)
[1] "<--C-->"

This approach associates methods with their generics and insures that methods are visible whenever their
generics are. The reason for searching the calling environment first is to minimize changes from the current
behavior.

This registration mechanism is only intended to be used within a name space, and packages with name
spaces currently do not work with--save . Figuring out how to support registration and saving is I think
going to be very similar to figuring out how to integratemethods and name spaces. Some discussion is
given in Section 5.

5 Saving And Loading Name Spaces

The newsaveload code for R 1.4 includes support for name spaces: If an internal name space environ-
ment is to be saved, then instead of saving the entire environment a marker is saved along with a character
vector describing the name space. For now that character vector contains just the name and the version,
and the version is currently ignored, but it could eventually be expanded. When a work space with such a
reference is loaded into an R process, then the character vector is passed togetNamespace , which calls
loadNamespace to load the name space and then return the loaded name space’s internal environment.

One thing that has not been addressed yet is how to handle installation with--save . I don’t think there
are conceptual difficulties, it just has to be done. For now, R 1.7 signals an error if--save is used and the
package has aNAMESPACEfile.

May 29, 2003 morenames.nw 7

6 Some Open Issues

6.1 NAMESPACE File or Special Syntax

Java, Tcl, Perl and many other languages use some form of special syntax or declaration mechanism for
specifying name space organization within source code. Something along the lines of

namespace(foo) {
...

}

Other languages, such as Ada, Modula 3, mzScheme, and ML separate out the declaration of mod-
ules from the implementation source code. Whether they go so far as to require that source and module
declarations be in separate files varies, but some do.

Both approaches have merits. Interweaving name space declarations with code makes it easier to see
how a particular definition fits into the public interface of the module. Declaring a Java method aspublic ,
for example, makes clear that it is part of the public interface. On the other hand, separating out the module
structure makes it easier to see the public interface at a glance and to think about plugging in different
implementations of the same interface.

The main reasons I chose the approach of using aNAMESPACEfile are:

• It seemed the easiest to implement, since it avoids any parser changes.

• It makes adding name spaces to packages very easy, so it is easy to experiment with using name spaces
with existing packages.

• It is declarative and so provides reliable information about the dependencies of a package that can be
used by other tools.

Neither of these reasons is compelling for the longer term. We should think through what we want to do
here before making a final commitment.

6.2 Name Space Granularity

The current approach requires that there is (at most) one name space per package. It could at times be useful
to have a single name space that covers several packages, or a single package that provides several name
spaces.

Having a name space that spans several packages could be useful to allow bits of a larger implementa-
tion to easily be replaced by new implementations. This can be achieved with the existing mechanism by
organizing code into several implementation packages and then defining one interface package that imports
the implementations and re-exports them.

One scenario where it might be useful for a single package to provide two name spaces is when the
package can be used directly by end users or as a building block for extension by programmers. One set of
features could then be exported for the end user and a different set for extension purposes.

A perhaps related issue is whether we should allow nested name spaces or packages in some form.

6.3 Internal Variable Access and Documentation

The internal variables of a name space are meant to be hidden from users of the name space. Thus, from a
user’s point of view, it makes sense to only document exported variables. But for large packages it might
be useful to be able to document functions used internally so someone maintaining the package has some

May 29, 2003 morenames.nw 8

help. One way to deal with this, in principle, is to break large packages into smaller units that have their key
functions exported and documented, and for the main package to import these subsidiary packages but only
re-exports some of those features. Making sure that re-exported variables also export their documentation is
another issue.

Should there be a formal syntax for accessing internal variables? Exported variables can be accessed
with foo::f . Internal variable can be accessed with something like

get("x", env = getNamespace("foo"))

or, using the convenience functiongetFromNamespace ,

getFromNamespace("x", "foo")

but should it also be possible to do some sort of special syntax access the internal value ofx in foo ? In the
absence of renaming,foo::x couldbe made to work; whether itshouldis not clear.

6.4 Compilation

Name spaces are useful for compilation for several reasons. Ons is that they allow the compiler to determine
accurately which variables refer to variables inbase . However, this determination will have to be made
on the basis of the name space structure in place at compile time. If the name space structure at load time
is different, in particular if the name space structure at load time shadows certainbase variables that were
not shadowed at compile time, then assumptions made at compile time may be invalid.

To deal with this we would need to keep enough information about name spaces in a saved work space
to be able to determine whether assumptions the compiler makes remain valid. What happens if they do not
is another issue—the compiled version could be discarded or an error could be signaled. One option would
be for the sealing process to do a semantic analysis that determines exactly which variables the name space
uses from each imported name space and to save this information as a signature of the imports. At load time
the name space structure could then be checked for consistency with this signature. Version information
could also help.

6.5 Themethods Package

Here is a brief outline of the issues. I have not yet looked at the internals ofmethods to know how
complicated this is going to be.

The defining functions inmethods (setClass , setMethod , and friends) take awhere argument.
The current default is.GlobalEnv . With name spaces the default will need to be the top definition
environment for the environment of the call,topenv(parent.frame()) .

Generic functions are stored in ordinary variables, so in principle nothing additional should be needed.
Classes are not directly stored as ordinary variables. They seem to use a name mangling mechanism, with
setClass("track",...) producing a variable". C track" containing some form of class object.
To support classes in name spaces we would just need a mechanism of exporting and importing that is aware
of this name mangling, say directives of the form

exportClass(track)
exportClass(trace = track)
importClassFrom(foo, trace)
importClassFrom(foo, mytrack = trace)

Within a single run of R little more should be needed. A call tosetMethod of the form

setMethod("plotData", signature(x="track", y="missing"),...)

May 29, 2003 morenames.nw 9

will resolve plotData as a reference to the function by that name visible at the call site by name space
rules, andtrack will refer to the class by that name visible at the call site by name space rules. Where
things get tricky is figuring out how to deal with saved work spaces. If user code executes asetMethod
and thensave.image , then some mechanism is needed to make sure the method is installed in the right
place when the saved work space is loaded. The mechanism needed is clear: some form of hook on the load
process. A special hook formethods is one approach, but as something similar is needed for registered
UseMethod methods, which might prove useful, perhaps a general mechanism for triggering actions on
load is worth considering. The tricky issue is finding the right place.

There are two distinct scenarios. One is saved work spaces created by--save installations of packages.
Here the originalsetMethod is known to have occurred in a particular name space context with a known
set of classes and generics visible by name space rules. These same classes and generics should be visible
at load time, so just saving the rawsetMethod call and executing it at load time should be pretty close
to sufficient. Things are different if thesetMethod is evaluated at top level. Here the visible classes and
generics are determined by the dynamic search path consisting of the packages that happen to be loaded. If
a top level call

setMethod("gen", signature(x = "foo"), ...)

is evaluated and at evaluation timegen is found in packageA andfoo in packageB, then it is not entirely
clear what should happen if the work space is saved after this definition and then restored. Should the
method be installed against whatever context happens to be found when the restore occurs? Or should an
attempt be made to get the ”right” packages loaded?

If the packages have name spaces a reasonable case can be made that the right packages should be loaded
if possible. This can be done by saving the method definition in a way that records the source name space of
the generic as well as the source name space of the class that were used when the originalsetMethod call
was evaluated. With this information, the appropriate name spaces could be loaded withloadNamespace
(i.e. loaded but not attached). In a sense this requires that objects carry what might be called fully qualified
class identifiers.

A similar issue arises if classfoo is defined in a name spaceA and an object of classfoo is created at
top level and saved. Should the class information attached to the object allow the name spaceA to be loaded
when the object is loaded? The new save/load code should allow us to do this if we decide it is the right
way to go. LoadingA is likely to provide many important methods, such asprint methods. But methods
for foo defined in a different name spaceB cannot easily loaded automatically. One approach that would
cover this case is to maintain a library-level directory of all methods.

6.6 Sealing

Sealing now locks down more than is strictly necessary. For a compiler to be able to arrange for efficient
variable lookup all that is needed is sealing of environments, not bindings. That is, it is sufficient to prevent
adding and removing bindings. Preventing the bindings from changing their values is only needed if the
compiler wants to make assumptions about those values, such as using the value ofpi or inlining a call to
log .

We could consider a name space implementation in which bindings are imported and exported rather
than values. If the bindings are read-only then you get the current behavior. If they are writable, then
assigning to an imported binding (the<<- kind of assignment) should change the value of the corresponding
variable in the exporting name space and in all other importing name spaces. Importing bindings requires a
more complex implementation, in particular some fairly heavy changes inenvir.c , but it is in principle
possible.

Whether having writable exports is desirable or not is debatable. Exporting values rather than bindings
and sealing all bindings leads to a conceptually simpler model and eliminates the possibility of certain kinds

May 29, 2003 morenames.nw 10

of mischief. If we choose to go that route one option that might minimize changes needed inenvir.c
would be to use special promises.

6.7 Loading Name Spaces

With manual loading vialibrary it is convenient to be able to use a short name likenls to specify
the library. Any version issues can be resolved by specifying thelib.loc argument. With name spaces
there is a need for implicit loading of imports. Manual intervention is at the very least inconvenient if not
impossible. It would therefore be nice to be able to specify an import directive that makes sure the right
package and perhaps the right version within a package is loaded.

One option might be to allow packages to register full names that make a conflict less likely. The
NAMESPACEfile for nls for example might contain a directive like

namespace.fullname(r-project.org/r-core/nls)

A package depending onnls might then import it as

import(nls=r-project.org/r-core/nls)

or something along those lines. This would require some form of support in how packages are registered at
installation and how package search works.

A hierarchical package structure might be another way to address these issues.
Packages already have a version mechanism; perhaps import directives should allow a minimal version

to be specified in some form.

6.8 Organization of Base Name Space

Base is currently one enormous package. It might be worth dividing it intocore , models , etc. A given
site could then perhaps define its own base as

10 〈site base name space10〉≡
importAndExport(core)
importAndExport(models)
importAndExport(ctest)

or something along these lines. If we did this then the default name space included in all name spaces should
probably becore , notbase .

One advantage of this approach would be to makebase easier maintain by allowing some large chunks
of code that is repeated in several places to be split out into utility functions that can be re-used internally
but need not be exported.

6.9 Other Issues

Several things may still need to be made aware of name spaces. The utilities in thetools package seem
mostly compatible with name spaes at this point but may need another look once integration of name spaces
and S4 dispatch begins.

Thefix function may be somewhat less useful now since with name spaces you cannot mask functions
in packages using name spaces (or base if defined in a name space) with definitions in.GlobalEnv . As
an interim measure, Brian Ripley has developed afixInNamespace function that may be useful.

One option to consider to avoid having some packages with and some without name spaces is to implic-
itly define a name space for a package when it is loaded. On the other hand, pure data packages are probably
better served by the current approach.

May 29, 2003 morenames.nw 11

Many more advanced module systems, such as the Scheme48 and MzScheme ones and the ML one
allow incomplete or parameterized modules. This sort of thing seems to be used in two different ways.
In strongly typed languages like ML the parameters are often types and allow for generic modules. In
languages like MzScheme with single inheritance object systems the parameters would often be classes and
the parameterized modules would provide a way to specify mixin functionality that can then easily be added
to any class, thus providing similar benefits to multiple inheritance. At this point I’m not convinced the
benefits for R would outweigh the complexity, but this is the time to think through the issues.

7 Implementation

The implementation consists of R code innamespace.R and C code in the base distribution.
11a 〈namespace.R11a〉≡

〈public name space functions11b〉
〈internal name space functions12b〉

7.1 The Name Space Data Base

Name spaces are registered in a global data base. This insures that the name space name uniquely identifies
the name space. The data base is stored internally as an environment. The query function for the data base
is getNamespace .

11b 〈public name space functions11b〉≡ (11a) 11c.
getNamespace <- function(name) {

ns <- .Internal(getRegisteredNamespace(as.name(name)))
if (! is.null(ns)) ns
else loadNamespace(name)

}

A listing of the registered name spaces is returned byloadedNamespaces .
11c 〈public name space functions11b〉+≡ (11a) /11b 12d.

loadedNamespaces <- function()
ls(env = .Internal(getNamespaceRegistry()), all = TRUE)

7.2 Name Space Representation

Name spaces are represented as an environment with a specially named variable containing a second envi-
ronment to store name space data; this provides for mutable state. The sequence of frames of a name space
looks like this:

| internals |

| imports |

| base exports |

| .GlobalEnv |

The structure is intended to be private; all access to name space internals is through a set of accessor func-
tions.

May 29, 2003 morenames.nw 12

The . NAMESPACE. variable contains an environment to store onformation about the name space.
The spec field is used by internal C code; if its name is changed here then the C code must be changed
as well. Thespec is a character vector. Its first element is the name space name. The second element
is the name space version; the version is ignored for now. Additional elements may be added later. The
internal serialization code writes out the entirespec vector as an identifier for the name space to load
when unserializing. The internal unserialize code passes that character vector togetNamespace , which
currently ignores the version component.

7.2.1 Creating Name Spaces

Name space objects are created bymakeNamespace. For bootstrapping reasons thespec field needs to
be installed usingassign , notsetNamespaceInfo .

12a 〈makeNamespace definition12a〉≡ (20)
makeNamespace <- function(name, version = NULL, lib = NULL) {

impenv <- new.env(parent = .BaseNamespaceEnv, hash = TRUE)
env <- new.env(parent = impenv, hash = TRUE)
name <- as.character(as.name(name))
version <- as.character(version)
info <- new.env(hash = TRUE, parent = NULL)
assign(".__NAMESPACE__.", info, env = env)
assign("spec", c(name=name,version=version), env = info)
setNamespaceInfo(env, "exports", new.env(hash = TRUE, parent = NULL))
setNamespaceInfo(env, "imports", list("base"=TRUE))
setNamespaceInfo(env, "path", file.path(lib, name))
setNamespaceInfo(env, "dynlibs", NULL)
setNamespaceInfo(env, "S3methods", NULL)
.Internal(registerNamespace(name, env))
env

}

Predicates for recognizing name space objects and identifying the base name space are provided by
12b 〈internal name space functions12b〉≡ (11a) 12c.

isNamespace <- function(ns) .Internal(isNamespaceEnv(ns))
isBaseNamespace <- function(ns) identical(ns, .BaseNamespaceEnv)

The functionsgetNamespaceInfo andsetNamespaceInfo are used for accessing and assigning
values in the auxiliary information environment.

12c 〈internal name space functions12b〉+≡ (11a) /12b 15b.
getNamespaceInfo <- function(ns, which) {

ns <- asNamespace(ns, base.OK = FALSE)
info <- get(".__NAMESPACE__.", env = ns, inherits = FALSE)
get(which, env = info, inherits = FALSE)

}
setNamespaceInfo <- function(ns, which, val) {

ns <- asNamespace(ns, base.OK = FALSE)
info <- get(".__NAMESPACE__.", env = ns, inherits = FALSE)
assign(which, val, env = info)

}

7.2.2 Accessor Functions

The name and version of a name space are returned by

May 29, 2003 morenames.nw 13

12d 〈public name space functions11b〉+≡ (11a) /11c 13b.
getNamespaceName <- function(ns) {

ns <- asNamespace(ns)
if (isBaseNamespace(ns)) "base"
else getNamespaceInfo(ns, "spec")["name"]

}
getNamespaceVersion <- function(ns) {

ns <- asNamespace(ns)
if (isBaseNamespace(ns))

c(version = paste(R.version$major, R.version$minor, sep="."))
else getNamespaceInfo(ns, "spec")["version"]

}

7.2.3 Exports

The internal name corresponding to an export name is computed by
13a 〈getInternalExportName definition13a〉≡ (16a 17b)

getInternalExportName <- function(name, ns) {
exports <- getNamespaceInfo(ns, "exports")
if (! exists(name, env = exports, inherits = FALSE))

stop(paste(name, "is not an exported object"))
get(name, env = exports, inherits = FALSE)

}

The currently registered exports are returned bygetNamespaceExports .
13b 〈public name space functions11b〉+≡ (11a) /12d 13d.

getNamespaceExports <- function(ns) {
ns <- asNamespace(ns)
if (isBaseNamespace(ns)) ls(NULL, all = TRUE)
else ls(getNamespaceInfo(ns, "exports"), all = TRUE)

}

addExports registers new export specifications.
13c 〈addExports definition13c〉≡ (17a)

addExports <- function(ns, new) {
exports <- getNamespaceInfo(ns, "exports")
expnames <- names(new)
intnames <- new
for (i in seq(along = new)) {

if (exists(expnames[i], env = exports, inherits = FALSE))
warning("replacing previous export:", expnames[i])

assign(expnames[i], intnames[i], env = exports)
}

}

7.2.4 Imports

The current imports are returned by
13d 〈public name space functions11b〉+≡ (11a) /13b 14b.

getNamespaceImports <- function(ns) {
ns <- asNamespace(ns)
if (isBaseNamespace(ns)) NULL
else getNamespaceInfo(ns, "imports")

May 29, 2003 morenames.nw 14

}

addImports registers new import specifications.
14a 〈addImports definition14a〉≡ (15d)

addImports <- function(ns, from, what) {
imp <- structure(list(what), names = getNamespaceName(from))
imports <- getNamespaceImports(ns)
setNamespaceInfo(ns, "imports", c(imports, imp))

}

The functiongetNamespaceUsers provides a possible fairly inefficient function for determining all
loaded name spaces that import a given name space.

14b 〈public name space functions11b〉+≡ (11a) /13d 17b.
getNamespaceUsers <- function(ns) {

nsname <- getNamespaceName(asNamespace(ns))
users <- character(0)
for (n in loadedNamespaces()) {

inames <- names(getNamespaceImports(n))
if (match(nsname, inames, 0))

users <- c(n, users)
}
users

}

7.2.5 Sealing Name Spaces

The sealNamespace function seals a name space by locking its internal enveronment and its imports
frame.

14c 〈sealNamespace definition14c〉≡ (20)
sealNamespace <- function(ns) {

〈namespaceIsSealed definition14d〉
ns <- asNamespace(ns, base.OK = FALSE)
if (namespaceIsSealed(ns)) stop("already sealed")
lockEnvironment(ns, TRUE)
lockEnvironment(parent.env(ns), TRUE)

}

The predicatenamespaceIsSealed just checks whether the internal environment is locked.
14d 〈namespaceIsSealed definition14d〉≡ (14c 15d 17a)

namespaceIsSealed <- function(ns)
environmentIsLocked(ns)

7.2.6 Registering S3 Methods and Dynamic Librarys

14e 〈addNamespaceS3method definition14e〉≡ (23b)
addNamespaceS3method <- function(ns, generic, class, method) {

regs <- getNamespaceInfo(ns, "S3methods")
regs <- c(regs, list(list(generic, class, method)))
setNamespaceInfo(ns, "S3methods", regs)

}

May 29, 2003 morenames.nw 15

15a 〈addNamespaceDynLibs definition15a〉≡ (20)
addNamespaceDynLibs <- function(ns, newlibs) {

dynlibs <- getNamespaceInfo(ns, "dynlibs")
setNamespaceInfo(ns, "dynlibs", c(dynlibs, newlibs))

}

7.2.7 Utilities

The functionasNamespace is used to allow most higher level functions to be called with either a name
space object or a character string naming a registered name space.

15b 〈internal name space functions12b〉+≡ (11a) /12c 15c.
asNamespace <- function(ns, base.OK = TRUE) {

if (is.character(ns) || is.name(ns))
ns <- getNamespace(ns)

if (! isNamespace(ns))
stop("not a name space")

else if (! base.OK && isBaseNamespace(ns))
stop("operation not allowed on base name space")

else ns
}

7.3 Importing Into Name Spaces

ThenamespaceImport function accepts any number of name spaces as arguments but defers the actual
work tonamespaceImportFrom .

15c 〈internal name space functions12b〉+≡ (11a) /15b 15d.
namespaceImport <- function(self, ...) {

for (ns in list(...))
namespaceImportFrom(self, asNamespace(ns))

}

ThenamespaceImportFrom function imports the values of the specified variables into the import
frame and it records the import request. The record maintained in the name space could be used to restore a
saved name space. This definition allows importing into base and into non-namespace environments.

15d 〈internal name space functions12b〉+≡ (11a) /15c 16a.
namespaceImportFrom <- function(self, ns, vars) {

〈addImports definition14a〉
〈namespaceIsSealed definition14d〉
〈makeImportExportNames definition16b〉
if (is.character(self))

self <- getNamespace(self)
ns <- asNamespace(ns)
if (missing(vars)) impvars <- getNamespaceExports(ns)
else impvars <- vars
impvars <- makeImportExportNames(impvars)
impnames <- names(impvars)
if (any(duplicated(impnames))) {

stop("duplicate import names ",
paste(impnames[duplicated(impnames)], collapse=", "))

}
if (isNamespace(self) && isBaseNamespace(self)) {

impenv <- self

May 29, 2003 morenames.nw 16

msg <- "replacing local value with import:"
register <- FALSE

}
else if (isNamespace(self)) {

if (namespaceIsSealed(self))
stop("cannot import into a sealed namespace")

impenv <- parent.env(self)
msg <- "replacing previous import:"
register <- TRUE

}
else if (is.environment(self)) {

impenv <- self
msg <- "replacing local value with import:"
register <- FALSE

}
else stop("invalid import target")
for (n in impnames)

if (exists(n, env = impenv, inherits = FALSE))
warning(paste(msg, n))

importIntoEnv(impenv, impnames, ns, impvars)
if (register) {

if (missing(vars)) addImports(self, ns, TRUE)
else addImports(self, ns, impvars)

}
}

The functionimportIntoEnv is responsible for transferring bindings from one environment to an-
other. The internal version, insures that promises are not forced and that active bindings are transferred
properly.

16a 〈internal name space functions12b〉+≡ (11a) /15d 17a.
importIntoEnv <- function(impenv, impnames, expenv, expnames) {

〈getInternalExportName definition13a〉
expnames <- unlist(lapply(expnames, getInternalExportName, expenv))
.Internal(importIntoEnv(impenv, impnames, expenv, expnames))

}

The variables to be imported are specified as a character vector. If entries in the vector are named then
the values are imported under the specified name. Thus

namespaceImportFrom(bar, foo, y="x")

means the value of the variablex exported byfoo will be imported intobar under the namey . The
function makeImportExportNames takes a possibly named character vector and adds names for all
elements. This function is also used to allow renaming of exports.

16b 〈makeImportExportNames definition16b〉≡ (15d 17a)
makeImportExportNames <- function(spec) {

old <- as.character(spec)
new <- names(spec)
if (is.null(new)) new <- old
else new[new==""] <- old[new==""]
names(old) <- new
old

}

May 29, 2003 morenames.nw 17

7.4 Exporting From Name Spaces

The namespaceExport function accepts a character vector of names to export. If the elements of the
argument are named, then the names are used as the export names.

17a 〈internal name space functions12b〉+≡ (11a) /16a 18d.
namespaceExport <- function(ns, vars) {

〈namespaceIsSealed definition14d〉
if (namespaceIsSealed(ns))

stop("cannot add to exports of a sealed namespace")
ns <- asNamespace(ns, base.OK = FALSE)
if (length(vars) > 0) {

〈addExports definition13c〉
〈makeImportExportNames definition16b〉
new <- makeImportExportNames(vars)
if (any(duplicated(new)))

stop("duplicate export names ",
paste(new[duplicated(new)], collapse=", "))

undef <- new[! sapply(new, exists, env = ns)]
if (length(undef) != 0) {

undef <- do.call("paste", as.list(c(undef, sep=", ")))
stop(paste("undefined exports:", undef))

}
addExports(ns, new)

}
}

7.5 Evaluation and Environments

The values of exported variables can be obtained with thegetExportedValue . The name provided to
getExportedValue is first translated to its internal name, and then the value of the internal name is
looked up in the internal frame and returned.

17b 〈public name space functions11b〉+≡ (11a) /14b 17c.
getExportedValue <- function(ns, name) {

〈getInternalExportName definition13a〉
ns <- asNamespace(ns)
if (isBaseNamespace(ns)) get(name, env = ns)
else get(getInternalExportName(name, ns), env = ns)

}

The:: operator provides a shorthand forgetExportedValue :
17c 〈public name space functions11b〉+≡ (11a) /17b 18a.

"::" <- function(pkg,name){
pkg <- as.character(substitute(pkg))
name <- as.character(substitute(name))
getExportedValue(pkg, name)

}

7.6 Attaching Name Spaces

The functionattachNamespace attaches aNULL list and then transfers the values of the exported vari-
ables of a name space into the resulting environment. The attached frame is locked. The.onAttach hook

May 29, 2003 morenames.nw 18

function, if present in the internal environment, is run after the variables have been installed. It is not likely
that this mechanism will get much use; theonLoad hook in loadNamespace is much more useful.

18a 〈public name space functions11b〉+≡ (11a) /17c 20.
attachNamespace <- function(ns, pos = 2) {

〈runHook definition18b〉
ns <- asNamespace(ns, base.OK = FALSE)
nsname <- getNamespaceName(ns)
nspath <- getNamespaceInfo(ns, "path")
attname <- paste("package", nsname, sep=":")
if (attname %in% search())

stop("name space is already attached")
env <- attach(NULL, pos = pos, name = attname)
on.exit(detach(pos = pos))
attr(env, "path") <- nspath
exports <- getNamespaceExports(ns)
importIntoEnv(env, exports, ns, exports)
runHook(".onAttach", ns, dirname(nspath), nsname)
lockEnvironment(env, TRUE)
on.exit()
invisible(env)

}

18b 〈runHook definition18b〉≡ (18a 20 23a)
runHook <- function(hookname, env, ...) {

if (exists(hookname, envir = env, inherits = FALSE)) {
fun <- get(hookname, envir = env, inherits = FALSE)
if (! is.null(try({ fun(...); NULL})))

stop(paste(hookname, "failed"))
}

}

7.7 Parsing the NAMESPACE File

The convention for locating theNAMESPACEfile of a package is encoded in the functionnamespace-
FilePath . Changing this convention means just changing this function.

18c 〈namespaceFilePath definition18c〉≡ (18)
namespaceFilePath <- function(package, package.lib)

file.path(package.lib, package, "NAMESPACE")

The test of whether a package has a name space is handled bypackageHasNamespace

18d 〈internal name space functions12b〉+≡ (11a) /17a 18e.
packageHasNamespace <- function(package, package.lib) {

〈namespaceFilePath definition18c〉
file.exists(namespaceFilePath(package, package.lib)) ||
! is.na(read.dcf(file.path(package.lib, package, "DESCRIPTION"),

fields="Namespace"))
}

The functionparseNamespaceFile is responsible for reading in aNAMESPACEfile usingparse
and collecting the directives into a structure.

May 29, 2003 morenames.nw 19

18e 〈internal name space functions12b〉+≡ (11a) /18d 23b.
parseNamespaceFile <- function(package, package.lib, mustExist = TRUE) {

〈namespaceFilePath definition18c〉
〈sQuote definition19〉
nsFile <- namespaceFilePath(package, package.lib)
if (file.exists(nsFile))

directives <- parse(nsFile)
else if (mustExist)

stop(paste("package", sQuote(package), "has no NAMESPACE file"))
else directives <- NULL
exports <- character(0)
exportPatterns <- character(0)
imports <- list()
dynlibs <- character(0)
S3methods <- list()
for (e in directives)

switch(as.character(e[[1]]),
export = {

exp <- e[-1]
exp <- structure(as.character(exp), names=names(exp))
exports <- c(exports, exp)

},
exportPattern = {

pat <- as.character(e[-1])
exportPatterns <- c(pat, exportPatterns)

},
import = imports <- c(imports,as.list(as.character(e[-1]))),
importFrom = {

imp <- e[-1]
ivars <- imp[-1]
inames <- names(ivars)
imp <- list(as.character(imp[1]),

structure(as.character(ivars), names=inames))
imports <- c(imports, list(imp))

},
useDynLib = {

dyl <- e[-1]
dynlibs <- c(dynlibs, as.character(dyl))

},
S3method = {

spec <- e[-1]
if (length(spec) != 2 && length(spec) != 3)

stop(paste("bad S3method directive:", deparse(e)))
S3methods <- c(S3methods, list(as.character(e[-1])))

},
stop(paste("unknown namespace directive:", deparse(e))))

list(imports=imports, exports=exports, exportPatterns = exportPatterns,
dynlibs=dynlibs, S3methods = S3methods)

}

19 〈sQuote definition19〉≡ (18e 20)
sQuote <- function(s) paste("’", s, "’", sep = "")

May 29, 2003 morenames.nw 20

7.8 Loading Name Spaces

The code for loading a name space is quite similar to, and is mostly borrowed from, the corresponding code
in library . An on.exit action is installed to unregister the name space if the load fails; no attempt is
made to roll back any successfully loaded imports in this case. A crude dynamic variable is used to check
for circular dependencies. CurrentlycacheMetaData is called if it looks like methods have been defined,
but this is not likely to work yet and a warning is issued.

20 〈public name space functions11b〉+≡ (11a) /18a 22c.
loadNamespace <- function (package, lib.loc = NULL,

keep.source = getOption("keep.source.pkgs")) {
eventually allow version as second component; ignore for now.
package <- as.character(package)[[1]]

check for cycles
〈dynGet definition22a〉
loading <- dynGet("__NameSpacesLoading__", NULL)
if (match(package, loading, 0))

stop("cyclic name space dependencies are not supported")
"__NameSpacesLoading__" <- c(package, loading)

ns <- .Internal(getRegisteredNamespace(as.name(package)))
if (! is.null(ns))

ns
else {

〈runHook definition18b〉
〈sQuote definition19〉
〈makeNamespace definition12a〉
〈sealNamespace definition14c〉
〈addNamespaceDynLibs definition15a〉
**** FIXME: test for methods
hadMethods <- "package:methods" %in% search()

find package and check it has a name space
pkgpath <- .find.package(package, lib.loc, quiet = TRUE)
if (length(pkgpath) == 0)

stop(paste("There is no package called", sQuote(package)))
package.lib <- dirname(pkgpath)
if (! packageHasNamespace(package, package.lib))

stop(paste("package", sQuote(package),
"does not have a name space"))

create namespace; arrange to unregister on error
nsInfo <- parseNamespaceFile(package, package.lib, mustExist = FALSE)
version = read.dcf(file.path(package.lib, package, "DESCRIPTION"),

fields="Version")
ns <- makeNamespace(package, version = version, lib = package.lib)
on.exit(.Internal(unregisterNamespace(package)))

process imports
for (i in nsInfo$imports) {

if (is.character(i))
namespaceImport(ns, loadNamespace(i, c(lib.loc, .libPaths()),

keep.source))

May 29, 2003 morenames.nw 21

else
namespaceImportFrom(ns,

loadNamespace(i[[1]],
c(lib.loc, .libPaths()),
keep.source), i[[2]])

}

load the code
env <- asNamespace(ns)
codeFile <- file.path(package.lib, package, "R", package)
if (file.exists(codeFile))

sys.source(codeFile, env, keep.source = keep.source)
else warning(paste("Package ", sQuote(package), "contains no R code"))

save the package name in the environment
assign(".packageName", package, envir = env)

register any S3 methods
for (spec in nsInfo$S3methods) {

generic <- spec[1]
class <- spec[2]
if (length(spec) == 3) mname <- spec[3]
else mname <- paste(generic, class, sep=".")
registerS3method(spec[1], spec[2], mname, env = env)

}

load any dynamic libraries
for (lib in nsInfo$dynlibs)

library.dynam(lib, package, package.lib)
addNamespaceDynLibs(env, nsInfo$dynlibs)

run the load hook
runHook(".onLoad", env, package.lib, package)

process exports, seal, and clear on.exit action
exports <- nsInfo$exports
for (p in nsInfo$exportPatterns)

exports <- c(ls(env, pat = p, all = TRUE), exports)
namespaceExport(ns, exports)
sealNamespace(ns)

**** FIXME: process methods but warn of possible problems
if (! exists(".noGenerics", envir = env, inherits = FALSE) &&

length(objects(env, pattern="ˆ\\.__M", all=TRUE)) != 0 &&
hadMethods &&
! identical(package, "package:methods")) {
warning("method code may not work in a name space")
cacheMetaData(env, TRUE)

}
on.exit()

ns
}

May 29, 2003 morenames.nw 22

}

22a 〈dynGet definition22a〉≡ (20)
dynGet <- function(name, notFound = stop(paste(name, "not found"))) {

n <- sys.nframe()
while (n > 1) {

n <- n - 1
env <- sys.frame(n)
if (exists(name, env = env, inherits = FALSE))

return(get(name, env = env, inherits = FALSE))
}
notFound

}

7.9 Modified Library Function

The modifiedlibrary library function just adds a small bit of code to check whether the package to be
loaded is a name space package. If it is, it is loaded usingloadNamespace ; otherwise the code falls
through the standardlibrary code.

22b 〈modification tolibrary function in base package22b〉≡
if the name space mechanism is available and the package
has a name space, then the name space loading mechanism
takes over.
if (exists("packageHasNamespace") &&

packageHasNamespace(package, which.lib.loc)) {
tt <- try({

ns <- loadNamespace(package, c(which.lib.loc, lib.loc))
env <- attachNamespace(ns)

})
if (inherits(tt, "try-error"))

if (logical.return)
return(FALSE)

else stop("package/namespace load failed")
else {

on.exit(do.call("detach", list(name = pkgname)))
nogenerics <- checkNoGenerics(env)
if(warn.conflicts &&

!exists(".conflicts.OK", envir = env, inherits = FALSE))
checkConflicts(package, pkgname, pkgpath, nogenerics)

on.exit()
if (logical.return)

return(TRUE)
else

return(invisible(.packages()))
}

}

7.10 Finding the Top Level Environment

The functiontopenv locates the nearest “top level” environment to its argument.

May 29, 2003 morenames.nw 23

22c 〈public name space functions11b〉+≡ (11a) /20 23a.
topenv <- function(envir = parent.frame()) {

while (! is.null(envir)) {
if (! is.null(attr(envir, "name")) ||

identical(envir, .GlobalEnv) ||
.Internal(isNamespaceEnv(envir)))
return(envir)

else envir <- parent.env(envir)
}
return(.GlobalEnv)

}

7.11 Unloading Name Spaces

During debugging it may be useful to be able to unload name spaces. This requires that the name space not
be used for imports by any other loaded name space.

23a 〈public name space functions11b〉+≡ (11a) /22c 24.
unloadNamespace <- function(ns) {

〈runHook definition18b〉
ns <- asNamespace(ns, base.OK = FALSE)
nsname <- getNamespaceName(ns)
pos <- match(paste("package", nsname, sep=":"), search())
if (! is.na(pos)) detach(pos = pos)
users <- getNamespaceUsers(ns)
if (length(users) != 0)

stop(paste("name space still used by:", paste(users, collapse = ", ")))
nspath <- getNamespaceInfo(ns, "path")
try(runHook(".onUnload", ns, nspath))
.Internal(unregisterNamespace(nsname))

}

7.12 Registering S3 Methods

The S3 methods table is stored in the. S3MethodsTable . variable. (This is just a crude hack for
now—something a bit more sophisticated would be useful.) The functionregisterS3method registers
a method. This definition uses a promise if the method is specified by name in order to work well with data
base storage.

23b 〈internal name space functions12b〉+≡ (11a) /18e
registerS3method <- function(genname, class, method, envir = parent.frame()) {

〈addNamespaceS3method definition14e〉
genfun <- get(genname, envir = envir)
if (typeof(genfun) == "closure")

defenv <- environment(genfun)
else defenv <- .BaseNamespaceEnv
if (! exists(".__S3MethodsTable__.", envir = defenv, inherits = FALSE))

assign(".__S3MethodsTable__.", new.env(hash = TRUE, parent = NULL),
envir = defenv)

table <- get(".__S3MethodsTable__.", envir = defenv, inherits = FALSE)
if (is.character(method)) {

wrap <- function(method, home) {
method <- method # force evaluation

May 29, 2003 morenames.nw 24

home <- home # force evaluation
delay(get(method, env = home), env = environment())

}
assign(paste(genname, class, sep = "."), wrap(method, envir),

envir = table)
}
else if (is.function(method))

assign(paste(genname, class, sep = "."), method, envir = table)
else stop("bad method")
if (isNamespace(envir) && ! identical(envir, .BaseNamespaceEnv))

addNamespaceS3method(envir, genname, class, method)
}

7.13 Functions for Importing and Exporting from Code Files

These functions support the alternate interface to name space creation described in Section 2.2.
24 〈public name space functions11b〉+≡ (11a) /23a

.Import <- function(...) {
envir <- parent.frame()
names <- as.character(substitute(list(...)))[-1]
for (n in names)

namespaceImportFrom(envir, n)
}
.ImportFrom <- function(name, ...) {

envir <- parent.frame()
name <- as.character(substitute(name))
names <- as.character(substitute(list(...)))[-1]
namespaceImportFrom(envir, name, names)

}
.Export <- function(...) {

ns <- topenv(parent.frame())
if (identical(ns, .BaseNamespaceEnv))

warning("all objects in base name space are currently exported.")
else if (! isNamespace(ns))

stop("can only export from a name space")
else {

names <- as.character(substitute(list(...)))[-1]
namespaceExport(ns, names)

}
}
.S3method <- function(generic, class, method) {

generic <- as.character(substitute(generic))
class <- as.character(substitute(class))
if (missing(method)) method <- paste(generic, class, sep=".")
registerS3method(generic, class, method, envir = parent.frame())
invisible(NULL)

}

May 29, 2003 morenames.nw 25

Indices

Chunks

〈addExports definition13c〉 13c, 17a
〈addImports definition14a〉 14a, 15d
〈addNamespaceDynLibs definition15a〉 15a, 20
〈addNamespaceS3method definition14e〉 14e, 23b
〈dynGet definition22a〉 20, 22a
〈getInternalExportName definition13a〉 13a, 16a, 17b
〈makeImportExportNames definition16b〉 15d, 16b, 17a
〈makeNamespace definition12a〉 12a, 20
〈namespaceFilePath definition18c〉 18c, 18d, 18e
〈namespaceIsSealed definition14d〉 14c, 14d, 15d, 17a
〈runHook definition18b〉 18a, 18b, 20, 23a
〈sealNamespace definition14c〉 14c, 20
〈sQuote definition19〉 18e, 19, 20
〈bar/NAMESPACE2d〉 2d
〈bar/R/bar.R2c〉 2c
〈bar1/R/bar1.R4b〉 4b
〈baz/NAMESPACE2f〉 2f
〈baz/R/baz.R2e〉 2e
〈baz1/R/baz1.R4c〉 4c
〈foo/NAMESPACE2b〉 2b, 3e, 3f
〈foo/R/foo.R2a〉 2a, 3d
〈foo1/R/foo1.R4a〉 4a
〈internal name space functions12b〉 11a, 12b, 12c, 15b, 15c, 15d, 16a, 17a, 18d, 18e, 23b
〈modification tolibrary function in base package22b〉 22b
〈NAMESPACE file to export varialbles not beginning with a period5〉 5
〈namespace.R11a〉 11a
〈public name space functions11b〉 11a, 11b, 11c, 12d, 13b, 13d, 14b, 17b, 17c, 18a, 20, 22c, 23a, 24
〈R session3a〉 3a, 3b, 3c, 4d, 6
〈site base name space10〉 10

Identifiers

.Export : 4a, 4b, 4c, 24

.Import : 4b, 4c, 24

.ImportFrom : 4c, 24

.S3method : 4a, 6, 24
:: : 17c
addExports : 13c, 17a
addImports : 14a, 15d
addNamespaceDynlibs : 15a
addNamespaceS3method : 14e, 23b
asNamespace : 12c, 12d, 13b, 13d, 14b, 14c, 15b, 15c, 15d, 17a, 17b, 18a, 20, 23a
attachNamespace : 18a, 22b
dynGet : 20, 22a

May 29, 2003 morenames.nw 26

getExportedValue : 17b, 17c
getInternalExportName : 13a, 16a, 17b
getNamespace : 11b, 15b, 15d
getNamespaceExports : 13b, 15d, 18a
getNamespaceImports : 13d, 14a, 14b
getNamespaceInfo : 12c, 12d, 13a, 13b, 13c, 13d, 14e, 15a, 18a, 23a
getNamespaceName : 12d, 14a, 14b, 18a, 23a
getNamespaceVersion : 12d
importIntoEnv : 15d, 16a, 18a
isNamespace : 12b, 15b, 15d, 23b, 24
loadedNamespaces : 3a, 11c, 14b
loadNamespace : 11b, 20, 22b
makeImportExportNames : 15d, 16b, 17a
makeNamespace: 12a, 20
namespaceExport : 17a, 20, 24
namespaceFilePath : 18c, 18d, 18e
namespaceImport : 15c, 20
namespaceImportFrom : 15c, 15d, 20, 24
namespaceIsSealed : 14c, 14d, 15d, 17a
packageHasNamespace : 18d, 20, 22b
parseNamespaceFile : 18e, 20
registerS3method : 20, 23b, 24
runHook : 18a, 18b, 20, 23a
sealNamespace : 14c, 20
setNamespaceInfo : 12a, 12c, 14a, 14e, 15a
sQuote : 18e, 19, 20
topenv : 22c, 24

