Algorithmic Excursions: Topics in Computer Science II

Spring 2016

Lecture 13 & 14: Estimating the number of distinct elements in a stream.

Lecturer: Kasturi Varadarajan Scribe: Albert Giegerich

In the last lecture, we looked at an algorithm for approximating the number of elements in a stream.

Algorithm:

Let a be a stream of d elements.

For any integer $p \ge 0$, Let zeroes(p) be the maximum element in the set $\{i|2^i \text{ divides } p\}$

- 1: Pick a random hash function $h:[n] \to [n]$ from a 2-universal family.
- $2: Z \leftarrow 0$
- 3: **for** each a_i in the stream **do**
- 4: **if** $zerores(h(a_i)) > Z$ **then**
- 5: $Z \leftarrow zeroes(h(a_i))$
- 6: **return** $2^{Z+1/2}$

Analysis:

For the analysis we'll need to introduce two types of random variables, $X_{r,j}$ and Y_r .

$$X_{r,j} = 1 \ if \ zeroes(h(j)) >= r$$

$$X_{r,j} = 0$$
 otherwise

The only randomness for $X_{r,j}$ comes from the choice of hash function $h:[n] \to [n]$ $x_{r,j}$ is a random variable with respect to that space.

$$Y_r = \sum_{j: f_j > 0} X_{r,j}$$

where f_j is the frequency of j.

Example:

Let our stream be $a = \{17, 2, 3, 17, 2, 5, 7, 5\}$

j	zeroes(h(j))
2	0
17	3
3	1
5	1
7	2

So $Y_0 = 5$ because zeroes(h(j)) >= 0 for all 5 elements, similarly

$$Y_1 = 4$$

 $Y_2 = 2$
 $Y_3 = 1$
 $Y_4 = 0$
 $Y_5 = 0$
...
 $Y_{r>3} = 0$

Claim

Let t denote the value of Z at the end of the execution of the algorithm.

$$Y_r > 0 \iff t \ge r$$

 $Y_r = 0 \iff t \le r - 1$

We want to find $E[Y_r]$ for some fixed r.

$$\begin{split} E[Y_r] &= \sum_{j:f_j > 0} E[X_{r,j}] \\ &= \sum_j Pr[X_{r,j} = 1] \\ &= \sum_j Pr[2^r \ divides \ h(j)] \\ &= \sum_j \frac{1}{2r} \\ &= \frac{d}{2\pi} \end{split}$$

One way we can think of this is that every element will contribute to Y_0 , an element will contribute to Y_1 with a probability of $\frac{1}{2}$, an element will contribute to Y_2 with a probability of $\frac{1}{4}$, etc. That is,

$$Pr[X_{0,j} = 1] = 1$$

$$Pr[X_{1,j} = 1] = \frac{1}{2}$$

$$Pr[X_{2,j} = 1] = \frac{1}{4}$$
 $etc.$

Because of this $2^r \cdot Y_r$ is a good estimator for d. Assuming any two variables are independent,

$$Var[Y_r] = \sum_{j} Var[X_{r,j}]$$

$$\leq \sum_{j} E[(X_{r,j})^2] \ (Because \ Var(z) = E(z^2) - E(z)^2)$$

$$= \sum_{j} E[X_{r,j}] \ (Because \ X_{r,j} \ is \ a \ 01 \ random \ variable.)$$

$$= \frac{d}{2r}$$

$$\begin{split} Pr[Y_r > 0] &= Pr[Y_r \geq 1] \\ &\leq E[Y_r] \\ &= \frac{d}{2^r} \end{split}$$

$$Pr[Y_r = 0] \le Pr[|Y_r - E[Y_r]| \ge \frac{d}{2r}]$$

$$\le \frac{Var[Y_r]}{(d/2^r)^2} \ (By \ Chebyshev's \ inequality)$$

$$\le \frac{2^r}{d}$$

So the transition from Y_r going from 0 to nonzero happens around r = log(d)

We now want to show why we output $2^{t+1/2}$ instead of 2^t

Let $\hat{d} = 2^{t+1/2}$ (estimate of d output by algorithm) Let a be the smallest integer such that $2^{a+1/2} \ge 3d$

$$\begin{split} Pr[\hat{d} \geq 3d] &= Pr[t \geq a] \\ &= Pr[Y_a > 0] \\ &\leq \frac{d}{2^a} \\ &\leq \frac{\sqrt{2}}{3} \end{split}$$

Let b be the largest integer such that $2^{b+1/2} \leq \frac{d}{3}$

$$Pr[\hat{d} \le \frac{d}{3}] = Pr[t \le b]$$

$$= Pr[Y_{b+1} = 0]$$

$$\le \frac{2^{b+1}}{d}$$

$$= \frac{2^{b+1/2}}{d} \cdot \sqrt{2}$$

$$\le \frac{\sqrt{2}}{3}$$

So returning $2^{t+1/2}$ instead of 2^t allows us to get a slightly tighter bound. (3d rather than somewhere around 4d-5d)

When running the algorithm we'll get an estimate within the bounds $\frac{d}{3} \leq \hat{d} \leq 3d$ with strictly more than 50% probability. To increase this probability to 1- δ we must run $\log(\frac{1}{\delta})$ independent instances of the algorithm and return the median of the estimates.

Definition of 2-Universal

Let X and Y be finite sets.

Let Y^X be the set of all functions from X to Y.

 $\mathcal{H} \subseteq Y^X$ is said to be 2-universal if for all $x, x' \in X(x \neq x')$ and $y, y' \in Y$

$$Pr[h(x) = y \land h(x') = y'] = \frac{1}{|Y^2|}$$

$$Pr[h(x) = y] = \frac{1}{|Y|}$$

$$Pr[h(x') = y'] = \frac{1}{|Y|}$$

Choosing a Hash Function

Now we'll look at how we can pick the random hash function $h:[n] \to [n]$.

Each $j \in [n]$ can be represented as a length t 0-1 vector. So if t = 4, j might be

$$\begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

One choice of hash function might be a h(x) = Ax + b where A is a $t \times t$ matrix and b is a length t vector.

$$h(x) = \begin{bmatrix} A_{11} & A_{12} & \dots & A_{1t} \\ A_{21} & A_{22} & \dots & A_{2t} \\ \dots & \dots & \dots & \dots \\ A_{t1} & A_{t2} & \dots & A_{tt} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_t \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_t \end{bmatrix}$$

The hash function h is fixed if you know A and b. You can randomly select A and b by randomly selecting each element of A and b to be 0 or 1 with equal probability.

It takes log^2n bits to remember this hash function.

A family of hash functions can be created by taking every possible combination of A and b. We can then select one function from this family at random for our algorithm.

Homework Problem: (Source: Problem 2-1, Lecture 2, Amit Chakrabarh)

Treat the elements of X and Y as column vectors with 0/1 entries. For a matrix $A \in \{0,1\}^{k \times n}$ and vector $b \in \{0,1\}^k$, define the function $h_{A,b}: X \to Y$ by $h_{A,b}(x) = Ax + b$, where all additions and multiplications are performed mod2.

Prove that the family of functions $\mathcal{H} = \{h_{A,b} : A \in \{0,1\}^{k \times n}, b \in \{0,1\}^k\}$ is 2-universal.

Another Streaming Problem: Finding Frequent Elements

Let the stream be $\sigma = \langle a_1, a_2, ..., a_m \rangle$ where each $a_i \in [n]$

In practice stream elements can be any type of object. We assume that we can hash any of these objects to an integer for the purposes of our algorithm.

We define $f = (f_0, f_1, ..., f_{n-1})$ where f_i is the frequency of i in the stream for some i.

Given $\epsilon > 0$, we want to identify all j such that $f_j \geq \epsilon \cdot m$

The Misra-Gries Algorithm

First we'll give a deterministic algorithm for finding an estimate \hat{f}_a of the frequency f_a for some a.

We'll maintain a dictionary A where the keys of A = [n].

For a key j, A[j] is an estimate for f_i .

We don't want to maintain a dictionary with all n keys so we'll restrict ourselves to some k keys.

```
1: Initialize empty dictionary A
 2: Pick k
 3: if a_i \in keys(A) then
       A[a_i] \leftarrow A[A_i] + 1
 5: else if |keys(A)| < k-1 then
       A[a_i] \leftarrow 1
 6:
 7: else
       for each \ell \in keys(A) do
 8:
         A[\ell] \leftarrow A[\ell] - 1
 9:
         if A[\ell] = 0 then
10:
            Remove \ell from A
11:
12: return On query a if a \in keys(A) report \hat{f}_a = A[a] else \hat{f}_a = 0
```

Claim: For each $j \in [n]$

$$f_j - \frac{m}{k} \le \hat{f}_j \le f_j$$

where d is the number of unique elements in the stream.

Let α be the number of times we subtract 1 from the estimated frequency of j. Each time we subtract 1 from the estimated frequency of j we subtract 1 from the estimate of k-1 other elements. Thus

$$\alpha \cdot k \leq m$$

As a consequence of this,

If
$$k = \frac{2}{\epsilon}$$
 then

$$f_j - \frac{\epsilon \cdot m}{2} \le \hat{f}_j \le f_j$$

If $f_j \geq \epsilon \cdot m$ then

$$\hat{f}_j \ge \frac{f_j}{2} \ge \frac{\epsilon \cdot m}{2}$$

Turnstile Model

Let $\sigma = \langle a_1, a_2, ..., a_m \rangle$ be our stream.

Each a_i is a pair (j, c) where $j \in [n]$ and c is an integer. (positive or negative)

An element f_i of the frequency vector f is the sum of all c's in each pair (j,c) in σ for which j=i.

This "turnstile model" is a generalized version of the previous model. In the previous model c is always 1.

We want to find the highest f_i in f. For now we'll assume that all elements of the frequency vector f will always be non-negative.

```
1: C[1...k] \leftarrow [0,0,...,0]

2: Choose a random hash function h:[n] \rightarrow [k]

3: Choose a random hash function g:[n] \rightarrow \{-1,+1\}

4: for each a_i = (j,c) \in \sigma do

5: C[h(j)] \leftarrow C[h(j)] + c \cdot g(j)

6: return On query a report \hat{f}_a = g(a) \cdot C[h(a)]
```

In the analysis of this algorithm we'll want to show $E[\hat{f}_a] = f_a$