Algorithmic Excursions: Topics in Computer Science II Spring 2016

Lecture 7 & 8 : Term Paper Topics and Clustering

Lecturer: Kasturi Varadarajan Scribe: Jianshu Zhang

Application and Term Paper Topics:
Hint: topics with * are only recommended to students with special background

Topic 1: e-net : cutting, partition and geometric set cover.
Topic 2*: Guarantee size of e-net with VC-dimension as d to glog %

Topic 3*: Improvements for Geometric set systems

Example 1: Points 4+ Half planes in this system you can get e-net of size O(%)

Example 2: the same happens to Points 4+ Half spaces in R? system.

Example 3: Fat triangles + Stabbing in R? system —focusing on the set of triangles, pick a point, the
triangles that content this point will be in the subset— for this system, will get O(% log(log %))

Topic 4: However, improvement is not possible in general, such as Points + Half spaces in R*, Rectangles
or Normal triangles(not fat) in R? + stabbing, they only could get £2(1log1).

Topic 5: Suppose (X, R), where | X| = |R| = n, Disc:y/nlogn can be improved to y/n.

Topic 6*: If Shatter function of (X,R) is bounded by C' x m? for constants ¢ and d, discrepancy can be
improve to nz—2d Example: Points + Half planes with shatter function < m?, then ni=1 =npi,

Topic 7*: This yields improved e-approximations: —Application of eps-approximation to Core Sets (going
to talk about later) ~VC-dimension, eps-approximation in learning(topic)

Topic 8: Bounding VC-dimension and shatter function for Geometric set systems

Topic 9*: Sampling to preserve other kinds of stuff Ezample: Cut specification in Graphs.(Sample Graph
need to preserve some information in Graphs)

Topic 10: Deterministic construction of eps-approximation

Clustering — Chapter 4 in Geometric Approximation Algorithms

Definition 3.1 Suppose we are given a set of points, and a distance function : d : P x P(two points) —
Rt (real number) that defines a metric:
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Notation: For P' C P, d(P’,q) = mi}gd(p, q)
peEP’

1: C1 < any point in P
2: for i < 2 ton do
3t Y1 max d({C1,Cy,...,Ci—1},q)

4: C’L eargmea;( d({ChCQa"'aCi—l}aq)
q
5: return Cq,Cy,...,C,

Suppose 75 is the furthest distance between points in P\ {C1,...,Cs} to {C1,...,Cs} which return from
the algorithm. Then if we use {C1,...,C5} as centers and 75 as radius to make balls, the balls will content
all the points in the point set, the balls could partition the points into clusters. Since {C;} C C1,Cs C ...
C{Cy,Cy,...,Ch}, then y1 = 72 = -+ = 7,1 and we define v,, = 0.

Definition 3.2 A set Q C P is called an y-packing if the following properties holds:

e Covering Property: For anyp € P, d(Q,p) <7

e Separation Property: For any p1,p2 € Q, d(p1,p2) =

We claim {C4,...,C5} is an y5-packing, and for any 1 < k < n, {C1,Cs,...,Ck} is an y,-packing.
Homework: Proof the conclusion above.

Definition 3.3 k-Center Clustering:
Given P and 1 < k < |P|, compute a set C C P with k points, So as to minimize:

A(C) := max d(C, q) (3.1)

qeP

Alternatively, find the minimum X\, such that there exist k balls of radius X\, that ”Cover” P.
Time expensive of this clustering method is O(k*n)

Claim 3.4 Let Cy,Cs,...,Cy be a greedy permutation of P (Selected by the algorithm above, which Cy is any
point and Cy is the furthest point to {C1} and so on.) For any k, and any C with k points, A({C1, Ca,...,Ck})
< 2X(C)

As we regard {C1,C5,...,Cy} as center of clusters and v, as the radius of each cluster, this is a clustering
solution, which is not the best, but a OK solution. {Cy,Cs,...,Ci} is a yi-rpacking.

Proof: This is obvious if k = |P|.

For{Cy,Cs,...,Ck}
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d({C1},C2) = d({C1,C2},C3)
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Vi is the furthest distance of a point to set {C1,Cs,...,Ck}
Fix C with k points, we’ll show A(C) > %

Map each point in {C,Cy,...,Cki1} to the nearest point in C
There exists two points C; and C;, that are mapped to some point C' € C

v < d(Ci,Cp) < d(Cy,C)+d(Cy, (C) < AC)+AC) = AC) > L&

Definition 3.5 K-median Clustering: Given P, metric d and 1 < k < |P|, find a set C of k points that
minimize:

cost(C) = Z d(q,C)

qeP

* k-center algorithm clustering is very easy to be influenced by noise

1: C <+ any subset of size k

2: while there exist ¢ € C and p € P\ C such that cost(C — ¢ + p) < cost(C) do
33 C+C—-¢c+p

4: return C

Homework: Show an example where the above algorithm fails to com up with optimal solution.

Notation:

L — Solution returned by local search

Copt — optimal solution

We'll show cost(L) < 5cost(Copt)



