Algorithmic Excursions: Topics in Computer Science II

Spring 2016

Lecture 7 & 8: Term Paper Topics and Clustering

Lecturer: Kasturi Varadarajan Scribe: Jianshu Zhang

Application and Term Paper Topics:

Hint: topics with * are only recommended to students with special background

Topic 1: ϵ -net : cutting, partition and geometric set cover.

Topic 2*: Guarantee size of ϵ -net with VC-dimension as d to $\frac{d}{\epsilon} \log \frac{1}{\epsilon}$.

Topic 3*: Improvements for Geometric set systems

Example 1: Points + Half planes in this system you can get ϵ -net of size $O(\frac{1}{\epsilon})$.

Example 2: the same happens to Points + Half spaces in \mathbb{R}^3 system.

Example 3: Fat triangles + Stabbing in \mathcal{R}^2 system -focusing on the set of triangles, pick a point, the triangles that content this point will be in the subset- for this system, will get $O(\frac{1}{\varepsilon}\log(\log\frac{1}{\varepsilon}))$.

Topic 4: However, improvement is not possible in general, such as Points + Half spaces in \mathbb{R}^4 , Rectangles or Normal triangles(not fat) in \mathbb{R}^2 + stabbing, they only could get $\Omega(\frac{1}{\varepsilon}\log\frac{1}{\varepsilon})$.

Topic 5: Suppose (X, \mathcal{R}) , where $|X| = |\mathcal{R}| = n$, Disc: $\sqrt{n \log n}$ can be improved to \sqrt{n} .

Topic 6*: If Shatter function of (X, \mathcal{R}) is bounded by $C \times m^d$ for constants c and d, discrepancy can be improve to $n^{\frac{1}{2} - \frac{1}{2}d}$ Example: Points + Half planes with shatter function $\leq m^2$, then $n^{\frac{1}{2} - \frac{1}{4}} = n^{\frac{1}{4}}$.

Topic 7*: This yields improved ϵ -approximations: –Application of ϵ ps-approximation to Core Sets (going to talk about later) –VC-dimension, ϵ ps-approximation in learning(topic)

Topic 8: Bounding VC-dimension and shatter function for Geometric set systems

Topic 9*: Sampling to preserve other kinds of stuff Example: Cut specification in Graphs. (Sample Graph need to preserve some information in Graphs)

Topic 10: Deterministic construction of ϵ ps-approximation

Clustering - Chapter 4 in Geometric Approximation Algorithms

Definition 3.1 Suppose we are given a set of points, and a distance function : $d: P \times P(two\ points) \longrightarrow \mathcal{R}^+(real\ number)$ that defines a metric:

- d(p,q) = 0, if and only if p = q
- $\bullet \ d(p,q) = d(q,p)$
- $d(p,\gamma) \leqslant d(p,q) + d(q,\gamma)$

Notation: For $P' \subseteq P$, $d(P',q) = \min_{p \in P'} d(p,q)$

```
1: C_1 \leftarrow \text{any point in } P
2: for i \leftarrow 2 to n do
3: \gamma_{i-1} \leftarrow \max_{q \in P} d(\{C_1, C_2, \dots, C_{i-1}\}, q)
4: C_i \leftarrow \arg\max_{q \in P} d(\{C_1, C_2, \dots, C_{i-1}\}, q)
5: return C_1, C_2, \dots, C_n
```

Suppose γ_5 is the furthest distance between points in $P \setminus \{C_1, \ldots, C_5\}$ to $\{C_1, \ldots, C_5\}$ which return from the algorithm. Then if we use $\{C_1, \ldots, C_5\}$ as centers and γ_5 as radius to make balls, the balls will content all the points in the point set, the balls could partition the points into clusters. Since $\{C_1\} \subseteq C_1, C_2 \subseteq \ldots \subseteq \{C_1, C_2, \ldots, C_n\}$, then $\gamma_1 \geqslant \gamma_2 \geqslant \cdots \geqslant \gamma_{n-1}$ and we define $\gamma_n = 0$.

Definition 3.2 A set $Q \subseteq P$ is called an γ -packing if the following properties holds:

- Covering Property: For any $p \in P$, $d(Q, p) \leq \gamma$
- Separation Property: For any $p_1, p_2 \in \mathcal{Q}$, $d(p_1, p_2) \geqslant \gamma$

We claim $\{C_1, \ldots, C_5\}$ is an γ_5 -packing, and for any $1 \le k \le n$, $\{C_1, C_2, \ldots, C_k\}$ is an γ_k -packing. **Homework:** Proof the conclusion above.

Definition 3.3 k-Center Clustering:

Given P and $1 \le k \le |P|$, compute a set $C \subseteq P$ with k points, So as to minimize:

$$\lambda(C) := \max_{q \in P} d(C, q) \tag{3.1}$$

Alternatively, find the minimum λ_* such that there exist k balls of radius λ_* that "Cover" P. Time expensive of this clustering method is $O(k^2n)$

Claim 3.4 Let C_1, C_2, \ldots, C_n be a greedy permutation of P (Selected by the algorithm above, which C_1 is any point and C_2 is the furthest point to $\{C_1\}$ and so on.) For any k, and any C with k points, $\lambda(\{C_1, C_2, \ldots, C_k\}) \leq 2\lambda(C)$

As we regard $\{C_1, C_2, \dots, C_k\}$ as center of clusters and γ_k as the radius of each cluster, this is a clustering solution, which is not the best, but a OK solution. $\{C_1, C_2, \dots, C_k\}$ is a γ_k -rpacking.

Proof: This is obvious if k = |P|.

$$For\{C_1, C_2, \dots, C_k\}$$

$$\gamma_1 \geqslant \qquad \gamma_2 \geqslant \qquad \dots \geqslant \qquad \gamma_{k-1} \geqslant \qquad \gamma_k$$

$$d(\{C_1\}, C_2) \geqslant \qquad d(\{C_1, C_2\}, C_3) \geqslant \qquad \dots \geqslant \qquad d(\{C_1, C_2, \dots, C_{k-1}\}, C_k)$$

$$And \lambda(\{C_1, C_2, \dots, C_k\}) = \gamma_k \text{ From Algorithm}$$

 γ_k is the furthest distance of a point to set $\{C_1, C_2, \dots, C_k\}$ Fix C with k points, we'll show $\lambda(\mathcal{C}) \geqslant \frac{\gamma_k}{2}$

> Map each point in $\{C_1, C_2, \dots, C_{k+1}\}$ to the nearest point in \mathcal{C} There exists two points C_i and C_j , that are mapped to some point $\bar{C} \in \mathcal{C}$ $\gamma_k \leq d(C_i, C_j) \leq d(C_i, \bar{C}) + d(C_j, (\bar{C})) \leq \lambda(\mathcal{C}) + \lambda(\mathcal{C}) \Rightarrow \lambda(\mathcal{C}) \geq \frac{\gamma_k}{2}$

Definition 3.5 K-median Clustering: Given P, metric d and $1 \leq k \leq |P|$, find a set C of k points that minimize:

$$cost(\mathcal{C}) \equiv \sum_{q \in P} d(q, \mathcal{C})$$

* k-center algorithm clustering is very easy to be influenced by noise

- 1: $C \leftarrow$ any subset of size k
- 2: while there exist $\bar{c} \in \mathcal{C}$ and $p \in P \setminus \mathcal{C}$ such that $cost(\mathcal{C} \bar{c} + p) < cost(\mathcal{C})$ do
- 3: $\mathcal{C} \leftarrow \mathcal{C} \bar{c} + p$
- 4: return \mathcal{C}

Homework: Show an example where the above algorithm fails to com up with optimal solution.

Notation:

L — Solution returned by local search C_{opt} — optimal solution

We'll show $cost(L) \leq 5 cost(C_{opt})$