Week 11: Zero-Sum Games, Learning Theory and Boosting

Lecturer: Kasturi Varadarajan Scribe: Sikder Huq

11.1 Solving zero-sum games approximately

We show how the general algorithm presented in the last lecture can be used to approximately solve zero-sum games. Let A be a payoff matrix of a finite 2-player zero-sum game, with n rows. When the row player plays strategy i and the column player plays strategy j, then the payoff to the column player is A(i, j). We assume $A(i, j) \in [0, 1]$. If the row player chooses strategy i from a distribution \mathbf{p} over the rows, then the expected payoff to the column player for choosing a strategy j is

$$A(\mathbf{p}, j) = \underset{i \sim \mathbf{p}}{\mathrm{E}} [A(i, j)]$$

Thus, the best response for the row player is the strategy i which minimizes this payoff. John von Neumann's min-max theorem says that if each of the players chooses a distribution over their strategies to optimize their worst case payoff, then the value they obtain is:

$$\lambda^* := \min_{P} \max_{j} A(\mathbf{p}, j)$$

Our goal is to find a distribution $\widetilde{\mathbf{p}}$ such that

$$\max_{j} A(\widetilde{\mathbf{p}}, j) \le \lambda^* + \epsilon$$

In each round, given a distribution $\mathbf{p}^{(t)}$ on the rows, we choose $j^{(t)}$ to be the best response strategy to $\mathbf{p}^{(t)}$ for the column player. This follows:

$$j^{(t)} = \arg \max_{i} A(\mathbf{p}, j)$$

Thus, the loss vector $\mathbf{m}^{(t)} = \text{column}_{j}^{(t)}$.

Generate $\sum_{t=1}^T \mathbf{m}^{(t)} \mathbf{p}^{(t)} \leq \sum_{t=1}^T \mathbf{m}^{(t)} \mathbf{p} + \eta \sum_{t=1}^T |\mathbf{m}^{(t)}| \mathbf{p} + \frac{\ln n}{\eta}$, for any \mathbf{p} .

Now since $\mathbf{m}^{(t)}\mathbf{p}^{(t)}=A(\mathbf{p}^{(t)},j^{(t)})$ and all $A(i,j)\in[0,1].$ We get,

$$\lambda^* T \le \sum_{t=1}^T A(\mathbf{p}^{(t)}, j^{(t)}) \le A(\mathbf{p}, j^{(t)}) + \eta \sum_{t=1}^T 1 + \frac{\ln n}{\eta}$$

Dividing by T,

$$\lambda^* \le \frac{1}{T} \sum_{t=1}^{T} A(\mathbf{p}^{(t)}, j^{(t)}) \le \frac{1}{T} A(\mathbf{p}, j^{(t)}) + \eta + \frac{\ln n}{\eta T}$$

By definition, $\lambda^* = A(\mathbf{p}^{(t)}, j^{(t)})$. We set \mathbf{p} to be the best strategy of the row player, so $A(\mathbf{p}, j^{(t)}) \leq \lambda^*$, for any j. Therefore we get,

$$\frac{1}{T} \sum_{t=1}^{T} A(\mathbf{p}^{(t)}, j^{(t)}) \le \lambda^* + \eta + \frac{\ln n}{\eta T}$$

Our goal is to come up with a probability distribution that is almost as good as λ^* . Let \widetilde{t} minimizes $A(\mathbf{p}^{(t)}, j^{(t)})$. Therefore,

$$A(\mathbf{p}^{(\widetilde{t})}, j^{(\widetilde{t})}) \le \lambda^* + \eta + \frac{\ln n}{\eta T}$$

Pick $\eta = \frac{\epsilon}{2}$ and $T = \left\lceil \frac{\ln n}{(\epsilon/2)^2} \right\rceil$; we get

$$A(\mathbf{p}^{(\widetilde{t})}, j^{(\widetilde{t})}) \le \lambda^* + \epsilon$$

Therefore,

$$\lambda^* \leq \frac{1}{T} \sum_{t=1}^{T} A(\mathbf{p}, j^{(t)}) + \epsilon$$
, for any \mathbf{p}

Let \mathbf{p} corresponds to playing row i with probability 1.

$$\lambda^* - \epsilon \le \frac{1}{T} \sum_{t=1}^{T} A(i, j^{(t)})$$

Let \mathbf{q}^* be the probability distribution on columns that assigns to column j the probability

$$\frac{|\{t:j^{(t)}=j\}|}{T}$$

So,

$$\lambda^* - \epsilon \le \frac{1}{T} \sum_{t=1}^T A(i, j^{(t)}) \le A(i, \mathbf{q}^*)$$

for any row i.

For example, consider the following table:

t	$j^{(t)}$
1	α
2	β
3	α
4	γ
5	α

The probability distribution for this example is $\frac{1}{5}(A(i,\alpha),A(i,\beta),A(i,\alpha),A(i,\gamma),A(i,\alpha))$. We get, $\mathbf{q}^*\alpha=3/5$, $\mathbf{q}^*\beta=1/5$ and $\mathbf{q}^*\gamma=1/5$.

Recall,

$$\lambda^* = \min_{\mathbf{p}} \max_{j} A(\mathbf{p}, j)$$

$$\geq \max_{\mathbf{q}} \min_{i} A(i, \mathbf{q})$$

$$\geq \min_{i} A(i, \mathbf{q}^*)$$

$$\geq \lambda^* - \epsilon$$

Since this is true for any ϵ

$$\max_{\mathbf{q}} \min_{i} A(i, \mathbf{q}) = \lambda^*$$

Which is the min-max theorem.

11.2 Learning Theory and Boosting

Let \mathcal{X} be some domain and suppose we are trying to learn a concept class \mathcal{C} where each element of \mathcal{C} is a function $c: \mathcal{X} = \{0, 1\}$. There is a distribution \mathcal{D} on the domain \mathcal{X} . We try to learn the unknown concept class \mathcal{C} . For example, $(x_1, c(x_1)), (x_2, c(x_2))$ where x_1, x_2 are i.i.d. according to \mathcal{D} . Learning algorithm needs to output a hypothesis $h: \mathcal{X} \to \{0, 1\}$. The *error* of the hypothesis is defined to be $\mathbf{E}_{\mathcal{X} \sim \mathcal{D}}[|h(x) - c(x)|] \leq \epsilon$.

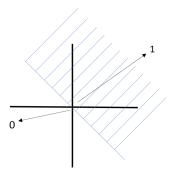


Figure 11.1: Mapping of a concept

Definition 11.1 Weak learner. There exists $\mathcal{Y} > 0$ such that for any distribution \mathcal{D} on \mathcal{X} , learner draws samples $(x_1, c(x_1)), (x_2, c(x_2), \cdots)$ and outputs hypothesis $h : \mathcal{X} \to \{0, 1\}$ such that with probability at least $1 - \delta$

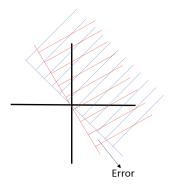


Figure 11.2: Error of a hypothesis

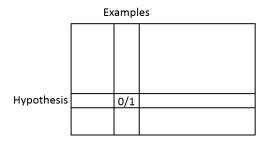


Figure 11.3: Examples vs. hypothesis

Inputs from distribution $\mathcal D$ on $\mathcal X$

$$(x_1, c(x_1)), (x_2, c(x_2), \dots$$
 hypothesis

Figure 11.4: Computing hypothesis from stream

$$\operatorname{Prob}_{\mathcal{X} \sim \mathcal{D}}[h(x) = c(x)] \ge \frac{1}{2} + \lambda$$

$$\mathop{\mathbf{E}}_{\mathcal{X} \sim \mathcal{D}}[h(x) = c(x)] \le \frac{1}{2} - \lambda$$

Definition 11.2 Strong learner. For any $\epsilon > 0$, for any distribution \mathcal{D} on \mathcal{X} , learner draws samples $(x_1, c(x_1)), (x_2, c(x_2), \cdots)$ and outputs hypothesis $h : \mathcal{X} \to \{0, 1\}$ such that with probability at least $1 - \delta$

$$\underset{\mathcal{X} \sim \mathcal{D}}{\mathbb{E}} [h(x) - c(x)] \le \epsilon$$

A weak learner with an assumption that class \mathcal{H} of hypothesis containing weak learner's output has finite

VC implies strong learner.

S of N example: ? (figure 11.4) \rightarrow compute a hypothesis that is incorrect on at most ϵ fraction of S. S is an ϵ -approximation if the error on hypothesis on $\mathcal{D} \leq 2\epsilon$.

$\mathbf{m}^{(t)} \rightarrow$	0	1	1		0
$\stackrel{C\rightarrow}{}$	1	0	1	•••	0
$h^{(t)} \to$	0	0	1		1
	X_1	X_2	X_3		X_N

At each time t, we have a distribution $\mathbf{p}^{(t)}$ on sample. We run weak learners with input $\mathbf{p}^{(t)}$ and obtain a hypothesis $h^{(t)}$ that is good on fraction $\geq \frac{1}{2} + \lambda$.

Loss vector
$$\mathbf{m}_{x}^{(t)} = 1 - |h_{(x)}^{(t)} - c(x)|$$

Number of steps $T = \frac{2}{\lambda^2} \ln \frac{1}{\epsilon}$, which is independent of N. Then we take the majority of hypotheses.

Reference

[Arora et al., 2012] Arora, S., Hazan, E., and Kale, S. (2012). The multiplicative weights update method: a meta-algorithm and applications. Theory of Computing, 8(6):121-164.