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11.1 Solving zero-sum games approximately

We show how the general algorithm presented in the last lecture can be used to approximately solve zero-sum
games. Let A be a payoff matrix of a finite 2-player zero-sum game, with n rows. When the row player
plays strategy i and the column player plays strategy j, then the payoff to the column player is A(i, j). We
assume A(i, j) ∈ [0, 1]. If the row player chooses strategy i from a distribution p over the rows, then the
expected payoff to the column player for choosing a strategy j is

A(p, j) = E
i∼p

[A(i, j)]

Thus, the best response for the row player is the strategy i which minimizes this payoff. John von Neumann’s
min-max theorem says that if each of the players chooses a distribution over their strategies to optimize their
worst case payoff, then the value they obtain is:

λ∗ := min
P

max
j
A(p, j)

Our goal is to find a distribution p̃ such that

max
j
A(p̃, j) ≤ λ∗ + ε

In each round, given a distribution p(t) on the rows, we choose j(t) to be the best response strategy to p(t)

for the column player. This follows:

j(t) = avg max
j
A(p, j)

Thus, the loss vector m(t) = column
(t)
j .

Generate
∑T
t=1 m(t)p(t) ≤

∑T
t=1 m(t)p + η

∑T
t=1 |m(t)|p + lnn

η , for any p.

Now since m(t)p(t) = A(p(t), j(t)) and all A(i, j) ∈ [0, 1]. We get,

λ∗T ≤
T∑
t=1

A(p(t), j(t)) ≤ A(p, j(t)) + η

T∑
t=1

1 +
lnn

η

Dividing by T ,

λ∗ ≤ 1

T

T∑
t=1

A(p(t), j(t)) ≤ 1

T
A(p, j(t)) + η +

lnn

ηT
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By definition, λ∗ = A(p(t), j(t)). We set p to be the best strategy of the row player, so A(p, j(t)) ≤ λ∗, for
any j. Therefore we get,

1

T

T∑
t=1

A(p(t), j(t)) ≤ λ∗ + η +
lnn

ηT

Our goal is to come up with a probability distribution that is almost as good as λ∗. Let t̃ minimizes
A(p(t), j(t)). Therefore,

A(p(t̃), j(t̃)) ≤ λ∗ + η +
lnn

ηT

Pick η = ε
2 and T =

⌈
lnn

(ε/2)2

⌉
; we get

A(p(t̃), j(t̃)) ≤ λ∗ + ε

Therefore,

λ∗ ≤ 1

T

T∑
t=1

A(p, j(t)) + ε, for any p

Let p corresponds to playing row i with probability 1.

λ∗ − ε ≤ 1

T

T∑
t=1

A(i, j(t))

Let q∗ be the probability distribution on columns that assigns to column j the probability

|{t : j(t) = j}|
T

So,

λ∗ − ε ≤ 1

T

T∑
t=1

A(i, j(t)) ≤ A(i,q∗)

for any row i.

For example, consider the following table:

t j(t)

1 α
2 β
3 α
4 γ
5 α
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The probability distribution for this example is 1
5 (A(i, α), A(i, β), A(i, α), A(i, γ), A(i, α)). We get, q∗α =

3/5, q∗β = 1/5 and q∗γ = 1/5.

Recall,

λ∗ = min
p

max
j
A(p, j)

≥ max
q

min
i
A(i,q)

≥ min
i
A(i,q∗)

≥ λ∗ − ε

Since this is true for any ε

max
q

min
i
A(i,q) = λ∗

Which is the min-max theorem.

11.2 Learning Theory and Boosting

Let X be some domain and suppose we are trying to learn a concept class C where each element of C is a
function c : X = {0, 1}. There is a distribution D on the domain X . We try to learn the unknown concept
class C. For example, (x1, c(x1)), (x2, c(x2)) where x1, x2 are i.i.d. according to D. Learning algorithm needs
to output a hypothesis h : X → {0, 1}. The error of the hypothesis is defined to be EX∼D[|h(x)− c(x)|] ≤ ε.

Figure 11.1: Mapping of a concept

Definition 11.1 Weak learner. There exists Y > 0 such that for any distribution D on X , learner draws
samples (x1, c(x1)), (x2, c(x2), · · · ) and outputs hypothesis h : X → {0, 1} such that with probability at least
1− δ
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Figure 11.2: Error of a hypothesis

Figure 11.3: Examples vs. hypothesis

Figure 11.4: Computing hypothesis from stream

Prob
X∼D

[h(x) = c(x)] ≥ 1

2
+ λ

E
X∼D

[h(x) = c(x)] ≤ 1

2
− λ

Definition 11.2 Strong learner. For any ε > 0, for any distribution D on X , learner draws samples
(x1, c(x1)), (x2, c(x2), · · · ) and outputs hypothesis h : X → {0, 1} such that with probability at least 1− δ

E
X∼D

[h(x)− c(x)] ≤ ε

A weak learner with an assumption that class H of hypothesis containing weak learner’s output has finite
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VC implies strong learner.

S of N example: ? (figure 11.4) → compute a hypothesis that is incorrect on at most ε fraction of S. S is
an ε-approximation if the error on hypothesis on D ≤ 2ε.

X1 X2 X3 · · · XN

h(t) → 0 0 1 · · · 1

C → 1 0 1 · · · 0

——————————————————————————————

m(t) → 0 1 1 · · · 0

At each time t, we have a distribution p(t) on sample. We run weak learners with input p(t) and obtain a
hypothesis h(t) that is good on fraction ≥ 1

2 + λ.

Loss vector m
(t)
x = 1− |h(t)(x) − c(x)|

Number of steps T = 2
λ2 ln 1

ε , which is independent of N . Then we take the majority of hypotheses.
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