Algorithmic Excursions: Topics in Computer Science II Spring 2016

Week 11: Zero-Sum Games, Learning Theory and Boosting

Lecturer: Kasturi Varadarajan Scribe: Sikder Hugq

11.1 Solving zero-sum games approximately

We show how the general algorithm presented in the last lecture can be used to approximately solve zero-sum
games. Let A be a payoff matrix of a finite 2-player zero-sum game, with n rows. When the row player
plays strategy ¢ and the column player plays strategy j, then the payoff to the column player is A(%,j). We
assume A(i,j) € [0,1]. If the row player chooses strategy ¢ from a distribution p over the rows, then the
expected payoff to the column player for choosing a strategy j is

Ap.d) = E [AG. )
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Thus, the best response for the row player is the strategy ¢ which minimizes this payoff. John von Neumann’s
min-max theorem says that if each of the players chooses a distribution over their strategies to optimize their
worst case payoff, then the value they obtain is:

A" := minmax A(p, j)
P
Our goal is to find a distribution p such that
max A(p,j) < A +e
J

In each round, given a distribution p® on the rows, we choose j(*) to be the best response strategy to p*)
for the column player. This follows:

i® = avg max A(p, )
J

Thus, the loss vector m®) = columng.t).

Generate Y7, mWp® < ST m®p 4 ST jm®|p + ln” , for any p.

Now since m®p® = A(p®, i) and all A(i,5) € [0,1]. We get,
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Dividing by T,
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By definition, \* = A(p®,j()). We set p to be the best strategy of the row player, so A(p,;")) < \*, for
any j. Therefore we get,
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Our goal is to come up with a probability distribution that is almost as good as A*. Let ¢ minimizes
A(p®, j®). Therefore,

T 1
APD,J ) <A 0+ Tp

Pick n=§ and T = {(511/12732—‘7 we get

Ap (t) (t)) <N +e

Therefore,
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Let p corresponds to playing row ¢ with probability 1.

T
Z (t)

Let q* be the probability distribution on columns that assigns to column j the probability

{t: " =j}
T
So,
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for any row 1.

For example, consider the following table:
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The probability distribution for this example is %(A(i,a),A(i,ﬁ),A(i,a),A(i,v),A(i,a)). We get, q*a =
3/5,q*8=1/5and q*y = 1/5.

Recall,

A" = minmax A(p, j)
P

> maxmin A(i, q)
q 4

> min A(i, q")

>\ —e

Since this is true for any e

max min A(i,q) = A
q [

Which is the min-max theorem.

11.2 Learning Theory and Boosting

Let X be some domain and suppose we are trying to learn a concept class C where each element of C is a
function ¢ : X = {0,1}. There is a distribution D on the domain X. We try to learn the unknown concept
class C. For example, (z1,c(x1)), (22, c(x2)) where 21, 22 are i.i.d. according to D. Learning algorithm needs
to output a hypothesis h : X — {0,1}. The error of the hypothesis is defined to be Exp[|/h(z) —c(z)]] < e.

Figure 11.1: Mapping of a concept

Definition 11.1 Weak learner. There exists Y > 0 such that for any distribution D on X, learner draws
samples (x1, (1)), (x2, c(x2), -+ ) and outputs hypothesis h : X — {0,1} such that with probability at least
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Error

Figure 11.2: Error of a hypothesis

Examples

Hypothesis 0/1

Figure 11.3: Examples vs. hypothesis

Inputs from distribution 2 on %
hypothesis

(xl'c(xl)): (xz, C(Xz), —_— | ?

Figure 11.4: Computing hypothesis from stream

Problh(z) = c(a)] > 5 + A
E () = e(a)] < 5~ A

Definition 11.2 Strong learner. For any ¢ > 0, for any distribution D on X, learner draws samples
(x1,¢(x1)), (22, c(22), - -+ ) and outputs hypothesis h : X — {0,1} such that with probability at least 1 — §

(i) = (@) < e

A weak learner with an assumption that class H of hypothesis containing weak learner’s output has finite
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VC implies strong learner.

S of N example: ? (figure 11.4) — compute a hypothesis that is incorrect on at most € fraction of S. S is
an e-approximation if the error on hypothesis on D < 2e.

X, X, X3 Xy
r® — 0 0 1 1
C— 1 0 1 0
m® 0 1 1 0

At each time ¢, we have a distribution p(*) on sample. We run weak learners with input p(*) and obtain a
hypothesis A®*) that is good on fraction > % + A

Loss vector m{) =1 — |hE;)) —c(z)|

Number of steps T = /\% In %, which is independent of N. Then we take the majority of hypotheses.
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