1.1 Sampling to Preserve Geometric Information

Sampling is the process of choosing a “small” number of observations (or sample) from a population. In many applications it is expensive to study all the observations of a population and thus a “small” subset is chosen to study. A very good application is election survey, where the poll of a subset of voters are taken to predict the outcome of the election. In this section we consider a special type of sampling that preserves some property. We will use the following problem to describe this concept.

1.1.1 A Motivating Problem

We are given a set Y of points in the plane. We consider a disk D that is not known. Points in $Y \cap D$ (resp. $Y \setminus D$) are labelled $+$ (resp. $-$). The labels are not known, but can be computed. We assume that the computation of the label of a point is an expensive process. Now the goal is to compute the disk D. The interesting thing is here that we do not know how to compute D without checking the labels of all points. So, we use the following sampling technique to find a disk that “approximates” D.

1. Pick a sample $N \subseteq Y$
2. Compute label for each point in N
3. Return the smallest radius disk D_1 containing all the $+$ points in N and none of the $-$ points in N

Now it is not hard to see that some $+$ points in D might not lie inside D_1 or some $-$ points in D might lie inside D_1. To quantify the error consider the symmetric difference $D \Delta D_1 = (D \setminus D_1) \cup (D_1 \setminus D)$. Note that $Y \cap (D \Delta D_1) \subseteq Y \setminus N$, as $(D \setminus D_1) \subseteq D$ contains only $+$ points of $Y \setminus N$ and $(D_1 \setminus D)$ contains only a subset of $-$ points of Y that are not in N (see Figure 1.1). Also $D \cap D_1$ contains only $+$ points. Thus the erroneous points are the points in $D \Delta D_1$. Hence we would like to minimize the quantity $|Y \cap (D \Delta D_1)|$. In particular, for any $0 < \epsilon \leq 1$, we want $|Y \cap (D \Delta D_1)| \leq \epsilon |Y|$. Now keeping this problem in mind it is a good time to define the concept of ϵ-net which will be helpful to solve the problem.

Definition 1.1 A subset $M \subseteq Y$ is an ϵ-net w.r.t. Δ if for any disk D' in the plane, $|Y \cap (D \Delta D')| > \epsilon |Y| \implies M \cap (D \Delta D') \neq \emptyset$.

Now let us go back to our sampling algorithm where we choose the sample set N. Suppose N is an ϵ-net w.r.t. Δ, then our claim is that $|Y \cap (D \Delta D_1)| \leq \epsilon |Y|$. Suppose $|Y \cap (D \Delta D_1)| > \epsilon |Y|$. Then as $Y \cap (D \Delta D_1) \subseteq Y \setminus N$, N does not contain any point of $Y \cap (D \Delta D_1)$. But by definition of an ϵ-net w.r.t. Δ this cannot be true. Thus to solve our problem (to approximate the disk D) it is sufficient to compute an ϵ-net w.r.t. Δ. Later in this course we will see how to compute such an ϵ-net of “small” (independent of $|Y|$) size.

Our sampling technique is an example of sampling that preserves geometric information. In particular, the geometric information that we want to preserve is that for any disk D', either $|Y \cap (D \Delta D')| \leq \epsilon |Y|$ or the sample set N contains at least one point of $Y \cap (D \Delta D')$.

1.2 VC-dimension

Definition 1.2 A set system (or a range space) S is a pair (X, R), where X is a finite or infinite ground set, and R is a finite or infinite family of subsets of X. Each element of R is called a range.

An example of a set system is (X_1, R_1), where X_1 is the real line and each element of R_1 is an interval. Another example could be the pair (X_2, R_2), where X_2 is the plane and each element of R_2 is the symmetric difference of two disks.

Now consider a range space $S = (X, R)$. Given $Y \subseteq X$, R_Y, the projection of R onto Y is $\{Y \cap r | r \in R\}$. Projection of S onto Y is (Y, R_Y). For example, again consider the set system (X_1, R_1). Let $Y = \{a, b, c\}$ such that $a < b < c$. Then $R_Y = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. R_Y does not contain $\{a, c\}$, as any interval that contains a and c must also contains b. For a range space (X, R), a subset $Y \subseteq X$ is said to be completely shattered if R_Y is the collection of all subsets of Y. For the set system (X_1, R_1), any two point subset is completely shattered.

Definition 1.3 Vapnik-Chervonenkis dimension (VC-dimension) of a set system $S = (X, R)$ is the largest integer m for which there is a set $Y \subseteq X$ of size m that is completely shattered. If such a largest integer does not exist, VC-dimension is ∞.

For the set system (X_1, R_1), it is not possible to completely shatter any three points subset and hence from our previous discussion the VC-dimension is 2. For the range system with the plane as the ground set and halfplanes as the ranges, one can show that the VC-dimension is 3. Also for the range system with the plane as the ground set and convex sets as the ranges, VC-dimension is ∞. For any m, one can select a set of m points in convex positions that is completely shattered.

Definition 1.4 Given a range space $S = (X, R)$ its shatter function $\pi_S : \mathbb{N} \rightarrow \mathbb{N}$ is defined as

$$\pi_S(m) = \max_{B \subseteq X : |B| = m} |R_B|$$

For our example set system $S' = (X_1, R_1)$, $\pi_{S'}(0) = 1$, $\pi_{S'}(1) = 2$, $\pi_{S'}(2) = 4$, and $\pi_{S'}(3) = 7$. One interesting question in this context is, “Is shatter function of a set system polynomially bounded?” For example, $\pi_{S'}(m) = O(m^2)$. Indeed, for any finite set of points, a subset that can be generated by an interval
is uniquely identified by the maximum and the minimum point of that subset. Thus for a set of \(m \) points \(O(m^2) \) distinct subsets can be generated. In general, the following lemma gives a bound on the shatter function.

Lemma 1.5 Suppose a set system \(S = (X, \mathcal{R}) \) has VC-dimension \(d < \infty \). Then

\[
\pi_S(m) \leq \binom{m}{0} + \binom{m}{1} + \ldots + \binom{m}{d}
\]

1.3 \(\epsilon \)-net

Previously, we have seen the definition of \(\epsilon \)-net w.r.t. \(\Delta \) operator. In this section, we generalize that definition for any finite range space, i.e range space with finite ground set.

Definition 1.6 Let \(S = (X, \mathcal{R}) \) be a finite range space. For \(0 < \epsilon < 1 \), \(N \subseteq X \) is said to be an \(\epsilon \)-net if for any \(r \in \mathcal{R} \) such that \(|r| > \epsilon|X| \), \(N \cap r \neq \phi \).

Consider a range space in the real line with 16 points as the ground set \(X \), and each range is the intersection of \(X \) and an interval. Let \(\epsilon = \frac{1}{4} \). Now it is easy to see that if we take every fourth point from a sorted ordering of the points in \(X \) w.r.t. their values, we get an \(\epsilon \)-net. In general, we need to pick every \(\epsilon|X|^{th} \) point. Hence the size of the \(\epsilon \)-net would be \(O(\frac{1}{\epsilon}) \). For general range spaces it is not straightforward if one can get an \(\epsilon \)-net of size \(O(\frac{1}{\epsilon}) \). In the following lemma we prove a weaker bound for general range spaces.

Lemma 1.7 Let \(S = (X, \mathcal{R}) \) be a finite range space and \(0 < \epsilon < 1 \). Then \(S \) has an \(\epsilon \)-net of size \(O(\frac{1}{\epsilon} \ln |\mathcal{R}|) \).

Proof: We give a probabilistic proof for this lemma. Let \(N \subseteq X \) be chosen by sampling uniformly from \(X \), \(\frac{c}{\epsilon} \ln |\mathcal{R}| \) points, independently and with replacement, where \(c > 0 \) is a suitable constant. Note that it is sufficient to show that \(N \) is an \(\epsilon \)-net with probability \(> 0 \). Indeed, if there is no \(\epsilon \)-net of size \(O(\frac{1}{\epsilon} \ln |\mathcal{R}|) \), the probability that \(N \) is an \(\epsilon \)-net is 0.

For \(r \in \mathcal{R} \), let \(B_r \) be the event \(r \cap N = \phi \). Now consider any \(r \) such that \(|r| > \epsilon|X| \). Then the probability that a particular point in \(N \) does not belong to \(r \) is at most \(1 - \frac{c}{\epsilon} \ln |\mathcal{R}| \). As all the \(\frac{c}{\epsilon} \ln |\mathcal{R}| \) points in \(N \) are chosen independent of each other,

\[
Pr[B_r] \leq \left(1 - \frac{c}{\epsilon} \ln |\mathcal{R}| \right) \leq e^{-c \ln |\mathcal{R}|} \quad \text{(as } 1 + x \leq e^x\text{)}
\]

\[
= \frac{1}{|\mathcal{R}|^c}
\]

Then the probability that for at least one range \(r \) with \(|r| > \epsilon|X| \), \(r \cap N = \phi \) is,

\[
Pr[\bigcup_{r \in \mathcal{R} : |r| > \epsilon|X|} B_r] \leq \sum_{r \in \mathcal{R} : |r| > \epsilon|X|} Pr[B_r] \quad \text{(by union bound)}
\]

\[
\leq \frac{|\mathcal{R}|}{|\mathcal{R}|^c}
\]

\[
= \frac{1}{|\mathcal{R}|^{c-1}}
\]

\[
< 1 \quad \text{(if } c \geq 2\text{)}
\]
Thus the probability that for any range r with $|r| > \epsilon |X|$, $r \cap N \neq \emptyset$ is > 0. Hence N is an ϵ-net with probability > 0.

One might be interested in improving the bound in Lemma 1.7. Actually, this is possible for the range spaces with finite VC-dimension. In particular, one can show that for a range space (X, \mathcal{R}) with finite VC-dimension, there is an ϵ-net whose size is independent of $|\mathcal{R}|$. ■