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1.1 Sampling to Preserve Geometric Information

Sampling is the process of choosing a “small” number of observations (or sample) from a population. In
many applications it is expensive to study all the observations of a population and thus a “small” subset is
chosen to study. A very good application is election survey, where the poll of a subset of voters are taken
to predict the outcome of the election. In this section we consider a special type of sampling that preserves
some property. We will use the following problem to describe this concept.

1.1.1 A Motivating Problem

We are given a set Y of points in the plane. We consider a disk D that is not known. Points in Y ∩D (resp.
Y \ D) are labelled + (resp. −). The labels are not known, but can be computed. We assume that the
computation of the label of a point is an expensive process. Now the goal is to compute the disk D. The
interesting thing is here that we do not know how to compute D without checking the labels of all points.
So, we use the following sampling technique to find a disk that “approximates” D.

1. Pick a sample N ⊆ Y

2. Compute label for each point in N

3. Return the smallest radius disk D1 containing all the + points in N and none of the − points in N

Now it is not hard to see that some + points in D might not lie inside D1 or some − points in D might
lie inside D1. To quantify the error consider the symmetric difference D∆D1 = (D \D1) ∪ (D1 \D). Note
that Y ∩ (D∆D1) ⊆ Y \N , as (D \D1) ⊆ D contains only + points of Y \N and (D1 \D) contains only a
subset of − points of Y that are not in N (see Figure 1.1). Also D ∩D1 contains only + points. Thus the
erroneous points are the points in D∆D1. Hence we would like to minimize the quantity |Y ∩ (D∆D1)|. In
particular, for any 0 < ε ≤ 1, we want |Y ∩ (D∆D1)| ≤ ε|Y |. Now keeping this problem in mind it is a good
time to define the concept of ε-net which will be helpful to solve the problem.

Definition 1.1 A subset M ⊆ Y is an ε-net w.r.t. ∆ if for any disk D′ in the plane, |Y ∩ (D∆D′)| >
ε|Y | =⇒M ∩ (D∆D′) 6= φ.

Now let us go back to our sampling algorithm where we choose the sample set N . Suppose N is an ε-net w.r.t.
∆, then our claim is that |Y ∩(D∆D1)| ≤ ε|Y |. Suppose |Y ∩(D∆D1)| > ε|Y |. Then as Y ∩(D∆D1) ⊆ Y \N ,
N does not contain any point of Y ∩ (D∆D1). But by definition of an ε-net w.r.t. ∆ this cannot be true.
Thus to solve our problem (to approximate the disk D) it is sufficient to compute an ε-net w.r.t. ∆. Later
in this course we will see how to compute such an ε-net of “small” (independent of |Y |) size.

Our sampling technique is an example of sampling that preserves geometric information. In particular, the
geometric information that we want to preserve is that for any disk D′, either |Y ∩ (D∆D′)| ≤ ε|Y | or the
sample set N contains at least one point of Y ∩ (D∆D′).
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Figure 1.1: Circled + and − are the points of N .

1.2 VC-dimension

Definition 1.2 A set system (or a range space) S is a pair (X,R), where X is a finite or infinite ground
set, and R is a finite or infinite family of subsets of X. Each element of R is called a range.

An example of a set system is (X1,R1), where X1 is the real line and each element of R1 is an interval.
Another example could be the pair (X2,R2), where X2 is the plane and each element of R2 is the symmetric
difference of two disks.

Now consider a range space S = (X,R). Given Y ⊆ X, RY , the projection of R onto Y is {Y ∩ r|r ∈ R}.
Projection of S onto Y is (Y,RY ). For example, again consider the set system (X1,R1). Let Y = {a, b, c}
such that a < b < c. Then RY = {φ, {a}, {b}, {c}, {a, b}, {b, c}, {a, b, c}}. RY does not contain {a, c}, as any
interval that contains a and c must also contains b. For a range space (X,R), a subset Y ⊆ X is said to be
completely shattered if RY is the collection of all subsets of Y . For the set system (X1,R1), any two point
subset is completely shattered.

Definition 1.3 Vapnik-Chervonenkis dimension (VC-dimension) of a set system S = (X,R) is the largest
integer m for which there is a set Y ⊆ X of size m that is completely shattered. If such a largest integer
does not exist, VC-dimension is ∞.

For the set system (X1,R1), it is not possible to completely shatter any three points subset and hence from
our previous discussion the VC-dimension is 2. For the range system with the plane as the ground set and
halfplanes as the ranges, one can show that the VC-dimension is 3. Also for the range system with the plane
as the ground set and convex sets as the ranges, VC-dimension is ∞. For any m, one can select a set of m
points in convex positions that is completely shattered.

Definition 1.4 Given a range space S = (X,R) its shatter function πS : N→ N is defined as

πS(m) = max
B⊂X:|B|=m

|RB |

For our example set system S ′ = (X1,R1), πS′(0) = 1, πS′(1) = 2, πS′(2) = 4, and πS′(3) = 7. One
intereseting question in this context is, “Is shatter function of a set system polynomially bounded?”. For
example, πS′(m) = O(m2). Indeed, for any finite set of points, a subset that can be generated by an interval
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is uniquely identified by the maximum and the minimum point of that subset. Thus for a set of m points
O(m2) distinct subsets can be generated. In general, the following lemma gives a bound on the shatter
function.

Lemma 1.5 Suppose a set system S = (X,R) has VC-dimension d <∞. Then

πS(m) ≤
(
m

0

)
+

(
m

1

)
+ . . .+

(
m

d

)

1.3 ε-net

Previously, we have seen the definition of ε-net w.r.t. ∆ operator. In this section, we generalize that definition
for any finite range space, i.e range space with finite ground set.

Definition 1.6 Let S = (X,R) be a finite range space. For 0 < ε < 1, N ⊆ X is said to be an ε-net if for
any r ∈ R such that |r| > ε|X|, N ∩ r 6= φ.

Consider a range space in the real line with 16 points as the ground set X, and each range is the intersection
of X and an interval. Let ε = 1

4 . Now it is easy to see that if we take every fourth point from a sorted
ordering of the points in X w.r.t. their values, we get an ε-net. In general, we need to pick every ε|X|th
point. Hence the size of the ε-net would be O( 1

ε ). For general range spaces it is not straightforward if one
can get an ε-net of size O( 1

ε ). In the following lemma we prove a weaker bound for general range spaces.

Lemma 1.7 Let S = (X,R) be a finite range space and 0 < ε < 1. Then S has an ε-net of size O( 1
ε ln |R|).

Proof: We give a probabilistic proof for this lemma. Let N ⊆ X be chosen by sampling uniformly from
X, c

ε ln |R| points, independently and with replacement, where c > 0 is a suitable constant. Note that it is
sufficient to show that N is an ε-net with probaility > 0. Indeed, if there is no ε-net of size O( 1

ε ln |R|), the
probability that N is an ε-net is 0.

For r ∈ R, let Br be the event r ∩N = φ. Now consider any r such that |r| > ε|X|. Then the probability

that a particular point in N does not belong to r is at most 1− ε|X|
|X| = 1− ε. As all the c

ε ln |R| points in N

are chosen independent of each other,

Pr[Br] ≤ (1− ε) cε ln |R| (1.1)

≤ e−c ln |R| (as 1 + x ≤ ex) (1.2)

=
1

|R|c (1.3)

Then the probability that for at least one range r with |r| > ε|X|, r ∩N = φ is,

Pr[
⋃

r∈R:|r|>ε|X|

Br] ≤
∑

r∈R:|r|>ε|X|

Pr[Br] (by union bound) (1.4)

≤ |R||R|c (1.5)

=
1

|R|c−1 (1.6)

< 1 (if c ≥ 2) (1.7)
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Thus the probability that for any range r with |r| > ε|X|, r ∩ N 6= φ is > 0. Hence N is an ε-net with
probaility > 0.

One might be interested in improving the bound in Lemma 1.7. Actually, this is possible for the range
spaces with finite VC-dimension. In particular, one can show that for a range space (X,R) with finite
VC-dimension, there is an ε-net whose size is independent of |R|.


