Algorithmic Excursions: Topics in Computer Science II

Lecture 1 & 2 : ϵ -net and VC-dimension

Lecturer: Kasturi Varadarajan

Scribe: Sayan Bandyapadhyay

Spring 2016

1.1 Sampling to Preserve Geometric Information

Sampling is the process of choosing a "small" number of observations (or sample) from a population. In many applications it is expensive to study all the observations of a population and thus a "small" subset is chosen to study. A very good application is election survey, where the poll of a subset of voters are taken to predict the outcome of the election. In this section we consider a special type of sampling that preserves some property. We will use the following problem to describe this concept.

1.1.1 A Motivating Problem

We are given a set Y of points in the plane. We consider a disk D that is not known. Points in $Y \cap D$ (resp. $Y \setminus D$) are labelled + (resp. -). The labels are not known, but can be computed. We assume that the computation of the label of a point is an expensive process. Now the goal is to compute the disk D. The interesting thing is here that we do not know how to compute D without checking the labels of all points. So, we use the following sampling technique to find a disk that "approximates" D.

- 1. Pick a sample $N \subseteq Y$
- 2. Compute label for each point in N
- 3. Return the smallest radius disk D_1 containing all the + points in N and none of the points in N

Now it is not hard to see that some + points in D might not lie inside D_1 or some - points in D might lie inside D_1 . To quantify the error consider the symmetric difference $D\Delta D_1 = (D \setminus D_1) \cup (D_1 \setminus D)$. Note that $Y \cap (D\Delta D_1) \subseteq Y \setminus N$, as $(D \setminus D_1) \subseteq D$ contains only + points of $Y \setminus N$ and $(D_1 \setminus D)$ contains only a subset of - points of Y that are not in N (see Figure 1.1). Also $D \cap D_1$ contains only + points. Thus the erroneous points are the points in $D\Delta D_1$. Hence we would like to minimize the quantity $|Y \cap (D\Delta D_1)|$. In particular, for any $0 < \epsilon \leq 1$, we want $|Y \cap (D\Delta D_1)| \leq \epsilon |Y|$. Now keeping this problem in mind it is a good time to define the concept of ϵ -net which will be helpful to solve the problem.

Definition 1.1 A subset $M \subseteq Y$ is an ϵ -net w.r.t. Δ if for any disk D' in the plane, $|Y \cap (D\Delta D')| > \epsilon |Y| \Longrightarrow M \cap (D\Delta D') \neq \phi$.

Now let us go back to our sampling algorithm where we choose the sample set N. Suppose N is an ϵ -net w.r.t. Δ , then our claim is that $|Y \cap (D\Delta D_1)| \leq \epsilon |Y|$. Suppose $|Y \cap (D\Delta D_1)| > \epsilon |Y|$. Then as $Y \cap (D\Delta D_1) \subseteq Y \setminus N$, N does not contain any point of $Y \cap (D\Delta D_1)$. But by definition of an ϵ -net w.r.t. Δ this cannot be true. Thus to solve our problem (to approximate the disk D) it is sufficient to compute an ϵ -net w.r.t. Δ . Later in this course we will see how to compute such an ϵ -net of "small" (independent of |Y|) size.

Our sampling technique is an example of sampling that preserves geometric information. In particular, the geometric information that we want to preserve is that for any disk D', either $|Y \cap (D\Delta D')| \leq \epsilon |Y|$ or the sample set N contains at least one point of $Y \cap (D\Delta D')$.

Figure 1.1: Circled + and - are the points of N.

1.2 VC-dimension

Definition 1.2 A set system (or a range space) S is a pair (X, \mathcal{R}) , where X is a finite or infinite ground set, and \mathcal{R} is a finite or infinite family of subsets of X. Each element of \mathcal{R} is called a range.

An example of a set system is (X_1, \mathcal{R}_1) , where X_1 is the real line and each element of \mathcal{R}_1 is an interval. Another example could be the pair (X_2, \mathcal{R}_2) , where X_2 is the plane and each element of \mathcal{R}_2 is the symmetric difference of two disks.

Now consider a range space $S = (X, \mathcal{R})$. Given $Y \subseteq X$, \mathcal{R}_Y , the projection of \mathcal{R} onto Y is $\{Y \cap r | r \in \mathcal{R}\}$. Projection of S onto Y is (Y, \mathcal{R}_Y) . For example, again consider the set system (X_1, \mathcal{R}_1) . Let $Y = \{a, b, c\}$ such that a < b < c. Then $R_Y = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. R_Y does not contain $\{a, c\}$, as any interval that contains a and c must also contains b. For a range space (X, \mathcal{R}) , a subset $Y \subseteq X$ is said to be completely shattered if R_Y is the collection of all subsets of Y. For the set system (X_1, \mathcal{R}_1) , any two point subset is completely shattered.

Definition 1.3 Vapnik-Chervonenkis dimension (VC-dimension) of a set system $S = (X, \mathcal{R})$ is the largest integer m for which there is a set $Y \subseteq X$ of size m that is completely shattered. If such a largest integer does not exist, VC-dimension is ∞ .

For the set system (X_1, \mathcal{R}_1) , it is not possible to completely shatter any three points subset and hence from our previous discussion the VC-dimension is 2. For the range system with the plane as the ground set and halfplanes as the ranges, one can show that the VC-dimension is 3. Also for the range system with the plane as the ground set and convex sets as the ranges, VC-dimension is ∞ . For any m, one can select a set of mpoints in convex positions that is completely shattered.

Definition 1.4 Given a range space $S = (X, \mathcal{R})$ its shatter function $\pi_S : \mathbb{N} \to \mathbb{N}$ is defined as

$$\pi_{\mathcal{S}}(m) = \max_{B \subset X: |B| = m} |\mathcal{R}_B|$$

For our example set system $S' = (X_1, \mathcal{R}_1), \pi_{S'}(0) = 1, \pi_{S'}(1) = 2, \pi_{S'}(2) = 4$, and $\pi_{S'}(3) = 7$. One interesting question in this context is, "Is shatter function of a set system polynomially bounded?". For example, $\pi_{S'}(m) = O(m^2)$. Indeed, for any finite set of points, a subset that can be generated by an interval

Lemma 1.5 Suppose a set system $S = (X, \mathcal{R})$ has VC-dimension $d < \infty$. Then

$$\pi_{\mathcal{S}}(m) \le \binom{m}{0} + \binom{m}{1} + \ldots + \binom{m}{d}$$

1.3 ϵ -net

Previously, we have seen the definition of ϵ -net w.r.t. Δ operator. In this section, we generalize that definition for any finite range space, i.e range space with finite ground set.

Definition 1.6 Let $S = (X, \mathcal{R})$ be a finite range space. For $0 < \epsilon < 1$, $N \subseteq X$ is said to be an ϵ -net if for any $r \in \mathcal{R}$ such that $|r| > \epsilon |X|$, $N \cap r \neq \phi$.

Consider a range space in the real line with 16 points as the ground set X, and each range is the intersection of X and an interval. Let $\epsilon = \frac{1}{4}$. Now it is easy to see that if we take every fourth point from a sorted ordering of the points in X w.r.t. their values, we get an ϵ -net. In general, we need to pick every $\epsilon |X|^{th}$ point. Hence the size of the ϵ -net would be $O(\frac{1}{\epsilon})$. For general range spaces it is not straightforward if one can get an ϵ -net of size $O(\frac{1}{\epsilon})$. In the following lemma we prove a weaker bound for general range spaces.

Lemma 1.7 Let $S = (X, \mathcal{R})$ be a finite range space and $0 < \epsilon < 1$. Then S has an ϵ -net of size $O(\frac{1}{\epsilon} \ln |\mathcal{R}|)$.

Proof: We give a probabilistic proof for this lemma. Let $N \subseteq X$ be chosen by sampling uniformly from $X, \frac{c}{\epsilon} \ln |\mathcal{R}|$ points, independently and with replacement, where c > 0 is a suitable constant. Note that it is sufficient to show that N is an ϵ -net with probability > 0. Indeed, if there is no ϵ -net of size $O(\frac{1}{\epsilon} \ln |\mathcal{R}|)$, the probability that N is an ϵ -net is 0.

For $r \in \mathcal{R}$, let B_r be the event $r \cap N = \phi$. Now consider any r such that $|r| > \epsilon |X|$. Then the probability that a particular point in N does not belong to r is at most $1 - \frac{\epsilon |X|}{|X|} = 1 - \epsilon$. As all the $\frac{c}{\epsilon} \ln |\mathcal{R}|$ points in N are chosen independent of each other,

$$Pr[B_r] \le (1-\epsilon)^{\frac{c}{\epsilon} \ln |\mathcal{R}|} \tag{1.1}$$

$$\leq e^{-c\ln|\mathcal{R}|} \quad (\text{as } 1 + x \leq e^x) \tag{1.2}$$

$$=\frac{1}{|\mathcal{R}|^c}\tag{1.3}$$

Then the probability that for at least one range r with $|r| > \epsilon |X|$, $r \cap N = \phi$ is,

$$Pr[\bigcup_{r \in \mathcal{R}: |r| > \epsilon |X|} B_r] \le \sum_{r \in \mathcal{R}: |r| > \epsilon |X|} Pr[B_r] \quad \text{(by union bound)}$$
(1.4)

$$\leq \frac{|\mathcal{R}|}{|\mathcal{R}|^c} \tag{1.5}$$

$$=\frac{1}{|\mathcal{R}|^{c-1}}\tag{1.6}$$

$$<1 \qquad (\text{if } c \ge 2) \tag{1.7}$$

Thus the probability that for any range r with $|r| > \epsilon |X|$, $r \cap N \neq \phi$ is > 0. Hence N is an ϵ -net with probability > 0.

One might be interested in improving the bound in Lemma 1.7. Actually, this is possible for the range spaces with finite VC-dimension. In particular, one can show that for a range space (X, \mathcal{R}) with finite VC-dimension, there is an ϵ -net whose size is independent of $|\mathcal{R}|$.