Approximate Median: Let $S = \{a_1, a_2, \ldots, a_m\}$ be a multiset of m numbers. The median of S is defined to be the $\lceil m/2 \rceil$th smallest number in S. Since S is a multiset, what we mean is that if we sort S in non-decreasing order and write into an array $A[1..m]$, the median is the number stored in $A[\lceil m/2 \rceil]$. For $\varepsilon < 1/2$, an ε-approximate median is any element which is the t-th smallest number of S for some $t \in [\frac{1}{2} - \varepsilon)m, (\frac{1}{2} + \varepsilon)m]$.

For example, if $S = \{1, 2, \ldots, 100\}$, and $\varepsilon = 0.05$, then any number in the range $\{45, 46, \ldots, 55\}$ is an ε-approximate median.

Suppose we pick K elements from S uniformly at random from S, independently (with replacement). Let y denote the median of the K elements. The probability that y is not an ε-approximate median is at most

$$\frac{2}{e^{2\varepsilon^2 K/3}}$$

This is a consequence of the Chernoff bound, which we will discuss later in the course.

Sen Slope: In the homework, we are given a set

$$\{(i, f(i)) \mid 1 \leq i \leq N\}.$$

Let

$$S = \left\{ \frac{f(j) - f(i)}{j - i} \mid 1 \leq i < j \leq N \right\}.$$

The Sen slope is defined to be the median of the set S. In the homework, it suffices to compute any ε-approximate median of S using the above sampling scheme, for $\varepsilon = 0.05$. We want the failure probability to be at most $1/10^6$.