Algorithms (22C:031): Lecture for 11/30

Kasturi Varadarajan

Department of Computer Science, University of Iowa

November, 2010
Informally, an efficient verifier for decision problem X is a foolproof mechanism for a computationally bounded entity that a computationally unbounded entity (a prover) can use to convince the verifier of yes-instances of X.

Let us now move to the formal definition starting from this informal one. Keep an example of X in mind, say 3CNF-SAT.
The mechanism is an algorithm B that takes as two inputs s and t.

- The first input is always an instance s of X.
- The second input t is any proof string.
- Think of the action of B as: does the proof t convince me that s is a yes-instance of X?
Foolproof Mechanism

- If s is a no-instance of X, then for every string t, $B(s, t)$ must output “No”.

This is a requirement of B that captures the aspect of being foolproof.
Yes Instances

If s is a yes-instance of X, then for some string t, $B(s, t)$ must output “Yes”.

This is the feature of the mechanism that the prover can use to convince the verifier that s is a yes-instance. It simply provides the correct proof/witness t.
Computationally Bounded Verifier

- B must run in time that is polynomial in the sum of the lengths (sizes) of s and t.
- If s is a yes-instance of X, then for some string t whose length is bounded by a polynomial in the length of s, $B(s, t)$ must output “Yes”.
The Formal Definition

An efficient verifier for a decision problem X is a polynomial-time algorithm that takes two inputs s and t and outputs “Yes/No”, with the property that

- If s is a no-instance of X, then $B(s, t)$ outputs “No” for every t.
- If s is a yes-instance of X, there is a t whose length is bounded by a polynomial in the length of s, for which $B(s, t)$ outputs “Yes”.

Efficient verifier for 3CNF-SAT

Our verifier B works as follows: its first input s is a 3CNF-formula; if this has n variables, it

- outputs “Yes” if t is an n-bit 0–1 string that is a satisfying assignment for formula s.
- outputs “No” if t is not an n-bit 0–1 string that is a satisfying assignment for s.
A Bogus verifier for 3CNF-SAT

Our verifier, on input 3CNF-formula s, and t,

- outputs “Yes” if t is the string consisting of the bit “1”.
- outputs “No” otherwise.

Why is this not an efficient verifier?
Our verifier, on input $s = \langle G, k \rangle$ and t,

- outputs “Yes” if t encodes a set of vertices in the graph G, and this set is an independent set and has size at least k.
- outputs “No” otherwise.
Problems with (apparently) No Efficient Verifiers

Consider the problem 3CNF-UNSAT:

- yes-instances are 3CNF formulae that are not satisfiable (have no satisfying assignment)
- no-instances are 3CNF formulae that are satisfiable (have at least one satisfying assignment)
Efficiently Solvable Problems have Efficient Verifiers

Let X be a decision problem that has a poly-time algorithm A. Then an efficient verifier for B is:

- On inputs s and t, B ignores t, runs A on s and outputs $A(s)$.
\(P \) and \(NP \)

- \(P \) is the set of all decision problems that have poly-time algorithms.
- Thus, decision versions of weighted interval scheduling, weighted interval covering, and shortest path are in \(P \).
- \(NP \) is the set of all decision problems that have efficient verifiers.
- So \(NP \) includes not only the above 3 problems and the other known to be in in \(P \), but also ...
- \(3\text{CNF-SAT} \), Independent Set, Colorability, Set Cover, and many other problems we’ve not looked at.
The $P = NP$ question

- We know that $P \subseteq NP$, but
- Is $NP = P$? That is, are there problems that have efficient verifiers but no efficient algorithms?
The $P = NP$ question

or
NP-Complete Problems

A decision problem X is said to be NP-complete if

1. $X \in NP$, that is, X has an efficient verifier
2. For every decision problem $Y \in NP$, $Y \leq_P X$ (Y is polynomial time reducible to X)
Claim: Suppose X is NP-complete. Then $X \in P$ implies $NP \subseteq P$.

Proof: Suppose $Y \in NP$. Since X is NP-complete, we know $Y \leq_P X$. Since $Y \leq_P X$ and $X \in P$, we have $Y \in P$.

This claim explains the sense in which NP-complete problems are the hardest ones in NP.
If X is NP-Complete:

- $P = NP$
- $X \in NP$

or

$P = NP$
If X is NP-Complete, this can’t hold:
Notice that if X and Y are two NP-complete problems, then we have $X \leq_P Y$ and $Y \leq_P X$

Either both problems are in P, or neither is.

So, all NP-complete problems share the same fate, though we don’t know what that fate is.
That’s all very well, but are there actual problems that are NP-complete?
Theorem: 3CNF-SAT is NP-complete.
To show this, we need to show two things:

- 3CNF-SAT is in NP. We already did that.
- For any $Y \in NP$, $Y \leq_P 3CNF$-SAT. We won’t show this. It has been shown to be true by others, and we’ll just assume it, at least for now.
INDEPENDENT SET is NP-Complete

- We need to show INDEPENDENT SET is in NP. We already did that.

- We need to show that for any $Y \in NP$, $Y \leq_P$ INDEPENDENT SET. To do this, we’ll simply show $3CNF$-$SAT \leq_P$ INDEPENDENT SET.

- This suffices. Why? Let $Y \in NP$. Since $3CNF$-SAT is NP-complete, $Y \leq_P 3CNF$-SAT. Since $3CNF$-$SAT \leq_P$ INDEPENDENT SET, and poly-time reducibility is transitive, $Y \leq_P$ INDEPENDENT SET.
NP-Completeness Recipe

In general, to show a brand new problem X to be NP-complete, we will

1. show that $X \in NP$. This is typically easy (at least for the homework problems).

2. choose an appropriate known NP-complete problem Z, and show that $Z \leq_P X$. (Not $X \leq_P Z$!!!) This is less easy, but one can become good at it (that's the point of the homework).
3CNF-SAT \(\leq_p \) INDEPENDENT SET

- We need an algorithm, \(A \), that takes as input an instance \(\phi \) of 3CNF-SAT (\(\phi \) is a 3CNF-formula)
- \(A \) must output an instance \(A(\phi) \) of INDEPENDENT SET
- \(A \) must guarantee that \(\phi \) is a Yes-instance of 3CNF-SAT if and only if \(A(\phi) \) is a Yes-instance of INDEPENDENT SET

Imagine some \(\phi = (x_1 \lor \bar{x}_2 \lor x_3), (x_2 \lor \bar{x}_3 \lor x_4), \ldots \), with \(m \) clauses and \(n \) variables.
$3\text{CNF-SAT} \leq_P \text{INDEPENDENT SET}$
$3\text{CNF-SAT} \leq_P \text{INDEPENDENT SET}$
The Algorithm A

- Imagine some input $\phi = (x_1 \lor \bar{x}_2 \lor x_3), (x_2 \lor \bar{x}_3 \lor x_4), \ldots$, with m clauses and n variables.
- For each clause, A creates 3 vertices, labelled by corresponding literals, and adds edges between them.
The Algorithm A

- A adds an edge between two vertices in different clauses if they are labelled by a literal and its complement literal,
This completes the graph construction.

The INDEPENDENT SET instance $A(\phi)$ that is generated is: Does this graph have an independent set of size at least m (the number of clauses in ϕ)
Yes mapped to Yes

- Suppose ϕ was a satisfiable instance.
- We need to argue that the graph constructed has an independent set of size m:
 - Fix a satisfying assignment for ϕ.
 - It makes true at least one literal in each clause. Pick one such literal from each clause.
 - The corresponding vertices in the graph form an independent set of size m.
Suppose ϕ was not a satisfiable instance

We need to argue that the graph constructed does not have an independent set of size m.

To do this, we’ll argue: if the graph does have an independent set of size m, then ϕ is satisfiable.
Suppose the graph does have an independent set of size m. The independent set cannot have two vertices from the same “clause”.

So the independent set has one vertex from each “clause”.

Take the labels of these vertices.

These literals do not include both x_i and \bar{x}_i for any i.

Thus there is an assignment that makes these literals true. This assignment makes every clause true. Thus, ϕ is satisfiable.