
Algorithms (22C:031): Lecture for 11/30

Kasturi Varadarajan

Department of Computer Science, University of Iowa

November, 2010



An Efficient Verifier

◮ Informally, an efficient verifier for decision problem X is a
foolproof mechanism for a computationally bounded entity
that a computationally unbounded entity (a prover) can use
to convince the verifier of yes-instances of X .

Let us now move to the formal definition starting from this
informal one. Keep an example of X in mind, say 3CNF-SAT.



Mechanism

◮ The mechanism is an algorithm B that takes as two inputs s

and t.

◮ The first input is always an instance s of X .

◮ The second input t is any proof string

◮ Think of the action of B as: does the proof t convince me
that s is a yes-instance of X?



Foolproof Mechanism

◮ If s is a no-instance of X , then for every string t, B(s, t) must
output “No”.

This is a requirement of B that captures the aspect of being
foolproof.



Yes Instances

◮ If s is a yes-instance of X , then for some string t, B(s, t)
must output “Yes”.

This is the feature of the mechanism that the prover can use to
convince the verifier that s is a yes-instance. It simply provides the
correct proof/witness t.



Computationally Bounded Verifier

◮ B must run in time that is polynomial in the sum of the
lengths (sizes) of s and t.

◮ If s is a yes-instance of X , then for some string t whose length
is bounded by a polynomial in the length of s, B(s, t) must
output “Yes”.



The Formal Definition

An efficient verifier for a decision problem X is a polynomial-time
algorithm that takes two inputs s and t and outputs “Yes/No”,
with the property that

◮ If s is a no-instance of X , then B(s, t) outputs “No” for every
t.

◮ if s is a yes-instance of X , there is a t whose length is
bounded by a polynomial in the length of s, for which B(s, t)
outputs “Yes”.



Efficient verifier for 3CNF-SAT

Our verifier B works as follows: its first input s is a 3CNF-formula;
if this has n variables, it

◮ outputs “Yes” if t is an n-bit 0–1 string that is a satisfying
assignment for formula s.

◮ outputs “No” if t is not an n-bit 0–1 string that is a satisfying
assignment for s.



A Bogus verifier for 3CNF-SAT

Our verifier, on input 3CNF-formula s, and t,

◮ outputs “Yes” if t is the string consisting of the bit “1”.

◮ outputs “No” otherwise.

Why is this not an efficient verifier?



Efficient Verifier for Independent Set

Our verifier, on input s = 〈G , k〉 and t,

◮ outputs “Yes” if t encodes a set of vertices in the graph G ,
and this set is an independent set and has size at least k.

◮ outputs “No” otherwise.



Problems with (apparently) No Efficient Verifiers

Consider the problem 3CNF-UNSAT:

◮ yes-instances are 3CNF formulae that are not satisfiable (have
no satisfying assignment)

◮ no-instances are 3CNF formulae that are satisfiable (have at
least one satisfying assignment)



Efficiently Solvable Problems have Efficient Verifiers

Let X be a decision problem that has a poly-time algorithm A.
Then an efficient verifer for B is:

◮ On inputs s and t, B ignores t, runs A on s and outputs A(s).



P and NP

◮ P is the set of all decision problems that have poly-time
algorithms.

◮ Thus, decision versions of weighted interval scheduling,
weighted interval covering, and shortest path are in P .

◮ NP is the set of all decision problems that have efficient
verifiers.

◮ So NP includes not only the above 3 problems and the other
known to be in in P , but also ...

◮ 3CNF-SAT, Independent Set, Colorability, Set Cover, and
many other problems we’ve not looked at.



The P = NP question

◮ We know that P ⊆ NP , but

◮ Is NP = P? That is, are there problems that have efficient
verifiers but no efficient algorithms?



The P = NP question

P

NP

P = NP
or



NP-Complete Problems

A decision problem X is said to be NP-complete if

1. X ∈ NP , that is, X has an efficient verifier

2. For every decision problem Y ∈ NP , Y ≤P X (Y is
polynomial time reducible to X )



NP-Complete Problems

Claim: Suppose X is NP-complete. Then X ∈ P implies NP ⊆ P .

◮ Proof: Suppose Y ∈ NP . Since X is NP-complete, we know
Y ≤P X . Since Y ≤P X and X ∈ P , we have Y ∈ P .

This claim explains the sense in which NP-complete problems are
the hardest ones in NP.



If X is NP-Complete:

P

NP

P = NP
or

X
X



If X is NP-Complete, this can’t hold:

P

NP

X

Z



NP-Completeness

◮ Notice that if X and Y are two NP-complete problems, then
we have X ≤P Y and Y ≤P X

◮ Either both problems are in P , or neither is.

◮ So, all NP-complete problems share the same fate, though we
don’t know what that fate is.



Excuse Me

That’s all very well, but are there actual problems that are
NP-complete?



3CNF-SAT is NP-Complete

Theorem: 3CNF-SAT is NP-complete.
To show this, we need to show two things:

◮ 3CNF-SAT is in NP. We already did that.

◮ For any Y ∈ NP , Y ≤P 3CNF-SAT. We won’t show this. It
has been shown to be true by others, and we’ll just assume it,
at least for now.



INDEPENDENT SET is NP-Complete

◮ We need to show INDEPENDENT SET is in NP. We already
did that.

◮ We need to show that for any Y ∈ NP ,
Y ≤P INDEPENDENT SET. To do this, we’ll simply show
3CNF-SAT ≤P INDEPENDENT SET.

◮ This suffices. Why? Let Y ∈ NP . Since 3CNF-SAT is
NP-complete, Y ≤P 3CNF-SAT. Since
3CNF-SAT ≤P INDEPENDENT SET, and poly-time
reducibility is transitive, Y ≤P INDEPENDENT SET.



NP-Completeness Recipe

In general, to show a brand new problem X to be NP-complete, we
will

1. show that X ∈ NP . This is typically easy (at least for the
homework problems).

2. choose an appropriate known NP-complete problem Z , and
show that Z ≤P X . (Not X ≤P Z !!!) This is less easy, but
one can become good at it (that’s the point of the
homework).



3CNF-SAT ≤P INDEPENDENT SET

◮ We need an algorithm, A, that takes as input an instance φ of
3CNF-SAT (φ is a 3CNF-formula)

◮ A must output an instance A(φ) of INDEPENDENT SET

◮ A must guarantee that φ is a Yes-instance of 3CNF-SAT if
and only if A(φ) is a Yes-instance of INDEPENDENT SET

Imagine some φ = (x1 ∨ x̄2 ∨ x3), (x2 ∨ x̄3 ∨ x4), . . ., with m clauses
and n variables.



3CNF-SAT ≤P INDEPENDENT SET

A

3CNF−SAT INDEPENDENT SET



3CNF-SAT ≤P INDEPENDENT SET

3CNF−SAT INDEPENDENT SET

��

��

YES

NO

YES

NO



The Algorithm A

◮ Imagine some input φ = (x1 ∨ x̄2 ∨ x3), (x2 ∨ x̄3 ∨ x4), . . ., with
m clauses and n variables.

◮ For each clause, A creates 3 vertices, labelled by
corresponding literals, and adds edges between them

��

��

��

��

��

��

x1

x̄2

x3

x2

x̄3

x4



The Algorithm A

◮ A adds an edge between two vertices in different clauses if
they are labelled by a literal and its complement literal,

��

��

��

��

��

��

x1

x̄2

x3

x2

x̄3

x4



The Algorithm A

◮ This completes the graph construction.

◮ The INDEPENDENT SET instance A(φ) that is generated is:
Does this graph have an independent set of size at least m

(the number of clauses in φ)



Yes mapped to Yes

◮ Suppose φ was a satisfiable instance

◮ We need to argue that the graph constructed has an
independent set of size m:

◮ Fix a satisfying assignment for φ.

◮ It makes true at least one literal in each clause. Pick one such
literal from each clause.

◮ The corresponding vertices in the graph form an independent
set of size m.



No mapped to No

◮ Suppose φ was not a satisfiable instance

◮ We need to argue that the graph constructed does not have
an independent set of size m.

◮ To do this, we’ll argue: if the graph does have an independent
set of size m, then φ is satisfiable.



No mapped to No

◮ Suppose the graph does have an independent set of size m.

◮ The independent set cannot have two vertices from the same
“clause”

◮ So the independent set has one vertex from each “clause”.

◮ Take the labels of these vertices

◮ These literals do not include both xi and x̄i for any i .

◮ Thus there is an assignment that makes these literals true.

◮ This assignment makes every clause true. Thus, φ is
satisfiable.


