22C: 031 (CS: 3330: 0001) Algorithms

Homework 4

March 21, 2012

This homework is based on our discussions of algorithm design using recursion and divide-and-conquer. The homework is worth 10 points.

- 1. In an array A[1..n] of integers, a pair of numbers A[i] and A[j] form a significant inversion if i < j and A[i] > 3A[j]. By modifying our algorithm for counting inversions, give an $O(n \log n)$ algorithm for counting the number of significant inversions in a given array. (3 points)
- 2. We are given an array A[1..n] of integers with the special property that $A[1] \ge A[2]$ and $A[n-1] \le A[n]$. We say that an element A[x] is a *local minimum* if it is less than or equal to both its neighbors, that is, $A[x-1] \ge A[x]$ and $A[x] \le A[x+1]$. For example, there are six local minima in the example array in Figure 1. We can obviously find a local minimum in O(n) time by scanning through the array. Describe an $O(\log n)$ time algorithm for finding one local minimum. **Hint:** With the given boundary conditions, the array must have at least one local minimum. Why? (3.5 points)
- 3. You are at a political convention with *n* delegates, each one a member of exactly one political party. There are multiple parties. It is impossible to tell which political party any delegate belongs to; in particular, you will be summarily ejected if you ask. However, you can determine whether any two delegates belong to the *same* party or not by introducing them to each other members of the same party always greet each other with smiles and friendly handshakes; members of different parties always greet each other with angry stares and insults.

Suppose that a majority (more than half) of the delegates are from the same political party. Describe an algorithm that identifies a member (any member) of the majority party using only $O(n \log n)$ introductions. (3.5 points)

Figure 1: Local Minima in an Array

The homework is due Monday, March 5, in class; if you can't make it to class on that day, just make sure you get it to me by that time.