We describe here for our reference an algorithm we discussed in class for the following problem: Given a set \(P \) of \(n \) points, find, for each point \(q \in P \), its closest point in \(P \setminus \{q\} \). The following algorithm assumes that \(P = \{p_1, \ldots, p_n\} \) is input in increasing order of \(x \)-coordinate. It is moderately clever in avoiding inspecting certain pairs of points. Let \(d(p, q) \) denote the Euclidean distance between points \(p \) and \(q \). The algorithm stores the the nearest point to \(p_i \) in nearest\([i]\).

Algorithm 1 All-Nearest\((P)\)

1: for all \(i \in \{1, \ldots, n - 1\} \) do
2: nearest\([i]\) \(\leftarrow p_{i+1} \)
3: for all \(j \in \{i + 2, \ldots, n\} \) do
4: if \(p_j.x - p_i.x > d(p_i, \text{nearest}[i]) \), break;
5: if \(d(p_i, p_j) < d(p_i, \text{nearest}[i]) \), nearest\([i]\) \(\leftarrow p_j \).
6: for all \(j \in \{i - 1, \ldots, 1\} \) do
7: if \(p_i.x - p_j.x > d(p_i, \text{nearest}[i]) \), break;
8: if \(d(p_i, p_j) < d(p_i, \text{nearest}[i]) \), nearest\([i]\) \(\leftarrow p_j \).
9: (For brevity, the computation of nearest\([n]\) is omitted.)