Homework 4

Notes on Algorithm

March 20, 2012

We describe here for our reference an algorithm we discused in class for the following problem: Given a set P of n points, find, for each point $q \in P$, its closest point in $P \setminus \{q\}$. The following algorithm assumes that $P = \{p_1, \ldots, p_n\}$ is input in increasing order of xcoordinate. It is moderately clever in avoiding inspecting certain pairs of points. Let d(p,q)denote the Euclidean distance between points p and q. The algorithm stores the the nearest point to p_i in nearest[i].

Algorithm 1 All-Nearest (P)
1: for all $i \in \{1,, n-1\}$ do
2: nearest $[i] \leftarrow p_{i+1}$
3: for all $j \in \{i+2,\ldots,n\}$ do
4: if $p_j.x - p_i.x > d(p_i, \text{nearest}[i])$, break;
5: if $d(p_i, p_j) < d(p_i, \text{nearest}[i])$, $\text{nearest}[i] \leftarrow p_j$.
6: for all $j \in \{i-1,\ldots,1\}$ do
7: if $p_i \cdot x - p_j \cdot x > d(p_i, \text{nearest}[i])$, break;
8: if $d(p_i, p_j) < d(p_i, \text{nearest}[i])$, nearest $[i] \leftarrow p_j$.
9: (For brevity, the computation of nearest $[n]$ is omitted.)