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ABSTRACT
We consider the problem of computing market equilibria
and show three results. (i) For exchange economies satis-
fying weak gross substitutability we analyze a simple dis-
crete version of tâtonnement, and prove that it converges
to an approximate equilibrium in polynomial time. This is
the first polynomial-time approximation scheme based on a
simple tâtonnement process. It was only recently shown,
using vastly more sophisticated techniques, that an approx-
imate equilibrium for this class of economies is computable
in polynomial time. (ii) For Fisher’s model, we extend the
frontier of tractability by developing a polynomial-time al-
gorithm that applies well beyond the homothetic case and
the gross substitutes case. (iii) For production economies,
we obtain the first polynomial-time algorithms for comput-
ing an approximate equilibrium when the consumers’ side
of the economy satisfies weak gross substitutability and the
producers’ side is restricted to positive production.
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1. INTRODUCTION
The market equilibrium problem consists of finding a set

of prices and allocations of goods to economic agents such
that each agent maximizes her utility, subject to her budget
constraints, and the market clears. The equilibrium equa-
tions, which are satisfied under mild assumptions [1], express
a static condition characterized by the fact that the market
demand for each good equals its market supply. This notion
does not predict any kind of dynamics leading to an equilib-
rium, although it conveys the intuition that, in any process
leading to a stable state where demand equals supply, a dise-
quilibrium price of a good will have to increase if the demand
for such a good exceeds its supply, and viceversa. The proofs
of existence of equilibrium [22] use general fixed point the-
orems and therefore do not tell us how an equilibrium can
be efficiently computed. An important question that theo-
retical computer scientists have begun to address is whether
there are efficient algorithms for computing equilibria.
Tâtonnement. In 1874 Léon Walras introduced a price-
adjustment mechanism, which he called tâtonnement [32].
He took inspiration from the workings of the stock-exchange
in Paris, and suggested a trial-and-error process run by a
fictitious auctioneer. The economic agents receive a price
signal, and report their demands at these prices to the auc-
tioneer. The auctioneer then adjusts the prices in proportion
to the magnitude of the aggregate excess demands, and an-
nounces the new prices. In each round, agents recalculate
their demands upon receiving the newly adjusted price sig-
nal and report these new demands to the auctioneer. The
process continues until prices converge to an equilibrium.

In its continuous version, as formalized by Samuelson [31],
the tâtonnement process is governed by a system of differ-
ential equations over variables that represent prices:

dπk

dt
= Gk(Zk(π)), k = 1, 2, . . . , n, (1)

where Gk() is some continuous and sign-preserving function,
and Zk() is the market excess demand function (see Section 2
for the definition of excess demand and related concepts).

Contrary to Walras’ intuition and hopes (see [32], p.172),
tâtonnement does not converge in general, but only for mar-
kets satisfying certain restrictions (see the work by Hahn
[14], Negishi [24, 25], Arrow, Block, and Hurwicz [2], and
Arrow and Hurwicz [3, 4], and the review by Hahn [15]).

A central assumption is that of gross substitutability (GS).
A market is said to satisfy GS (resp., weak gross substi-
tutability – WGS) if increasing the prices for some of the



goods while keeping some others fixed can only cause an
increase (resp., cannot cause a decrease) in the aggregate
demand for the goods whose price is fixed.

Arrow, Block, and Hurwicz [2] showed that the contin-
uous process (1) is convergent for markets satisfying GS.
Their result was extended to prove convergence when only
WGS holds. This convergence result raises the question of
whether there exist simple polynomial-time algorithms cor-
responding to a discrete version of tâtonnement. Our first
result answers this question in the affirmative.

We present a simple algorithm, which is a discrete version
of tâtonnement, and prove that it converges to an approx-
imate equilibrium in polynomial time for exchange markets
satisfying WGS. We consider the following discrete version
of the continuous process (1):

πi
j = πi−1

j + αY i−1
j , (2)

where πk
j denotes the price of good j at the k-th iteration, Y k

j

(an approximation to) the market excess demand for good
j when its price is πk, and α is a suitably chosen parameter
that does not depend on i, but depends on the number of
goods and on the approximation parameters (see below).

To be more precise, we first “transform” our original mar-
ket into another one for which an equilibrium price is guar-
anteed to belong to a region where the price ratios are nicely
upper bounded. We then prove that it is sufficient to com-
pute an approximate equilibrium in the transformed market.
We compute a sequence of prices in the transformed market
by applying the adjustment rule (2). If, at any given step,
the adjustment rule (2) produces a price vector which falls
outside the region, then, instead of applying rule (2), we
update the price by returning the closest price vector within
the region.

We analyze the convergence of this algorithm, and prove
that it terminates after a number of steps which is polyno-
mial in the size of the market, i.e., in the number of traders
plus the number of goods plus the number of bits needed
for encoding the rational numbers that describe the utility
functions and initial endowments. The dependence of the
running time on the approximation parameter ε is polyno-
mial in 1/ε.

There has been previous work that shows that a discrete
version of tâtonnement converges to an equilibrium (see for
example [28]), but to the best of our knowledge, convergence
in polynomial time has not been established. Several recent
algorithms for the computation of market equilibria are iter-
ative methods that can be seen as versions of tâtonnement.
Garg and Kapoor introduced a simple algorithm with an
auction interpretation for the exchange model with linear
utilities, and which can be viewed as a tâtonnement scheme
[12]. This approach was generalized in [13] to handle addi-
tively separable utility functions satisfying WGS.

Jain et al. [18] introduced two algorithms to approxi-
mate the equilibrium in an exchange economy with linear
utilities. Their second algorithm, which uses a black box
to compute the equilibrium in the Fisher’s model1, runs in
polynomial time. The algorithm also generalizes to util-
ity functions that satisfy WGS, provided a polynomial-time
algorithm for computing an equilibrium in Fisher’s model

1Fisher’s model is a market of n goods desired by m utility
maximizing buyers with fixed incomes.

with such utility functions is available. They conjectured
that their first algorithm, where the price adjustment rule
follows the principle of increasing the price of the goods for
which the demand exceeds the supply, runs in polynomial
time.

Note that our result applies to more general scenarios
than the previous work mentioned above, and that the al-
gorithm is extremely simple and natural. We only assume
WGS of the excess demand, and do not assume separability
of the utility functions or access to any solver for Fisher’s
model. Indeed, our simple algorithm computes an approx-
imate equilibrium under precisely the same assumptions as
in [8], where a polynomial-time algorithm based on the El-
lipsoid Algorithm was developed. Our proof of convergence
is based on a refinement of the machinery developed in [8],
and in part inspired by some experimental results obtained
in [6] on different versions of tâtonnement. Due to its sim-
plicity, versions of tâtonnement have been implemented and
experimentally analyzed. We refer the reader to the experi-
mental results in [6] and the references therein.
Fisher’s model. The second result of this paper applies to
Fisher’s model. In this setting, it is known how to compute
equilibrium prices and allocations in polynomial time when
the utility functions are homothetic [11, 9] or when they
satisfy WGS [8]. We introduce a polynomial-time algorithm
that applies to markets where the traders have monotone
demand functions, a class which contains many utility func-
tions not covered by previous work (see below). In the spirit
of [8], we provide computationally tractable proofs of sepa-
rations that guarantee that the Ellipsoid Algorithm returns
an approximate equilibrium in polynomial time.

The demand x() of a trader is said to be monotone if
for any pair of distinct positive prices π, π′ ∈ R+, we have
(π − π′) · (x(π)− x(π′)) ≤ 0. This property is an expression
of the law of demand (see [21]).

Mitiushin and Polterovich [23] introduced the following
sufficient condition on a twice-differentiable, concave, and
monotonically increasing utility function u that implies the
monotonicity of demand:

σ(x) = −
x · ∂2u(x)x

x · ∂u(x)
< 4 for all x.

To verify that monotonicity is a significant extension of
homotheticity and that it also contains several families of
utilities not satisfying WGS, note that

• If u() is homogeneous of degree one2, then σ(x) = 0
for all x;

• if u(x) is an additively separable utility function of the
form

�
j uj(xj), the sufficient condition for gross sub-

stitutability (which is used in [13]) is that xju
′

j(xj) be
non-decreasing. This translates into a non-negativity
condition on the derivative of xju

′

j(xj), which yields
−[xju

′′

j (xj)/u′

j(xj)] ≤ 1. In contrast, the sufficient

2A utility function u(·) is homogeneous (of degree one) if
it satisfies u(αx) = αu(x), for all α > 0. A homothetic
utility function is an increasing monotonic transformation
of a homogeneous utility function. Linear utility functions,
and the more general CES functions (see [8] for definitions)
are examples of homogeneous utility functions.



condition of Mitiushin and Polterovich for monotonic-
ity becomes

−[xju
′′

j (xj)/u′

j(xj)] < 4.

Our result for the Fisher setting therefore encompasses a
lot of interesting cases not handled by previous methods [11,
18, 12, 9, 13, 5, 8].
Production. Our third contribution is a polynomial time
algorithm to compute an approximate market equilibrium
for economies with production, provided the consumers’ side
of the economy satisfies a gross substitutability condition.
We obtain this result by weaving together a “reduction” by
Primak [28] of production to exchange and a lemma in [8]
that applies to the exchange model. In our result, we adopt
the production model used by Nenakov and Primak [26],
Primak [28], and Newman and Primak [27]. Their model
of an economy is a version of the model used by Arrow
and Debreu [1], with the restriction that production sets
be constrained to the positive orthant.

In the work of Arrow and Debreu [1], each production plan
is a vector that has positive elements, corresponding to out-
puts of production, and negative elements, corresponding to
inputs. The model that we consider only allows vectors with
nonnegative elements. Nevertheless, there are scenarios that
our model captures. For instance, each firm is initially en-
dowed with a bundle of inputs to its production technology.
This bundle then determines the vectors of consumable out-
puts that can be produced using the technology. The vectors
of consumable goods form the production set of the firm.
At a given price vector for the consumable goods, each firm
supplies the vector of consumable goods that maximizes its
profit, and each consumer demands the vector of consum-
able goods that maximizes her utility subject to her budget
constraint. At equilibrium, demand equals supply for the
consumable goods.

If we allow production technologies to be arbitrary convex
sets, then multiple disconnected equilibria can appear even
if the utility functions satisfy gross substitutability – see the
construction in [21] with two consumers having linear utility
functions. In the scenarios to which the algorithms in this
paper, and indeed all previous polynomial-time algorithms,
apply, there cannot be multiple disconnected equilibria.

Jain et al. [19] developed polynomial-time algorithms for
a model that includes production, but assumes that the in-
comes of the consumers are fixed and do not depend on the
prices. The work of Nenakov and Primak [26] and Jain [16,
17] handles a certain class of utility functions, but the re-
lationship of this class to gross substitutability is far from
clear. Newman and Primak [27] described an Ellipsoid Al-
gorithm for a model where the consumers have linear utility
functions. As discussed in [8], their algorithm does not guar-
antee an approximate equilibrium in polynomial time.

All three results of this paper rely on an oracle for com-
puting the excess demand function at a given price in poly-
nomial time. Since the computation of the excess demand
at a given price corresponds to solving an explicit convex
program, such an oracle is usually easy to construct. Fur-
thermore, note that in many applications the equilibrium
problem is directly presented in terms of the aggregate ex-
cess demand.
Organization of this abstract. In Section 2 we introduce
and analyze a discrete version of the tâtonnement process.

We prove that it runs in polynomial time. In Section 3 we
present our algorithm for Fisher’s model, and in Section 4
we describe a model of production and prove related com-
putational results.

2. A TÂTONNEMENT ALGORITHM
We first describe the exchange market model and provide

some basic definitions. Let us consider a market M with
m economic agents who represent traders of n goods. Let
Rn

+ denote the subset of Rn with all nonnegative coordi-
nates. The j-th coordinate in Rn will stand for good j.
Each trader i has a concave, nonsatiable3, utility function
ui : Rn

+ → R+, which represents her preferences for the dif-
ferent bundles of goods, and an initial endowment of goods
wi = (wi1, . . . , win) ∈ Rn

+. Let Wj =
�

i wij denote the
total amount of good j in the market. The input size of M
is defined to be the number of traders plus the number of
goods plus the number of bits needed for encoding the ra-
tional numbers that describe the utility functions and initial
endowments.

An equilibrium is a vector of prices π = (π1, . . . , πn) ∈
Rn

+ at which there is a bundle x̄i = (x̄i1, . . . , x̄in) ∈ Rn
+ of

goods for each trader i such that the following two conditions
hold: (i) For each trader i, the vector x̄i maximizes ui(x)
subject to the constraints πT x ≤ πT wi and x ∈ Rn

+, and (ii)
For each good j,

�
i x̄ij ≤ Wj . Note that the constraint4

πT x ≤ πT wi in (i) says that the bundle x should cost no
more than the income πT wi of trader i.

For any price vector π, the vector xi(π) that maximizes
ui(x) subject to the constraints πT x ≤ πT wi and x ∈ Rn

+

is called the demand 5 of trader i at prices π. The excess
demand of trader i is zi(π) = xi(π) − wi. Then Xk(π) =�

i xik(π) denotes the market demand (or aggregate demand)
of good k at prices π, and Zk(π) = Xk(π)−Wk =

�
i zik(π)

the market excess demand of good k at prices π. The vectors
X(π) = (X1(π), . . . , Xn(π)) and Z(π) = (Z1(π), . . . , Zn(π))
are called market demand (or aggregate demand) and mar-
ket excess demand, respectively. The nonsatiability of the
utility functions implies that at any price π for which the
demand is well-defined, Walras’ Law holds: πT Z(π) = 0.

In terms of the excess demand function, the equilibrium
is defined as a vector of prices π = (π1, . . . , πn) ∈ Rn

+ such
that Zj(π) ≤ 0, for each j.

In this section we assume that (the excess demand of) the
market M satisfies weak gross substitutability (WGS). That
is, for any two sets of prices π and π′ such that 0 < πj ≤ π′

j ,
for each j, and πj < π′

j for some j, we have that πk = π′

k

for any good k implies Zk(π) ≤ Zk(π′). That is, increasing
the prices for some of the goods while keeping some others
fixed cannot cause a decrease in the aggregate demand for
the goods whose price is fixed. Clearly, a market satisfies
WGS if the excess demand of each individual trader does.

3ui is nonsatiable if for any x ∈ Rn
+ there is a y ∈ Rn

+ such
that ui(y) > ui(x). Nonsatiation is considered, in the theory
of equilibrium, a standard and extremely mild assumption
(see [22], p. 42).
4Given two vectors x and y, we use x · y or xT y to denote
their inner product.
5In the definitions we assume that the demand is a single-
valued function of the prices, which is the case with most
of the commonly used utility functions. The case of linear
utility functions is an exception that can be easily handled
in this framework [8].



To keep the definitions of approximate equilibria simple,
we assume that all the utility functions u() discussed in this
paper satisfy u(0) = 0.

Definition 1 A bundle xi ∈ Rn
+ is a µ-approximate

demand, for µ ≥ 1, of trader i at prices π if ui(xi) ≥ 1
µ
u∗

and πT xi ≤ µπT wi, where u∗ = max{ui(x)|x ∈ Rn
+, πT x ≤

πT wi}.
A price vector π ∈ Rn

+ is a weak µ-approximate equilib-
rium (µ ≥ 1) if there is a bundle xi for each i such that (1)
for each trader i, xi is a µ-approximate demand of trader i
at prices π, and (2)

�
i xij ≤ µ

�
i wij for each good j.

In [8], it is shown that if π is a weak µ-approximate equi-
librium, then there is a bundle x′

i ∈ Rn
+ for each trader

i such that (1) x′

i is a µ2-approximate demand of trader i
at prices π, (2) π · x′

i = π · wi, and (3) for each good j,�
i x′

ij =
�

i wij .

Definition 2 An exchange market M is said to be
equipped with a demand oracle if there is an algorithm that
takes as input a price vector π ∈ Qn

+ and a positive ratio-
nal σ, and returns a vector Y = (Y1, Y2, . . . , Yn) such that
|Yj − Zj(π)| ≤ σ for all j. The algorithm is required to run
in polynomial time in the input size and in log(1/σ).

We assume henceforth that the market M is equipped
with a demand oracle.

Two Useful Transformations
We now describe a transformation that, given the exchange
market M , produces a new market M ′ in which the total
amount of each good is 1. The new utility function of the i-
th trader is given by u′

i(x1, . . . , xn) = ui(W1x1, . . . , Wnxn).
It can be verified that, if ui() is concave, then u′

i() is concave.
The new initial endowment of the j-th good held by the i-th
trader is w′

ij = wij/Wj . Let w′

i denote (w′

i1, . . . , w′

in) ∈ Rn
+.

Clearly, W ′

j =
�

i w′

ij = 1.
The following lemma summarizes some key properties of

the transformation.

Lemma 3. 1. For any µ ≥ 1, (xi1, . . . , xin) is a µ-
approximate demand at prices (π1, . . . , πn) for trader
i in M ′ if and only if (W1xi1, . . . , Wnxin) is a µ-
approximate demand at prices ( π1

W1

, . . . , πn

Wn
) for trader

i in M .

2. For any µ ≥ 1, (π1, . . . , πn) is a weak µ-approximate
equilibrium for M ′ if and only if ( π1

W1

, . . . , πn

Wn
) is a

weak µ-approximate equilibrium for M .

3. M ′ has a demand oracle if M does. The excess demand
of M ′ satisfies WGS if the excess demand of M does.

We transform M ′ into another market M̂ as follows. (This
crucial transformation, which was discovered in the context
of the present work on tâtonnement, also ended up simplify-
ing the presentation in [8].) Let 0 < η ≤ 1 be a parameter.
For each trader i, the new utility function and initial en-
dowments are the same, that is, ûi() = u′

i(), and ŵi = w′

i.

The new market M̂ has one extra trader, whose initial en-
dowment is given by ŵm+1 = (η, . . . , η), and whose util-
ity function is the Cobb-Douglas6 function um+1(xm+1) =�

j x
1/n
m+1,j . A trader with this Cobb-Douglas utility function

6The Cobb-Douglas utility function has the general form
ui(x) =

�
j(xij)

aij , where aij ≥ 0 and
�

j aij = 1.

spends 1/n-th of her budget on each good. Stated precisely,
πjxm+1,j(π) = π · ŵm+1/n. The extra trader allows us to

show that at any equilibrium for M̂ the ratio between the
largest price and the smallest price is bounded above.

Note that the total amount of good j in the market M̂ is
Ŵj =

� m+1
i=1 ŵij = 1 + η.

Lemma 4. (1) The market M̂ has an equilibrium. (2)

Every equilibrium π of M̂ satisfies the condition
maxj πj

minj πj
≤

2n/η. (3) For any µ ≥ 1, a weak µ-approx equilibrium for

M̂ is a weak µ(1 + η)-approx equilibrium for M ′. (4) M̂

satisfies WGS if M ′ does. (5) M̂ has a demand oracle if M ′

does.

Proof. (1) follows from standard arguments. Briefly, a
quasi-equilibrium π ∈ Rn

+ with
�

j πj = 1 always exists

([22], Chapter 17, Proposition 17.BB.2). At price π the
income π · ŵm+1 of the (m+1)’th trader is strictly positive.
This ensures that that πj > 0 for each good j. But this
implies ([22], Chapter 17, Proposition 17.BB.1) that π is an
equilibrium.

For (2), assume that the equilibrium price vector π is
scaled so that maxj πj = 1. At price π, the income of the
(m+1)’th trader is π ·ŵm+1 ≥ η. Since the (m+1)’th trader
has the Cobb-Douglas utility function described above, she
spends exactly a fraction 1/n of her income on each good.
For any good k, her demand for the good is therefore at
least η

nπk
. We must have η

nπk
≤ Ŵk = (1 + η) ≤ 2, which

implies that πk ≥ η
2n

.
For (3), assume that π is a weak µ-approximate equilib-

rium for M̂ , and, for 1 ≤ i ≤ m + 1, let xi be the cor-
rresponding bundles. Evidently, for each 1 ≤ i ≤ m, xi is
a µ-approximate demand for i in the market M ′, and thus
also a µ(1 + η)-approximate demand. For each good k, we

have
� m+1

i=1 xik ≤ µŴk. Since xm+1,k ≥ 0, this implies that� m
i=1 xik ≤ µŴk = µ(1 + η)W ′

k. Thus π is a weak µ(1 + η)-
approx equilibrium for M ′.

For (4), note that the individual excess demand of the
(m + 1)’th trader satisfies weak GS. The claim follows be-

cause the aggregate excess demand of M̂ is the sum of the
aggregate excess demand of M ′ and the individual excess
demand of the (m + 1)’th trader.

(5) follows for the same reason.

We define ∆ = {π ∈ Rn
+|η/2n ≤ πj ≤ 1 for each j}.

Note that Lemma 4 implies that M̂ has an equilibrium price
in ∆. We define ∆+ = {π ∈ Rn

+|η/2n − η/4n ≤ πj ≤
1 + η/4n for each j}.

Abusing notation slightly, we henceforth let Z(π) and
X(π) denote, respectively, the excess demand vector and

the aggregate demand vector in the market M̂ .

Lemma 5. For any π ∈ ∆+, ||Z(π)||2 ≤ 8n2/η.

Proof. In the following sequence, the third inequality
follows from Walras’ Law using simple manipulations, the
fourth inequality holds because π ∈ ∆+, and the fifth in-
equality holds because Ŵj ≤ 2 for each j.



||Z(π)||2 ≤ �
j

|Zj(π)|

≤ �
j

Xj(π) + �
j

Ŵj

≤
maxk πk

mink πk
�

j

Ŵj + �
j

Ŵj

≤
2n

η
�

j

Ŵj + �
j

Ŵj

≤
4n2

η
+ 2n

≤
8n2

η
.

A Separation Result
Our strategy is to compute a (1+ε)-approximate equilibrium

for M̂ . From Lemma 3 and Lemma 4 (applied with η = ε),
this (1+ε)-approximate equilibrium will then be a (1+O(ε))-
approximate equilibrium for M .

The following lemma says that if a vector π ∈ ∆+ is not a
weak (1+ε)-approx equilibrium for M̂ , then the hyperplane
normal to Z(π) and passing through π separates π from all

points within a distance δ of any equilibrium of M̂ in ∆. The
lower bound on δ is obtained by plugging in the parameters
defining M̂ , ∆, and ∆+ into the calculations of the proof
of Lemma 3.2 in [8]. The key fact is that the two transfor-
mations described above ensure that these parameters are
good enough.

Lemma 6. Let π ∈ ∆+ be a price vector that is not a weak
(1+ε)-approximate equilibrium for M̂ , for some ε > 0. Then
for any equilibrium π̂ ∈ ∆, we have π̂ · Z(π) ≥ δ > 0, where
1/δ is bounded by a polynomial in n, 1

ε
, and 1

η
.

The discrete tâtonnement process
Let π0, the initial price, be any point in ∆. Suppose we have
computed a sequence of prices π0, . . . , πi−1. We compute πi

as follows. If πi−1 6∈ ∆+, we let πi be the point in ∆ closest
to πi−1. In other words, πi

j = πi−1
j if η/2n ≤ πi−1

j ≤ 1;

πi
j = 1 if πi−1

j > 1; πi
j = η/2n if πi−1

j < η/2n.

If πi−1 ∈ ∆+, then we use the demand oracle to com-
pute a vector Y i−1 = (Y i−1

1 , . . . , Y i−1
n ) such that |Y i−1

j −

Zj(π
i−1)| ≤ δ/4n for each j. We let

πi = πi−1 +
δ

2
·

1

(9n2/η)2
Y i−1.

Analysis
Let us fix an equilibrium π∗ of M̂ in ∆. We argue that in
each iteration, the distance to π∗ falls significantly so long
as we don’t encounter an approximate equilibrium in ∆+.
If πi−1 6∈ ∆+, we have |πi−1

j −π∗

j |− |πi
j −π∗

j | ≥ 0 for each j,

while |πi−1
j − π∗

j | − |πi
j − π∗

j | ≥ η/4n for some j. From this
it follows that

||π∗ − πi−1||2 − ||π∗ − πi||2 ≥ (η/4n)2.

Now suppose that πi−1 ∈ ∆+ and that πi−1 is not a
weak (1 + ε)-approx equilibrium for M̂ . By Lemma 6, π∗ ·
Z(πi−1) ≥ δ. Since πi−1 · Z(πi−1) = 0 by Walras’ Law, we
have (π∗ − πi−1) · Z(πi−1) ≥ δ. Now

(π∗ − πi−1) · Y i−1

≥ (π∗ − πi−1) · Z(πi−1)

− �
j

|Y i−1
j − Zj(π

i−1)| ∗ |π∗

j − πi−1
j |

≥ δ − �
j

δ

4n
· 2 ≥ δ/2.

Also note that since ||Z(πi−1)||2 ≤ 8n2/η, we obtain, by
a simple calculation, that ||Y i−1||2 ≤ 9n2/η.

Let q denote the vector δ
2

1
(9n2/η)2

Y i−1. We have

(π∗ − πi−1 − q) · q

= (π∗ − πi−1) · q − q · q

=
δ

2

1

(9n2/η)2
((π∗ − πi−1) · Y i−1

−
δ

2

1

(9n2/η)2
Y i−1 · Y i−1)

≥
δ

2

1

(9n2/η)2
(δ/2 −

δ

2

1

(9n2/η)2
9n2/η) ≥ 0.

Thus,

||π∗ − πi−1||2 − ||π∗ − πi||2

= ||π∗ − πi−1||2 − ||π∗ − πi−1 − q||2

= (π∗ − πi−1) · q + (π∗ − πi−1 − q) · q

≥ (π∗ − πi−1) · q

=
δ

2
·

1

(9n2/η)2
(π∗ − πi−1) · Y i−1

≥
δ2

4(9n2/η)2
,

Suppose that every vector in the sequence π0, . . . , πk is
either not in ∆+ or is not a weak (1+ε)-approx equilibrium.
We then have

||π∗ − πi−1||2 − ||π∗ − πi||2

≥ min{
δ2

4(9n2/η)2
, (η/4n)2},

for 1 ≤ i ≤ k. Let µ denote min{ δ2

4(9n2/η)2
, (η/4n)2}.

Adding these inequalities, we get

kµ ≤ ||π∗ − π0||2 − ||π∗ − πk||2 ≤ n.

Thus, within n/µ iterations, the algorithm computes a
price in ∆+ which is a weak (1 + ε)-approximate equilib-

rium for M̂ . It can be verified that the bound on µ is poly-
nomial in the input size of the original market M , 1/ε, and



1/η. Setting η = ε in the transformation corresponding to
Lemma 4, and putting everything together, we obtain:

Theorem 7. Let M be an exchange market whose ex-
cess demand function satisfies WGS, and suppose that M
is equipped with a demand oracle. For any ε > 0, the
tâtonnement based algorithm computes, in time polynomial
in the input size of M and 1/ε, a sequence of prices one of
which is a weak (1 + ε)-approx equilibrium for M .

In order to actually pick the approximate equilibrium price
from the sequence of prices, we need an efficient algorithm
that recognizes an approximate equilibrium of M . In fact,
it is sufficient for this algorithm to assert that a given price
π is a weak (1+2ε)-approx equilibrium provided π is a weak
(1+ε)-approx equilibrium. Since the problem of recognizing
an approximate equilibrium is an explicitly presented con-
vex programming problem, such an algorithm is generally
quite easy to construct.

3. FISHER’S MODEL WITH MONOTONE
DEMANDS

Here, we consider the Fisher’s model, which is a market
M of n goods desired by m utility maximizing buyers with
fixed incomes. Each buyer has a concave, nonsatiable, utility
function ui : Rn

+ → R+ and an endowment ei > 0 of money.
There is a seller with an amount qj > 0 of each good j. An
equilibrium in the Fisher setting is a nonnegative vector of
prices π = (π1, . . . , πn) ∈ Rn

+ at which there is a bundle
xi = (xi1, . . . , xin) ∈ Rn

+ of goods for each buyer i such
that the following two conditions hold:

1. The vector xi maximizes ui(x) subject to the con-
straints π · x ≤ ei and x ∈ Rn

+.

2. For each good j,
�

i xij = qj .

Walras’ Law in this setting implies that at equilibrium,�
j πjqj =

�
i

�
j πjxij =

�
i ei.

For any price vector π, the vector xi(π) that maximizes
ui(x) subject to the constraints πT x ≤ ei and x ∈ Rn

+ is
called the demand of buyer i at prices π. We continue to
assume that the demand is a single-valued function of the
price. The market demand X(π) is defined to be

�
i xi(π).

The market excess demand Z(π) is defined to be X(π) − q,
where q ∈ Rn is the vector (q1, . . . , qn).

For µ ≥ 1, a µ-approx demand for trader i at prices π is
an allocation yi ∈ Rn

+ such that ui(yi) ≥ ui(xi(π))/µ and
π · yi ≤ µei. We define a weak µ-approx equilibrium as a
price π at which there are allocations xi for each trader i
such that (1) for each trader i, xi is a µ-approx demand
at prices π; (2) for each good j,

�
i xij ≤ µqj ; and (3)�

i ei/µ ≤
�

j πjqj ≤
�

i ei.
It is not hard to show that by scaling a µ-approx equi-

librium π by the factor
�

i ei/
�

j πjqj , we get a µ2-approx

equilibrium π′ at which there are allocations yi such that
(1) for each trader i, yi is a µ2-approx demand at price π′;
(2) for each good j,

�
i yij = qj ; (3) π · yi = ei for each i;

and (3)
�

i ei =
�

j π′

jqj .
The demand of the i-th trader is said to be monotone if

for any pair of distinct positive prices π, π′ ∈ Rn
+, we have

(π − π′) · (xi(π) − xi(π
′)) ≤ 0. If strict inequality always

holds, then the demand is said to be strictly monotone. See
[21] for an exposition of this property.

A Transformation. From the market M , we derive a new
market M̂ . Let 0 < η ≤ 1 be a parameter. For each trader
i, the new utility function and money are the same, that
is, ûi() = ei(), and êi = ei. The new market M̂ has one
extra trader, whose income is given by êm+1 = ηe, where
e =

� m
i=1 ei, and whose utility function is the Cobb-Douglas

function um+1(xm+1) =
�

j x
1/n
m+1,j . The total amount of

good j in the market M̂ is q̂j = (1 + η)qj .

Lemma 8. (1) The market M̂ has an equilibrium. (2)

Every equilibrium π of M̂ satisfies the condition ηe/nqj ≤
πj ≤ (1 + η)e/qj . (3) For any µ ≥ 1, a weak µ-approx

equilibrium for M̂ is a weak µ(1 + η)-approx equilibrium for

M . (5) M̂ has a demand oracle if M does.

Let L = minj ηe/nqj , and U = maxj(1 + η)e/qj . We
define the region ∆ = {π ∈ Rn

+|L ≤ πj ≤ U for each j}.

Note that Lemma 8 implies that every equilibrium of M̂ lies
in ∆. We also define ∆+ = {π ∈ Rn

+|L − L/2 ≤ πj ≤
U + L/2 for each j}.

Abusing notation slightly, we henceforth let xi(π), X(π),
and Z(π) denote the individual demand, market demand,

and market excess demand vectors in the market M̂ .
Separation. Our strategy is to set η = ε in the above
transformation and compute a weak (1 + ε)-approximate

equilibrium for M̂ . By Lemma 8, this will be a (1 + O(ε))-
approximate equilibrium for M . Let π∗ henceforth denote
an equilibrium for M̂ . Lemma 8 tells us that π∗ is in ∆.

Lemma 9. Suppose that π is a vector such that |πj−π∗

j | ≤
ε
3

min{πj , π
∗

j } for each j, and

1

1 + ε
�

i

êi ≤ �
j

πj q̂j ≤ �
i

êi.

Then π is a weak (1 + ε)-approximate equilibrium for M̂ .

The following lemma says that if π ∈ ∆+ and |πj − π∗

j | >
ε
3

min{πj , π
∗

j } for some j, then the hyperplane through π
normal to Z(π) separates π from all points within a large
enough ball centered at π∗. The proof exploits the mono-
tonicity of demand.

Lemma 10. Suppose that π ∈ ∆+ and that |πj − π∗

j | >
ε
3

min{πj , π
∗

j } for some j. Then (π∗ − π) · Z(π) ≥ δ, where
log 1/δ and log ||Z(π)||2 are bounded by a polynomial in the
input size.

Proof. The fact that ||Z(π)||2 is small enough follows
easily from the fact that π ∈ ∆+.

Now suppose that

|πk − π∗

k| >
ε

3
min{πk, π∗

k} ≥
εL

6
.

Then

(πk − π∗

k)(xm+1,k(π) − xm+1,k(π∗))

= (πk − π∗

k)(
ηe

nπk
−

ηe

nπ∗

k

)

= −
ηe

n
·
(πk − π∗

k)2

πkπ∗

k

≤−
ηe

n

(εL)2

62(U + L/2)2
= −δ



On the other hand, a similar argument for the other goods
implies that for all j 6= k,

(πj − π∗

j )(xm+1,j(π) − xm+1,j(π
∗)) ≤ 0.

We therefore have

(π − π∗) · (xm+1(π) − xm+1(π
∗)) ≤ −δ.

By monotonicity, we have that for each 1 ≤ i ≤ m,

(π − π∗) · (xi(π) − xi(π
∗)) ≤ 0.

Adding the inequalities over all 1 ≤ i ≤ m + 1, we get

(π − π∗) · (X(π) − X(π∗)) ≤ −δ.

Since π∗ is the equilibrium, X(π∗) = q̂ = (q̂1, . . . , q̂n),
and thus X(π) − X(π∗) = Z(π). We therefore have

(π − π∗) · Z(π) ≤ −δ.

or

(π∗ − π) · Z(π) ≥ δ.

The Algorithm. The separation lemma leads to an al-
gorithm, based on the Ellipsoid Method, for computing an
approximate equilibrium in ∆+. The separating hyperplane
is computed as follows. If the current price π is not in ∆+,
then the separating hyperplane is any one of the violated
constraints defining ∆+. If the price π does not satisfy the
two constraints

1

1 + ε
�

i

êi ≤ �
j

πj q̂j ≤ �
i

êi,

then the separating hyperplane is given by the constraint
that is violated. Otherwise, the separating hyperplane, cor-
responding to Lemma 10, is the one normal to Z(π) and
passing through π. (Actually, the separating hyperplane will
be normal to a close-enough approximation to Z(π) that is
returned by the demand oracle.)

Using Lemma 9 and Lemma 10, we can show that there
is a 0 < γ < 1, with log 1/γ bounded by a polynomial
in the input size of M , log 1/ε, and log 1/η, such that the
following condition holds: A half-ball of radius γ centered
at π∗ is contained in each of the ellipsoids produced by the
Ellipsoid Algorithm so long as it does not generate a vector
in ∆+ that is a weak (1 + ε)-approx equilibrium for M̂ . It
therefore follows that the Ellipsoid Algorithm will generate
a weak (1+ε)-approx equilibrium for M̂ in time polynomial
in the input size of M , log 1/ε, and log 1/η. Therefore we
have established the main result of this section:

Theorem 11. There is an algorithm that takes as input
(1) a description of a Fisher market M that is equipped with
a demand oracle, and in which the individual demand of
each buyer is monotone; (2) a parameter ε > 0, and returns
a sequence of prices one of which is a weak (1 + ε)-approx

equilibrium for M . The running of time of the algorithm is
polynomial in the size of M and in log 1/ε.

We suspect that the techniques in Section 2 can be used
to obtain a simple polynomial-time approximation scheme
for this problem based on tâtonnement.

4. A MODEL OF PRODUCTION
In this section, we consider a model M of an economy

with m consumers, n goods, and τ firms. Like the trader
in the model of exchange, each consumer i has a concave,
nonsatiable, utility function ui : Rn

+ → R+, and an initial
endowment of goods wi = (wi1, . . . , win) ∈ Rn

+. Each firm t
has a set of production possibilities St, which we assume to
be a closed, bounded, subset of Rn

+. We may assume that
each set St is input to the algorithm as (the set of solutions
to) a system of linear inequalities. Each consumer i has a
share θit ≥ 0 in the t-th firm. For each firm t, we have� m

i=1 θit = 1.
An equilibrium is a vector of prices π = (π1, . . . , πn) ∈

Rn
+ at which there is a bundle xi = (xi1, . . . , xin) ∈ Rn

+ of
goods for each trader i and a bundle yt = (yt1, . . . , ytn) ∈ St

for each firm t such that the following three conditions hold:
(i) For each firm t, the vector yt maximizes the profit π·y over
all y ∈ St. (ii) For each consumer i, the vector xi maximizes
ui(x) subject to the constraints π ·x ≤ π ·wi+

�
t θitπ ·yt and

x ∈ Rn
+, and (iii) For each good j,

�
i xij ≤

�
t ytj +

�
i wij .

For any price vector π, the set of vectors yt(π) that max-
imize π · y subject to y ∈ St is called the supply of firm t
at price π. Note that the supply is a set-valued function of
the price, that is, a correspondence. The profit function of
the firm t is defined by Prt(π) = π · y for any y ∈ yt(π). We
let Y (π) =

�
i wi +

�
t yt(π) denote the aggregate supply

correspondence.
For any price vector π, the vector xi(π) that maximizes

ui(x) subject to the constraints πT x ≤ πT wi +
�

t θitPrt(π)
and x ∈ Rn

+ is called the demand of trader i at price π.
We continue to assume that the demand is a single valued
function of the price. We let X(π) =

�
i xi(π) denote the

aggregate demand function. The aggregate excess demand
correspondence is given by Z(π) = X(π) − Y (π). At any
price π ∈ Rn

+ where Z(π) is well-defined, Walras’ Law holds:
π · z = 0 for any z ∈ Z(π).

Note that an equilibrium is simply a vector π ∈ Rn
+ at

which there is a vector z ∈ Z(π) such that zj ≤ 0 for each
j.

For any µ ≥ 1, we define a weak µ-approx equilibrium to
be a price π ∈ Rn

+ at which there are allocations x′

i ∈ Rn
+ for

each i and production plans y′

t ∈ St for each t such that (i)
for each i, x′

i is a µ-approx demand of trader i at price π, that
is, ui(x

′

i) ≥ ui(xi(π))/µ and π ·x′

i ≤ µ(π ·wi +
�

t θitPrt(π));
(ii) for each firm t, y′

t almost maximizes the profit at price
π, that is, π · y′

t ≥ Prt(π)/µ; (iii)
�

i x′

i ≤
�

i wi +
�

t y′

t.
It can be shown that if π is a µ-approx equilibrium, we can
compute a possibly different set of allocations x′′

i for each i
such that

1. ui(x
′′

i ) ≥ ui(xi(π))/µ2 for each i ;

2. π · x′′

i = π · wi +
�

t θitπ · y′

t ≤ π · wi +
�

t θitPrt(π);

3.
�

i x′′

i =
�

i wi +
�

t y′

t.

We now describe the gross substitutability assumption
that is made in this section. For any w ∈ Rn

+, we define



a “demand” function for the ith consumer fw
i (). At any

price π, let fw
i (π) denote the vector in Rn

+ that maximizes
ui(x) subject to the constraint π ·x ≤ π ·w. Note that fw

i ()
corresponds to the demand of a trader in an exchange model
with utility function ui and initial endowment w. Our as-
sumption is that such a demand must satisfy WGS, that is,
for any two prices π and π′ such that πj ≤ π′

j for each j,
πk = π′

k for some k implies fw
ik(π′) ≥ fw

ik(π).
We will also assume that the demands of each consumer

are normal. That is, if at any price we increase the income
of a consumer without changing the prices of the goods,
then the demand of the consumer for any good does not
decrease. This assumption is satisfied by most of the utility
functions leading to gross substitutability (and certainly by
homogeneous functions or separable functions).

We assume that each good j is either present in positive
amount in the initial endowment of some consumer or that
there is some firm that can produce a positive amount of
it. That is, either wij > 0 for some i or ytj > 0 for some
yt ∈ St. Note that our assumption on the boundedness of
the production sets implies that there exists U > 0 with
log U polynomial in the input size such that for any good j,
we have

�
i wij +

�
t ytj ≤ U , where yt ∈ St.

A Useful Transformation
We transform M into another market M̂ as follows. Let
0 < η ≤ 1 be a parameter. For each consumer i, the new
utility function and initial endowments are the same, that is,
ûi() = ui(), and ŵi = wi. The new market M̂ has one extra
consumer, whose initial endowment of the j-th good is given
by ŵm+1,j = ηWj = η

�
i wij , and whose utility function is

the Cobb-Douglas function um+1(xm+1) =
�

j x
1/n
m+1,j .

For each firm t, the new production set is given by Ŝt =
(1+η)St = {(1+η)y | y ∈ St}. For each 1 ≤ i ≤ m, the new

share of i-th trader in the t-th firm is θ̂it = 1
1+η

θit. The share

of the (m + 1)-th trader in the t-th firm is θ̂m+1,t = η
1+η

.

Lemma 12. (1) The market M̂ has an equilibrium. (2) At

every equilibrium π of M̂ , we have log
maxj πj

minj πj
≤ U1, where

U1 is bounded by a polynomial in the input size and log 1/η.

(3) At any equilibrium π of M̂ , the aggregate supply Yj(π) of
any good π satisfies 2−L2 ≤ Yj(π) ≤ 2U2 , where U2, L2 > 0
are bounded above by a polynomial in the input size and
log 1/η. (3) For any µ ≥ 1, a weak µ-approx equilibrium for

M̂ is a weak µ(1 + η)-approx equilibrium for M . (4) M̂ has
a demand oracle if M does.

Remark : For part (4), the demand oracle for M needs
to return an approximation to the aggregate demand in M
as well as an approximation to some point in the aggregate
supply in M . It is not sufficient to merely return an approx-
imation to some point in the aggregate excess demand. We
assume this stronger oracle in this section.

We define ∆ = {π ∈ Rn
+|2

−U1 ≤ πj ≤ 1 for each j}. Note

that the lemma implies that M̂ has an equilibrium price
in ∆. We define ∆+ = {π ∈ Rn

+|2
−U1 − 2−U1/2 ≤ πj ≤

1 + 2−U1/2 for each j}.
Abusing notation slightly, we henceforth let xi(π), Z(π),

etc. denote the functions/correspondences in the market M̂ .

A Separation Result
Our strategy is to compute a (1+ε)-approximate equilibrium

for M̂ . From Lemma 12 (applied with η set to ε), this will
then be a (1 + O(ε))-approximate equilibrium for M .

From now on, let π∗ ∈ ∆ denote an equilibrium for M̂ .
The following lemma says that if π ∈ Rn

+ is “close” to π∗,
then π is an approximate equilibrium.

Lemma 13. Let π ∈ Rn
+ be a price vector such that

max
j

πj

π∗

j

− min
j

πj

π∗

j

≤
ε

3
min

j

πj

π∗

j

,

where 0 < ε < 1. Then π is a weak (1+ε)-approx equilibrium

for M̂ .

Proof. By scaling π, we may assume that minj
πj

π∗
j

=

1. Then the hypothesis of the lemma tells us that π∗

j ≤
πj ≤ (1 + ε/3)π∗

j . From this, it can be shown that for each
firm t, the equilibrium production plan y∗

t approximately
maximizes the profit at π. Also for each consumer i, the
equilibrium allocation x∗

i is an approximate demand at π.
Since we also have

�
i x∗

i ≤
�

i ŵi +
�

t y∗

t , we can conclude
that π is a weak (1 + ε)-approx equilibrium.

The following lemma says that if a vector π ∈ ∆+ is not
close to π∗ in the sense of Lemma 13, then the hyperplane
normal to Z(π) and passing through π separates π from all
points within a distance δ > 0 of π∗. The proof of this
lemma weaves together a “reduction” due to Primak [28] of
production to exchange and the separation argument of a
lemma in [8].

Lemma 14. Let π ∈ ∆+ be a price vector such that

max
j

πj

π∗

j

− min
j

πj

π∗

j

>
ε

3
min

j

πj

π∗

j

,

for some ε > 0. Then for any z ∈ Z(π), we have π∗ · z ≥ δ,
where δ ≥ 1/2E1 , and E1 is bounded by a polynomial in the
input size of M , log 1/η, and log 1

ε
. Moreover ||z||2 ≤ 2E2 ,

where E2 is bounded by a polynomial in the input size of M
and log 1/η. (Note that π · z = 0 by Walras’ Law.)

Proof. Recall that xi(π
∗) denotes the demand of the i-

th consumer at π∗. For i ≤ t ≤ τ , let y∗

t ∈ yt(π
∗) denote a

profit maximizing plan for the t-th producer which ensures
that

�
i xi(π

∗) ≤
�

i ŵi +
�

t yt(π
∗). We construct an ex-

change economy M ′ in which, for each 1 ≤ i ≤ m + 1, the
i-th trader has the utility function ûi and the initial endow-
ment wi +

�
t θ̂ity

∗

t . It is easy to verify that π∗ is also an
equilibrium of the exchange economy M ′. Note that the up-
per and lower bounds of Lemma 12 (3) apply to the total
initial endowment of each good in M ′.

Let Z′() denote the excess demand function of M ′. Note
that Z′() is a single-valued function. We now apply the ar-
gument of Lemma 3.2 from [8], where the exchange economy
that is considered has the same form as M ′.7 A careful anal-
ysis of the steps in [8] implies that π∗ ·Z′(π) ≥ δ. The bound

7The premise of Lemma 3.2 of [8] that π is not a weak (1+ε)-
approx equilibrium is only used to show that maxj

πj

π∗
j
−

minj
πj

π∗
j

> ε
3

minj
πj

π∗
j
.



δ ≥ 1/2E1 follows by plugging in the bounds on the initial
endowments in M ′ implied by Lemma 12 (3). Note that
gross substitutability is used in showing that π∗ ·Z′(π) ≥ δ.

We now argue that π∗ · z ≥ π∗ · Z′(π). Let us write

Z′(π) =
�

i x′

i(π)−
�

i wi −
�

i

�
t θ̂ity

∗

t , where x′

i(π) is the
demand of trader i in M ′. Let z =

�
i xi(π)−

�
i wi−

�
t yt,

where yt ∈ yt(π). Since π · y∗

t ≤ π · yt, we have

π · wi + �
t

θ̂itπ · yt ≥ π · wi + �
t

θ̂itπ · y∗

t .

That is, the income of the i-th trader in M̂ is greater than
or equal to her income in M ′. The assumption that the
demand of i is normal then implies that xij(π) ≥ x′

ij(π) for
each good j, which implies that π∗ · xi(π) ≥ π∗ · x′

i(π).
On the other hand we have π∗ · y∗

t ≥ π∗ · yt, since y∗

t is
profit maximizing at π∗. Thus, we have

π∗ · z = �
i

π∗ · xi(π) − �
i

π∗ · wi − �
t

π∗ · yt

≥ �
i

π∗ · x′

i(π) − �
i

π∗ · wi − �
t

π∗ · y∗

t

= π∗ ·

� �
i

x′

i(π) � − π∗ ·

� �
i

wi �
−π∗ ·

� �
i

�
t

θ̂ity
∗

t �
= π∗ · Z′(π) ≥ δ.

The claimed bound on ||z||2 follows easily from the fact
that π ∈ ∆+ and the upper bound in Lemma 12 (3).

The Algorithm.
Lemmas 13 and 14 lead to an algorithm, based on the El-
lipsoid Method, for computing a (1 + ε)-approx equilibrium

of M̂ that lies in ∆+. The running time of this algorithm
is polynomial in the input size of M , log 1/η and log 1/ε.
Briefly, the initial ellipsoid is a ball containing ∆+. If the
center of the current ellipsoid does not lie in ∆+, the sepa-
rating hyperplane is the constraint defining ∆+ that is vi-
olated. If the center π of the current ellipsoid lies in ∆+,
then the separating hyperplane is the one normal to Z(π).
(Actually, an approximation to Z(π) computed using the
demand oracle.) The argument for the correctness of this
algorithm is very similar to the one sketched for the Fisher
case in Section 3. We conclude with the main result of this
section.

Theorem 15. There is an algorithm that takes as input
(1) a description of a production economy M that is equipped
with a demand oracle, and that satisfies the gross substi-
tutability and the normality assumptions; and (2) a param-
eter ε > 0, and returns a sequence of prices one of which
is a weak (1 + ε)-approx equilibrium for M . The running of
time of the algorithm is polynomial in the input size of M
and log 1/ε.

5. CONCLUSIONS
It is possible, using the techniques in Section 4, to extend

the results in Section 3 to a model where instead of a seller

there is production. This is the model considered in [30,
19], for which we now obtain polynomial-time algorithms
for buyers with monotone demands. Details will appear in
the full version.
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