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Abstract

We consider Leontief exchange economies, i.e., economies
where the consumers desire goods in fixed proportions. Un-
like bimatrix games, such economies are not guaranteed to
have equilibria in general. On the other hand, they include
suitable restricted versions which always have equilibria.

We give a reduction from two-player games to a special
family of Leontief exchange economies, which are guaranteed
to have equilibria, with the property that the Nash equilibria
of any game are in one-to-one correspondence with the
equilibria of the corresponding economy.

Our reduction exposes a potential hurdle inherent in
solving certain families of market equilibrium problems:
finding an equilibrium for Leontief economies (where an
equilibrium is guaranteed to exist) is at least as hard as
finding a Nash equilibrium for two-player nonzero sum
games.

As a corollary of the one-to-one correspondence, we
obtain a number of hardness results for questions related to
the computation of market equilibria, using results already
established for games [17]. In particular, among other
results, we show that it is NP-hard to say whether a
particular family of Leontief exchange economies, that is
guaranteed to have at least one equilibrium, has more than
one equilibrium.

Perhaps more importantly, we also prove that it is NP-
hard to decide whether a Leontief exchange economy has
an equilibrium. This fact should be contrasted against the
known PPAD-completeness result of [30], which holds when
the problem satisfies some standard sufficient conditions that
make it equivalent to the computational version of Brouwer’s
Fixed Point Theorem.

On the algorithmic side, we present an algorithm for
finding an approximate equilibrium for some special Leontief
economies, which achieves quasi-polynomial time whenever
each trader does not demand too much more of any good
than some other good.
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1 Introduction

In the last few years, there has been a lot of interest
in the computation of market equilibrium prices in an
economy. In a very short time, polynomial-time algo-
rithms have been developed for computing the prices
for different special cases of this problem using tech-
niques such as primal-dual [9, 21], auction algorithms
[15, 16], and convex programming [29, 20, 32, 5, 4, 3].
However, it seems that all the markets for which these
polynomial-time algorithms have been derived share a
common property: their equilibrium set is convex.

Roughly speaking, these results take advantage, ex-
plicitly or implicitly, of settings where the market’s re-
action to price changes is well-behaved either because
the market demand retains some properties of the indi-
vidual demands or thanks to the special structure of the
individual utility functions (e.g., linear, Cobb-Douglas,
CES in a certain range of its defining parameter, the
elasticity of substitution).

In this paper, we study economies in which the
players have Leontief utility functions. A Leontief
utility function describes the behavior of an extreme

CES consumer, who desires goods in fixed proportions.
These utility functions have a very nice combinatorial
description and they come up in different contexts
such as modeling congestion control mechanisms like
TCP [22].

An economy with Leontief consumers can lead to
very “expressive” market demand functions.1. The
set of equilibria in these markets can be disconnected
[18, 6]. Furthermore, no efficient algorithm is known
for computing the equilibrium prices in these markets,
except in the case of proportional endowments, where
the set of equilibria is convex [5]. Our result shows
that polynomial time algorithms handling the equilib-
rium problem in such a scenario where multiple discon-
nected equilibria can readily appear, would have an ex-
tremely important computational consequence for bi-
matrix games. In particular, we can show that any al-
gorithm which computes an equilibrium price for a (spe-
cial case of a) market with Leontief utility functions can

1For instance, it is known that an economy with Leontief con-
sumers can generate the Jacobian of any market excess demand
at a given price (see [25], p.119).



also compute a Nash equilibrium for a bimatrix game.
We also establish a one-to-one correspondence between
the Nash equilibria in any two-player nonzero sum game
and the equilibrium prices in the corresponding special
Leontief exchange economy and use this correpsondence
to obtain several NP-hardness results.

1.1 The Game-Market correspondence. We
consider exchange economies where `, the number
of traders, is equal to the number of goods, and the
i-th trader has an initial endowment given by one
unit of the i-th good. (We call this the pairing model

[33].) The traders have a Leontief (or fixed-proportion)
utility function, which describes their goal of getting a
bundle of goods in proportions determined by ` given
parameters.

Given an arbitrary bimatrix game, specified by a
pair of n × m matrices A and B, with positive entries,
we construct a Leontief exchange economy with n + m
traders and n + m goods as follows.

Trader i comes to the market with one unit of
good i, for i = 1, . . . , n + m. Traders indexed by any
j ∈ {1, . . . , n} receive some utility only from goods
j ∈ {n + 1, . . . , n + m}, and this utility is specified by
parameters corresponding to the entries of the matrix
B. More precisely the proportions in which the j-th
trader wants the goods are specified by the entries on
the jth row of B. Vice versa, traders indexed by any
j ∈ {n + 1, . . . , n + m} receive some utility only from
goods j ∈ {1, . . . , n}. In this case, the proportions in
which the j-th trader wants the goods are specified by
the entries on the j-th column of A.

In the economy above, we can partition the traders
in two groups, which bring to the market disjoint sets
of goods, and are only interested in the goods brought
by the group they do not belong to.

We show that the Nash equilibria of any bimatrix
game are in one-to-one correspondence with the market
equilibria of such an economy.

1.2 Applications. We use this correspondence to
show a potential difficulty inherent in computing equi-
librium prices: even for families in which equilibrium
prices are guaranteed to exist, finding an equilibrium
price could be at least as hard as finding a Nash equi-
librium for nonzero sum bimatrix games.

Moreover, our one-to-one correspondence allows us
to import the results of Gilboa and Zemel [17] on
the NP-hardness of some computational problems con-
nected with Nash equilibria, and show, among other re-
sults, that saying whether there is more than one equi-
librium in an exchange economy is NP-hard. Note that
this latter problem is relevant for applied work, where

the uniqueness question is of fundamental importance.
It is well known that, under mild assumptions, an

equilibrium exists [1]. However, in general, given an
economy expressed in terms of traders’ utility functions
and initial endowments, an equilibrium does not need
to exist. For instance, for economies where the traders
have linear utility functions, Gale [13] determined nec-
essary and sufficient conditions for the existence of an
equilibrium. These conditions boil down to the bi-
connectivity of a directed graph, which can be verified
in polynomial time.

We prove that for Leontief exchange economies test-
ing for existence is instead NP-hard. More precisely, we
construct an economy where the traders have Leontief
utility functions, and such that saying whether an equi-
librium exists is NP-hard. Note that this result does
not contradict what is shown in [30], where the market
equilibrium problem (both in the version where the in-
put is expressed in terms of utilities and endowments,
and in that in terms of excess demand functions) is put
in the class PPAD, a subclass of the class TFNP, which
is unlikely to coincide with FNP. Indeed such a result
assumes standard sufficient conditions which guarantee
existence by either Kakutani’s or Brouwer’s fixed point
theorem.

Note that the previous NP-hardness results for
market equilibrium problems were in the context of
indivisible goods [8].

1.3 Organization of this paper. In Section 2 we
define Nash equilibria for bimatrix games as a linear
complementarity problem, and introduce the notions
of equilibria and quasi-equilibria for certain Leontief
economies. In Section 3 we reduce an arbitrary bima-
trix game to a special pairing Leontief economy, thus
establishing a one-to-one correspondence between the
Nash equilibria of the game and the equilibria of the
economy. In Section 4 we describe a partial converse of
the previous result, by reducing a class of pairing Leon-
tief economies to bimatrix games. In Section 5 we first
use the one-to-one correspondence stated in Section 3 to
import the hardness results of [17] for Nash equilibria in
bimatrix games, and get corresponding hardness results
for the market equilibrium problem. We then use one of
these hardness results to prove that it is NP-hard to de-
cide whether a Leontief exchange economy has an equi-
librium. In Section 6 we use the correspondence with
games to obtain a quasi-polynomial time algorithm for
pairing Leontief economies where each trader does not
want too much more of some good compared to some
other good. Our algorithm is inspired by an algorithm
of Lipton et al. [24] in the context of bimatrix games.



2 Games, Markets, and LCP

Let us consider the problem of computing the Nash
equilibria for any bimatrix game (A, B), where A and
B are n × m matrices, which we assume to be strictly
positive without loss of generality. This can be rewritten
as the following linear complementarity problem (see
pages 91–93 of [28]), which we call LCP1.

Find a nonnegative w 6= 0 and a nonnegative z such
that

Hw + z = 1

wT z = 0 ,

where

H =

(

0 A
BT 0

)

∈ <(n+m)×(n+m).

Note that the system LCP1 may be equivalently viewed
as the problem of finding a nonnegative vector 0 6= w ∈
<n+m such that

∑

j

hijwj ≤ 1 for all 1 ≤ i ≤ n + m,

and

wi > 0 ⇒
∑

j

hijwj = 1 for all 1 ≤ i ≤ n + m.

¿From Nash Theorem on the existence of a Nash
equilibrium, it follows that LCP1 has at least one
solution w. Let N = {j : j ≤ n} and M = {j :
n < j ≤ n + m}. It is easy to see that wj > 0 for
some action j ∈ N as well as some action j ∈ M, since
each of the players is playing a mixed strategy. In other
words, if wi > 0 and i ∈ N , then there must be at least
one j ∈ M such that wj > 0; otherwise,

1 =
∑

j

hijwj =

n+m
∑

j=n+1

hijwj = 0

which is a contradiction. Similarly, wi > 0 and i ∈ M
imply that there must be at least one j ∈ N such that
wj > 0.

We now describe a special form of a Leontief ex-
change economy, the pairing model [33], in which there
are ` traders and ` goods. The economy is described
by a square matrix F of size `. The j-th trader comes
in with one unit of the j-th good, and has a Leontief
utility function

uj(x) = min
i:fij 6=0

{

xi

fij

}

.

An equilibrium for such an economy is given by a
nonnegative price vector 0 6= π ∈ <` such that

1. For each 1 ≤ j ≤ `, βj =
πj

P

k fkjπk
is well-defined,

that is,
∑

k fkjπk > 0.

2. For each good 1 ≤ i ≤ `,
∑

j fijβj ≤ 1; that is, the
total trading volume does not exceed the quantity
available.

Note that βj represents the utility value of the
optimal bundle of the trader j at equilibrium, and the
optimal bundle itself is (f1jβj , . . . , f`jβj). Standard
arguments imply that if πi > 0, then in fact

∑

j fijβj =
1. Moreover, we also have that πj > 0 if and only if
βj > 0.

A closely related notion is that of a quasi-
equilibrium. This is obtained, in our case, by replacing
condition (1) above by

1’. For each 1 ≤ j ≤ `, there exists βj such that
βj(

∑

k fkjπk) = πj .

In a quasi-equilibrium, the zero-bundle, corresponding
to βj = 0, is a valid bundle when πj = 0, even though
∑

k fkjπk = 0.
Thus the main difference between an equilibrium

and a quasi-equilibrium is that in the latter, a trader
with zero income is not required to optimize her utility.
The reader is referred to the textbook of Mas-Colell et
al. [26] for a more systematic development. One stan-
dard way to establish sufficient conditions for the exis-
tence of an equilibrium is to first use fixed point theo-
rems to establish the existence of a quasi-equilibrium,
and then argue that under the sufficient conditions, ev-
ery quasi-equilibrium is an equilibrium.

A simple example of a (pairing) Leontief economy
that has a quasi-equilibrium but no equilibrium is
encoded by the matrix

F =





1 1 0
0 1 2
0 0 1



 .

3 Leontief economies encode bimatrix games

We give a polynomial time computable reduction from
any two-player nonzero sum game to a special class of
the pairing Leontief economies, which we call the two-

groups Leontief economies, with the property that the
Nash equilibria of the game and the equilibria of the
market are in one-to-one correspondence. This shows
that the problem of computing Nash equilibria for a
bimatrix game is equivalent to that of computing market
equilibria for these exchange economies. To prove this
result, we exploit ideas developed by Ye [33].

Given an instance of the problem of computing the
Nash equilibria for a bimatrix game (A, B), where A and



B are positive n×m matrices, we construct an instance
of a (pairing) exchange economy with (n + m) traders
and (n + m) goods that is given by setting F = H . It
is also easy to see that trading needs to occur between
some trader j ∈ N and some trader j ∈ M, since trader
in N are only interested in goods that are brought in
by traders in M, and viceversa. We call this economy
two-groups Leontief economy. It easily follows from the
definition that at any equilibrium π of the economy, we
must have πi > 0 for some i ∈ N as well as some i ∈ M.

3.1 From the Market to the Game. We first
prove that any market equilibrium of the two-groups
Leontief economy corresponds to a Nash equilibrium in
the associated two-player bimatrix game.

Lemma 3.1. Let β = (β1, . . . , βn+m) be the vector of

the utility values at equilibrium prices π for the two-

groups Leontief economy. Then β solves LCP1, and thus

it encodes the Nash equilibria of the game described by

LCP1.

Proof. At any equilibrium of the market, we have
∑

j hijβj ≤ 1 for each 1 ≤ i ≤ n + m, and βj > 0 if and
only if πj > 0. Moreover, βi > 0 ⇒

∑

j hijβj = 1. Thus
the β’s from the equilibrium solve the system LCP1 with
w = β. Moreover, πj , and thus βj , is positive for some
j, so that w = β 6= 0.

3.2 From the Game to the Market. We now show
that any Nash equilibrium of a bimatrix game corre-
sponds to a market equilibrium of the corresponding
two-groups Leontief economy.

Lemma 3.2. Let w 6= 0, be any solution to LCP1.

Then there exists an equilibrium price vector π such that

w = (w1, . . . , wn+m) is the vector of the utility values

at these equilibrium prices for the two-groups Leontief

economy.

Proof. Let w 6= 0 be any complementarity solution to
LCP1. Partition the index set {1, . . . , n + m} into two
groups P = {j : wj > 0} and Z = {j : wj = 0}. As we
showed before, P ∩ N 6= ∅ and P ∩M 6= ∅.

We claim that there exists πj > 0 for each j ∈ P
such that wj =

πj
P

k∈P hkjπk
, or in a different form,

∑

k∈P hkjwjπk = πj . Let HPP be the |P |×|P | principal
submatrix of H induced by the indices in P , and WP

the |P | × |P | diagonal matrix whose diagonal contains
the w’s corresponding to P . Our claim is equivalent to
saying that the system Cσ = σ, where C = (HPP WP )T ,
has a solution in which all the entries of σ are positive.
Note that each column of C sums to one: this follows

because i ∈ P ⇒ wi > 0 and

wi > 0 ⇒
∑

j∈P

hijwj =
∑

j

hijwj = 1.

Moreover,

C =

(

0 D
ET 0

)

,

where E and D are (|P | − l) × l matrices, for some
1 ≤ l ≤ |P | − 1. The bounds on l follow from the fact
that P ∩ N 6= ∅ and P ∩M 6= ∅.

The existence of such a positive solution to Cσ = σ
follows from Proposition 3.1 below.

We have established our claim that there exists
πj > 0 for each j ∈ P such that

wj =
πj

∑

k∈P hkjπk

.

Set πj = 0 for j ∈ Z. We now argue that π is an
equilibrium.

Note that for j ∈ P , we have

wj =
πj

∑

k∈P hkjπk

=
πj

∑

k hkjπk

.

For j ∈ Z, observe that
∑

k hkjπk > 0. This is
because there exists k ∈ P such that hkj > 0, since P
contains elements from both N and M. For this k, we
have hkjπk > 0. Therefore,

wj =
πj

∑

k∈P hkjπk

=
πj

∑

k hkjπk

= 0.

Moreover, we have, for each good 1 ≤ i ≤ n + m,
∑

j hijwj ≤ 1, since w is a solution of LCP1. Thus both
the conditions for an equilibrium are fulfilled, with the
wi’s playing the role of the βi’s.

Proposition 3.1. The linear system Cσ = σ has a

positive solution.

Proof. Consider the matrix

C2 =

(

DET 0
0 ET D

)

.

Notice that both DET and ET D are column
stochastic, because C and hence D and ET are col-
umn stochastic. Therefore the system C2z = z has
a positive solution. We can write (C2 − I)z = 0
as (C − I)(C + I)z = 0. Consider now the vector
σ = (C + I)z. Clearly σ has all positive components, if
z has. Also (C − I)σ = 0 or Cσ = σ.



Note that Proposition 3.1 implies that C is irre-
ducible besides column-stochastic, so that σ is in fact
the unique Perron-Frobenius eigenvector of C (see, for
example, [23], p. 141). Consequently, we observe that
there is precisely one equilibrium price vector π, the one
we have constructed above, that corresponds to the util-
ity vector w. This follows because we must have πj > 0
if and only if wj > 0. Thus πj = 0 for j ∈ Z, πj > 0 for
j ∈ P , and thus the unique positive solution of Cσ = σ
gives the only possible values for the prices of goods in
P . From the definition, it follows that there is a unique
utility vector corresponding to an equilibrium price vec-
tor.

The following theorem summarizes the results of
this section.

Theorem 3.1. Let (A, B) denote an arbitrary bimatrix

game, where we assume, w.l.o.g., that the entries of the

matrices A and B are all positive. Let the columns of

H =

(

0 A
BT 0

)

describe the utility parameters of the traders in a two-

groups Leontief economy. There is a one-to-one cor-

respondence between the Nash equilibria of the game

(A, B) and the market equilibria of the two-groups Leon-

tief economy. Furthermore, the correspondence has the

property that a strategy is played with positive probabil-

ity at a Nash equilibrium if and only if the good held

by the corresponding trader has a positive price at the

corresponding market equilibrium.

Corollary 3.1. If there is a polynomial time algo-

rithm to find an equilibrium for a two-groups Leontief

economy, then there is a polynomial time algorithm for

finding a Nash equilibrium of a bimatrix game.

4 Bimatrix games encode the (pairing)
Leontief economy

In this section, we establish a partial converse to the
result of Section 3. We will show that bimatrix games
encode a special case of the pairing Leontief economies.
In this setting, there are n traders and n goods. The
j-th trader comes in with one unit of the j-th good, and
has a Leontief utility function

uj(x) = min
i

{

xi

aij

}

,

where aij > 0. In other words, every trader j is
interested in all the goods, and she wants the goods
in a fixed proportion determined by the j-th column of
a positive matrix A ∈ <n×n.

We will show that finding equilibrium prices for
the economy above is equivalent to finding symmetric
equilibria of the symmetric game defined by (A, AT ).
This problem can be written as the following linear
complementarity problem, which we call LCP2. Find
a nonnegative w 6= 0 and a nonnegative z such that

Aw + z = 1

wT z = 0

In the program above, any nonzero w defines a
symmetric equilibrium strategy of the game. More
precisely, if w is a nonzero feasible solution for LCP2
then w/|w|1 is an equilibrium strategy for both players.

We now argue that any nonzero solution w to the
complementarity problem LCP2, or equivalently any
symmetric Nash equilibrium of the game, corresponds
to an equilibrium of the Leontief economy.

Theorem 4.1. For any nonzero solution (w, z) of

LCP2 with a positive matrix A, there is an equilibrium

price π such that the utility value of player i at π is wi.

Moreover, given (w, z), π can be computed in polynomial

time.

Proof. The proof of this theorem is implied by [33]. Let
P = {j : wj > 0}, and Z = {j : wj = 0}. Then
consider the stochastic matrix APP D(wP ), where APP

is |P | × |P | principal submatrix of A induced by the
indices in P , D(wP ) is the diagonal matrix whose entries
are wj , j ∈ P . Since APP D(wP ) > 0, it has a positive
left eigenvector πP > 0. Let πj = 0 for j ∈ Z.

Since for some i, wi > 0, P is non-empty and
therefore π is also nonzero. Furthermore, it is very easy
to see that:

1. For every 1 ≤ i ≤ n,
∑n

j=1 aijwi ≤ 1

2. wi > 0 =⇒
∑n

j=1 aijwi = 1

Therefore, w is an allocation supported by the
equilibrium price vector π.

It is straightforward to see that any equilibrium of
the pairing Leontief economy yields a symmetric Nash
equilibrium of the game (A, AT ).

Now the symmetric Nash equilibria of the game
(A, AT ) are in one-to-one correspondence with the Nash
equilibria of the game (A, I), and it is possible to go from
one to the other in polynomial time. See McLennan and
Tourky ([27], Proposition 26) for a proof. Therefore, we
have:

Corollary 4.1. If there is a polynomial time algo-

rithm for finding a Nash equilibrium for a bimatrix



game, then there is a polynomial time algorithm for find-

ing an equilibrium price in a Leontief pairing economy

with a positive utility matrix.

We should also add that in [14, 27], a similar one-
to-one correspondence and polynomial-time reduction is
established between finding Nash equilibria of a game,
finding symmetric equilibria of a symmetric game and
a solution to an instance of LCP2. Using those results,
it is possible to give a shorter, but less self-contained,
proof for Theorem 3.1.

Note that, while the reduction in Theorem 3.1 is
from arbitrary bimatrix games, the reduction in this sec-
tion is from only a special family of Leontief economies.
As in bimatrix games, the equilibrium points of the pair-
ing Leontief economies are rational numbers [33]. How-
ever, in the case where the endowments of the buyers are
unrestricted, Eaves [10] gives an example showing that
equilibrium points could be irrational. This suggests
that there is no natural linear complementarity formu-
lation for general Leontief exchange economies, and per-
haps even that solving these economies might be strictly
harder than finding Nash equilibria of a bimatrix game.

Furthermore, we have assumed that the utility
matrix of our market A is positive. This restriction
is necessary because if some entries of A are zero, APP

may be reducible and a strictly positive left eigenvector
πP may not exist. This shows a subtle difference in the
structure of equilibria in these two settings despite their
similar linear complementarity programs. It is easy to
see that adding a constant to all the entries of a matrix
corresponding to a game does not change its equilibria
points, but adding a constant to all entries of the utility
matrix of a Leontief economy might change the set of
equilibria.

Our result can be generalized to the Leontief econ-
omy where all goods are differentiate, a case previously
also studied in [33].

5 Hardness Results

Well known sufficient conditions guarantee that an equi-
librium for an exchange economy does exist (see, e.g.,
[26] Section 17C). Under such assumptions, its equiv-
alence to fixed point problems follows from the com-
bination of two results: a simple and nice transforma-
tion introduced by Uzawa [31], which maps any contin-
uous function into an excess demand function, inducing
a one-to-one correspondence between the fixed points
of the function and the equilibria, and the SMD Theo-
rem (see [26], pp. 598-606) which states the essentially
arbitrary nature of the market excess demand function.

Theorem 3.1 shows that there is a one-one corre-
spondence between two-groups Leontief economies and

bimatrix games. Combining this theorem with the NP-
hardness results of Giboa and Zemel for some questions
related to Nash equilibria [17], we show hardness results
for Leontief economies.

One of these hardness results pertains the existence
of an equilibrium where the prices of some prescribed
goods are positive. This specific hardness result allows
us to construct a Leontief exchange economy for which
an equilibrium exists if and only if in another Leon-
tief economy there is an equilibrium where the prices
of some prescribed goods are positive. This correspon-
dence proves that it is NP-hard to test for existence.

Note that in general the equilibria of Leontief
exchange economies can be irrational ([5], Section 3)
so that the existential problem does not belong to NP,
and we thus talk of NP-hardness as opposed to NP-
completeness.

5.1 Uniqueness and Equilibria with additional
properties. Gilboa and Zemel [17] proved a number
of hardness results related to the computation of Nash
equilibria (NE) for finite games in normal form. Since
the NE for games with more than two players can be
irrational, these results have been formulated in terms
of NP-hardness for multi-player games, while they can
be expressed in terms of NP-completeness for two-player
games.

Given a two-player game G in normal form, i.e.,
expressed as a bimatrix game, consider the following
problems:

1. NE uniqueness: Given G, does there exist a unique
NE in G?

2. NE in a subset: Given G, and a subset of strategies
Ti for each player i, is there a NE where all the
strategies outside Ti are played with probability
zero?

3. NE containing a subset: Given G, and a subset of
strategies Ti for each player i, is there a NE where
all the strategies in Ti are played with positive
probability?

4. NE maximal support: Given G and an integer r ≥
1, does there exist a NE in G such that each player
uses at least r strategies with positive probability?

5. NE minimal support: Given G and an integer r ≥ 1,
does there exist a NE in G such that each player
uses at most r strategies with positive probability?

Gilboa and Zemel showed that

1. NE uniqueness is co-NP complete;



2. NE in a subset, NE containing a subset, NE max-

imal support, and NE minimal support are NP-
complete.

Combining the above results with Theorem 3.1, we
get the following theorem.

Theorem 5.1. Given an exchange economy, where

each trader is specified by an initial endowment and a

Leontief utility function, such that the economy has at

least one equilibrium, the following problems are NP-

hard:

1. Is there more than one equilibrium?

2. Is there an equilibrium where the prices of a given

set of goods are positive?

Proof. The results use the reduction of Theorem 3.1,
which, together with Nash Theorem on the existence of
a Nash equilibrium, tells us that the Leontief economy
constructed by the reduction always has an equilibrium.

1. The NP-hardness follows from the coNP-
completeness of NE uniqueness, and from the
one-to-one correspondence of Theorem 3.1. We
also note that the construction of Gilboa and
Zemel [17] for NE uniqueness yields games with a
finite number of equilibria.

2. The NP-hardness follows from the NP-
completeness of NE containing a subset, and
from Theorem 3.1.

Additional hardness results can be obtained by
working out other reductions from [17], or their refine-
ments in [2, 7, 27].

5.2 Existence of an equilibrium. We now give
a reduction from statement (2) of Theorem 5.1 to
show that the problem of deciding whether a Leontief
exchange economy has an equilibrium is NP-hard.

Theorem 5.2. It is NP-hard to decide whether a Leon-

tief exchange economy has an equilibrium.

Proof. The reduction is from Theorem 5.1 (2). Suppose
M is an instance of an economy with n traders and
goods, and we want to know if there is an equilibrium
with goods 1, . . . , k priced positively. We construct an
economy M ′ with k additional traders and goods: for
1 ≤ j ≤ k, the (n + j)-th trader brings in one unit of
the (n + j)-th good and wants just the j-th good.

We argue that M ′ has an equilibrium if and only
if M has an equilibrium with goods 1, . . . , k priced
positively.

Suppose M has an equilibrium in which goods
1, . . . , k are priced positively. Then this can be ex-
tended to an equilibrium of M ′ by setting the prices of
goods n+1, . . . , n+k to be 0, and giving the (n+ j)-th
trader 0 utility (and 0 units of good j). It is evident that
condition (1) for an equilibrium holds for the (n + j)-th
trader, since the j-th good is priced positively. Condi-
tion (2) also holds.

Consider now an equilibrium for M ′. For 1 ≤ j ≤ k,
it can be seen from Walras’ Law that the price of the
(n + j)-th good must be zero, since nobody wants this
good. For condition (1) to hold for the (n+j)-th trader,
it must be that the j-th good is priced positively. It
follows that the prices of the first n goods, together with
the optimal bundles of the first n traders, constitutes
an equilibrium for the original economy M in which the
prices of goods 1, . . . , k are positive.

We have proved that M ′ has an equilibrium if and
only if M has an equilibrium with goods 1, . . . , k priced
positively. M ′ can clearly be constructed from M in
polynomial time.

Notice that the reduction can be easily modified, if
needed, to ensure that each good in M ′ is desired by
some trader. (We simply make the (n + j)-th trader
want both the (n + j)-th good and the j-th good in the
ratio 1 : 2.)

6 Computing an Approximate Equilibrium

Let the ` × ` matrix F encode the pairing Leontief
exchange economy (Section 2) with ` traders and `
goods. Let κ ≥ 1 be a number such that for each
trader j,

maxi fij

mini fij
≤ κ. In this section, we describe an

algorithm that, for any parameter 0 < ε < 1, runs in

time that is `O( κ2 log `

ε2 ) times a polynomial in the input
size and computes an ε-approximate equilibrium for the
economy.

An ε-approximate equilibrium is given by a nonneg-
ative price vector 0 6= π ∈ <` such that

1. For each 1 ≤ j ≤ `, we have
∑

k fkjπk > 0, and
there exists βj such that (1 − ε)

πj
P

k fkjπk
≤ βj ≤

πj
P

k fkjπk
.

2. For each good 1 ≤ i ≤ `,
∑

j fijβj ≤ 1.

The definition says that an approximate equilibrium
is a vector of prices at which approximately utility
maximizing bundles (βjf1j , . . . , βjfnj) for each trader j
leads to market clearance. This is now a fairly standard
notion [21, 4].

We note that multiple disconnected equilibria can
exist in such economies for any κ > 1. By scaling the
columns of the matrix F , we can assume that each entry



of F is between 1 and κ, and that the largest entry in
each column is precisely κ. It will be convenient to let
fi denote the i’th row of F .

We define an ε-complementarity solution for F to
be a vector 0 6= w ∈ <n

+ such that for each i, (1)
fi ·w ≤ 1, and (2) wi > 0 ⇒ fi ·w ≥ 1−ε. The following
proposition says that every ε-complementarity solution
corresponds to approximate utility maximizing bundles
at some ε-approximate equilibrium.

Proposition 6.1. Let w be an ε-complementarity so-

lution for F . Then there is a price vector π ∈ <n
+

such that for each j, we have
∑

k fkjπk > 0, and

(1 − ε)
πj

P

k fkjπk
≤ wj ≤ πj

P

k fkjπk
.

Proof. Partition the index set {1, . . . , `} into two groups
P = {j : wj > 0} and Z = {j : wj = 0}. Note
that P 6= ∅. For each i ∈ P , let ηi = 1/(fi · w);
note that 1 ≤ ηi ≤ 1/(1 − ε). We claim that there
exists πj > 0 for each j ∈ P such that for each trader
j ∈ P , we have wj =

πj
P

k∈P fkjηkπk
, or in a different form

∑

k∈P fkjwjηkπk = πj .
Let FPP be the |P | × |P | principal submatrix of F

induced by the indices in P , WP the |P | × |P | diagonal
matrix whose diagonal contains the w’s corresponding
to P , and EP the |P | × |P | diagonal matrix whose
diagonal contains the η’s corresponding to P . Our claim
is equivalent to saying that the system Cσ = σ, where
C = (EP HPP WP )T , has a solution in which all the
entries of σ are positive. Note that each entry of C is
positive and each column of C sums to one, because
ηifi · w = 1 for i ∈ P . The claim therefore follows from
the Perron-Frobenius Theorem.

Since 1 ≤ ηk ≤ 1/(1 − ε), it follows that for each
j ∈ P , (1 − ε)

πj
P

k fkjπk
≤ wj ≤ πj

P

k fkjπk
. Set πj = 0 for

j ∈ Z. For this vector π, the Proposition is now readily
seen to hold.

The following lemma and proof are inspired by a
corresponding result for bimatrix games [24].

Lemma 6.1. For any 0 < ε < 1, there exists an ε-

complementarity solution w to F with only O(κ2 log `
ε2 )

non-zeroes.

Proof. Let 0 6= β ∈ <` be a “0-complementarity”
solution to F : for each i, we have (1) fi ·β ≤ 1, and (2)
βi > 0 ⇒ fi ·β = 1. Such a β corresponds to the utilities
of the traders at equilibrium, which can be shown to
exist via standard arguments [26] using the fact that
each entry of F is positive. Note that

∑

j βj ≤ fi ·β ≤ 1.
Let δ = c1ε, where c1 > 0 is a small enough

constant, and τ be the smallest integer that is at least
κ2 log `

δ2 . Let Ω be the probability distribution over <`

where the unit vector ei has a probability βi and the
origin has a probability 1 −

∑

i βi. Let x1, . . . , xτ be
τ independent choices from the distribution Ω. Let

x =
P

1≤t≤τ xt

τ
.

Fix any 1 ≤ i ≤ `. The random variable fi · xt

ranges over [0, κ] and E[fi · x
t] = fi · β. Since fi · x =

P

1≤t≤τ fi·x
t

τ
, it follows that E[fi · x] = fi · β. Using the

Hoeffding bound ([19], Theorem 2), we conclude that

Pr[|fi · x − fi · β| ≥ δ] ≤ e
−2τ2δ2

τκ2 ≤ e−2 log ` ≤ 1/`2.

From the union bound, it follows that with positive
probability, we have |fi ·x−fi ·β| ≤ δ for every i. Let w′

be an outcome of x for which this good event happens.

Clearly, w′ has at most τ = O(κ2 log `
ε2 ) nonzeroes. For

each i, we have fi · w′ ≤ fi · β + δ ≤ 1 + δ. Moreover,
if w′

i > 0, then it must be that βi > 0. Thus if w′
i > 0,

then fi ·w′ ≥ fi · β − δ = 1− δ. Setting w = 1
1+δ

w′, the
proof of the lemma is complete.

The algorithm for computing an ε-approximate
market equilibrium easily follows from Lemma 6.1 and

Proposition 6.1. By solving `O( κ2 log `

ε2 ) linear programs,

one for each possible subset of size O(κ2 log `
ε2 ), we can

compute an ε-complementarity solution w to F . Given
w, we compute an ε-approximate equilibrium by solving
another linear program. Proposition 6.1 guarantees that
a corresponding ε-approximate equilibrium price exists.

7 Concluding Remarks

In this paper, we have described certain connections
between exchange economies and bimatrix games, and
analyzed some related computational consequences. In
particular, we showed that any algorithm which com-
putes a Nash equilibrium for a bimatrix game computes
a market equilibrium for a special Leontief economy,
and, viceversa, any algorithm for the market equilibrium
with Leontief utility functions must have the ability to
compute a Nash equilibrium for a bimatrix game.

Our reduction uses a formulation of the market
equilibrium allocation as a solution to a special type of
linear complementarity problems. Prior to this work,
Eaves had shown in [10] that the equilibrium in ex-
change economies with Cobb-Douglas utility functions
can be obtained as the solution to a special linear pro-
gramming problem. Because of the well known equiva-
lence between zero-sum games and linear programming
(due to Von Neumann Minimax Theorem), we have that
Cobb-Douglas exchange economies can be coded as spe-
cial two-player zero-sum games.
Acknowledgements. The authors thank Kamal Jain
for raising the possibility that Leontief economies may



encode bimatrix games, and Mohammad Mahdian and
Christos Papadimitriou for very helpful discussions.

References

[1] K.J. Arrow and G. Debreu, Existence of an Equilibrium
for a Competitive Economy, Econometrica 22 (3), pp.
265–290 (1954).

[2] B. Codenotti and D. Stefankovic, On the Computa-
tional Complexity of Nash Equilibria for (0, 1) Bima-
trix Games, Information Processing Letters, Volume
94, Issue 3, pp. 145-150 (2005).

[3] B. Codenotti, B. McCune, and K. Varadarajan, Market
Equilibrium via the Excess Demand Function, STOC
2005.

[4] B. Codenotti, S. Pemmaraju and K. Varadarajan, On
the Polynomial Time Computation of Equilibria for
Certain Exchange Economies, SODA 2005.

[5] B. Codenotti and K. Varadarajan, Efficient Computa-
tion of Equilibrium Prices for Markets with Leontief
Utilities. ICALP 2004.

[6] B. Codenotti, B. McCune, S. Penumatcha, and K.
Varadarajan. Market Equilibrium for CES Exchange
Economies: Existence, Multiplicity, and Computation.
To appear in FSTTCS 05.

[7] V. Conitzer, T. Sandholm, Complexity Results about
Nash Equilibria. Proc. IJCAI 2003, pp. 765-771.

[8] X. Deng, C. H. Papadimitriou, M. Safra, On the
Complexity of Equilibria, STOC 02.

[9] N. R. Devanur, C. H. Papadimitriou, A. Saberi, V. V.
Vazirani, Market Equilibrium via a Primal-Dual-Type
Algorithm. FOCS 2002, pp. 389-395. (Full version with
revisions available on line, 2003.)

[10] B. C. Eaves, Finite Solution of Pure Trade Markets
with Cobb-Douglas Utilities, Mathematical Program-
ming Study 23, pp. 226-239 (1985).

[11] B. C. Eaves, A Finite Algorithm for the Linear Ex-
change Model, Journal of Mathematical Economics 3,
197-203 (1976).

[12] E. Eisenberg, Aggregation of Utility Functions. Man-
agement Sciences, Vol. 7 (4), 337–350 (1961).

[13] D. Gale, The Linear Exchange Model, Journal of
Mathematical Economics 3, pp. 205-209 (1976).

[14] D. Gale, H.W. Kuhn, and A.W. Tucker, On Symmetric
Games. In H.W. Kuhn and A.W. Tucker, editors,
Contributions to the Theory Games, volume 1, Annals
of Mathematical Studies 24, pages 81-87 (1950).

[15] R. Garg and S. Kapoor, Auction Algorithms for Market
Equilibrium. In Proc. STOC, 2004.

[16] R. Garg, S. Kapoor, and V. V. Vazirani, An auction-
based market equilbrium algorithm for the separable
gross substitutability case, APPROX 2004.

[17] I. Gilboa, E. Zemel, Nash and Correlated equilibria:
Some Complexity Considerations, Games and Eco-
nomic Behavior 1, 80-93 (1989).

[18] S. Gjerstad. Multiple Equilibria in Exchange
Economies with Homothetic, Nearly Identical Prefer-

ence, University of Minnesota, Center for Economic
Research , Discussion Paper 288, 1996.

[19] W. Hoeffding. Probability Inequalities for Sums of
Bounded Random Variables, American Statistical As-
sociation Journal, 13–30, March 1963.

[20] K. Jain, A polynomial time algorithm for computing
the Arrow-Debreu market equilibrium for linear util-
ities, Discussion Paper, Microsoft Lab., Seattle, WA
(2003). FOCS 2004.

[21] K. Jain, M. Mahdian, and A. Saberi, Approximating
Market Equilibria, Proc. APPROX 2003.

[22] F.P. Kelly, A. Maulloo, and D. Tan, Rate control for
communication networks: shadow prices, proportional
fairness and stability, Journal of the Operational Re-
search Society, v.49, pp.237-252 (1998).

[23] A.N. Langville and K.A. Meyer, A Survey of Eigen-
vector Methods for Web Information Retrieval, SIAM
Review 47(1), pp. 135-161 (2005).

[24] R. J. Lipton, E. Markakis, A. Mehta, Playing large
games using simple strategies. Proc. 4th ACM conf.
Electronic Commerce, San Diego, 36–41, 2003.

[25] R. R. Mantel, Implications of microeconomic theory
for community excess demand functions, Chapter 3b,
in Frontiers of Quantitative Economics, Vol. III, North
Holland (1977).

[26] A. Mas-Colell, M. D. Whinston, J. R. Green, Microe-

conomic Theory, Oxford University Press, 1995.
[27] A. McLennan and R. Tourky, From Imitation Games

to Kakutani. available on the first author’s webpage,
March 2005.

[28] R. McKelvey and A. McLennan, Computation of equi-
libria in finite games, 87-142, Handbook of Computa-
tional Economics, Edited by H. Amman, D. Kendrick,
J. Rust, Elsevier, 1996.

[29] E. I. Nenakov and M. E. Primak. One algorithm for
finding solutions of the Arrow-Debreu model, Kiber-
netica 3, 127–128 (1983).

[30] C.H. Papadimitriou, On the Complexity of the Parity
Argument and other Inefficient Proofs of Existence,
Journal of Computer and System Sciences 48, pp. 498-
532 (1994).

[31] H. Uzawa, Walras’ existence theorem and Brouwer’s
fixed point theorem, Econom. Studies Quart. 12 59-62
(1962).

[32] Y. Ye. A path to the Arrow-Debreu competitive mar-
ket equilibrium. Working Paper, Department of Man-
agement Science and Engineering, Stanford University,
Stanford, CA 94305, 2004. To appear in Mathematical
Programming.

[33] Y. Ye, A Note on Exchange Market Equilibria with
Leontief’s Utility: Freedom of Pricing Leads to Ratio-
nality, manuscript available from the author’s webpage
(April 23rd 2005).


