
A Divide-and-Conquer Algorithm for Min-Cost Perfect Match ing in the Plane∗

Kasturi R. Varadarajan†

Abstract

Given a setV of 2n points in the plane, the min-cost per-
fect matching problem is to pair up the points (inton pairs)
so that the sum of the Euclidean distances between the
paired points is minimized. We present anO(n3/2 log5 n)-
time algorithm for computing a min-cost perfect matching
in the plane, which is an improvement over the previous best
algorithm of Vaidya [21] by nearly a factor ofn. Vaidya’s
algorithm is an implementation of the algorithm of Ed-
monds [8], which runs inn phases, and computes a match-
ing with i edges at the end of thei-th phase. Vaidya shows
that geometry can be exploited to implement a single phase
in roughlyO(n3/2) time, thus obtaining anO(n5/2 log4 n)-
time algorithm. We improve upon this in two major ways.
First, we develop a variant of Edmonds’ algorithm that uses
geometric divide-and-conquer, so that in the conquer step
we need onlyO(

√
n) phases. Second, we show that a sin-

gle phase can be implemented inO(n log5 n) time.

1. Introduction

Given a setV of 2n points in the plane, we can associate
a complete undirected graphG(V) (or simplyG) with V as
follows. The vertex set ofG is the set of pointsV , and its
edge setE consists of all unordered pairs(u, v) such that
u, v ∈ V andu 6= v. The cost of an edge(u, v) is the
Euclidean distanced(u, v) betweenu andv. A matchingof
G (or of V) is a collectionM of edges such that no vertex
in V is incident on more than one edge inM . A perfect
matching ofV is a matchingM in which every vertex in
V is incident onexactlyone edgeM . Note that a perfect
matching ofV has cardinalityn. We define thecost of a
matchingM to be

∑
(u,v)∈M d(u, v), the sum of the costs of

the edges inM . TheEuclidean min-cost perfect matching

∗ Work on this paper has been supported by National Science Foun-
dation Grant CCR-93–01259, by an Army Research Office MURI grant
DAAH04-96-1-0013, by a Sloan fellowship, by an NYI award, bymatch-
ing funds from Xerox Corporation, and by a grant from the U.S.–Israeli
Binational Science Foundation.

† Department of Computer Science, Box 90129, Duke University,
krv@cs.duke.edu

problem(MCPM) is to find a perfect matching ofV whose
cost is the smallest.

The MCPM problem has applications in operations re-
search, pattern recognition, statistics, and VLSI (see [15]).
The problem is used in determining the efficient movement
of mechanical plotters, which is a special case of the Chi-
nese postman problem [9]; see the survey by Avis [5]. The
fact that MCPM and related problems can be solved in
polynomial time for general graphs is a classical and fun-
damental result due to Edmonds [8]. Lawler [13] gave
an O(|V |3) implementation of Edmonds’ algorithm; us-
ing this, the MCPM problem in the plane can be solved
in O(n3) time. The question that motivates us is whether
we can exploit geometry to do much better. (Note that the
complete graph induced by the set of2n points is entirely
specified by the co-ordinates of the points.)

Since the min-cost, max-cardinality problem can be
solved for sparse graphs inO(|E||V | log |V |) time (Galil
et al. [11]), there have been attempts at showing that the
min-cost perfect matching in the plane is a substructure
of geometric structures such as the Delaunay triangulation.
Counterexamples to several such conjectures were given by
Akl [2]. (Note that the Euclidean minimum spanning tree
is contained in the Delaunay triangulation [19] and Yao’s
graph [22].) Vaidya [21] was the first to show that ge-
ometry can be exploited to get a sub-cubic algorithm; his
O(n5/2 log4 n)-time algorithm is the best known for Eu-
clidean MCPM.

For the bipartite version of this problem, Agarwal et
al. [1] have given a near-quadratic algorithm that improves
over an earlier sub-cubic algorithm of Vaidya [21]. Atten-
tion has been paid to special cases of the Euclidean MCPM,
for instance the case when all the points are in convex po-
sition; see Marcotte and Suri [15], and Buss and Yiani-
los [6] where near-linear time algorithms are described for
such problems. There has also been considerable amount of
work on approximation algorithms for Euclidean matching;
see Junger and Pulleyblank [12], the survey by Avis [5],
and the references therein. A lot of this work looks at the
case where the points are in a unit square, and aims at pro-
ducing a matching whoseabsolute costis small. In con-
trast, Vaidya [20] gave an algorithm that runs in roughly
O(n3/2/ε3) time and returns a perfect matching whose cost

1

is at most(1 + ε) times the optimal, for anyε > 0. The
recent algorithm of Arora [3] solves the same problem in
time that is near-linear inn, but is exponential in1/ε.1

The huge literature on matchings in general graphs is
outside the scope of this paper. We refer the reader to stan-
dard books on combinatorial optimization ([13],[18]) and
matching theory ([14]).

Our results. We present anO(n3/2 log5 n)-time algo-
rithm for computing a min-cost perfect matching in the
plane, which is an improvement over the previous best al-
gorithm of Vaidya [21] by nearly a factor ofn. Vaidya’s
algorithm is an implementation of the algorithm of Ed-
monds [8], which runs inn phases, and computes a match-
ing with i edges at the end of thei-th phase. Vaidya shows
that geometry can be exploited to implement a single phase
in Õ(n3/2) time (we use theÕ() notation when ignoring
polylog-factors), thus obtaining anO(n5/2 log4 n)-time al-
gorithm. We improve upon this in two major ways. First,
we develop a variant of Edmonds’ algorithm that uses ge-
ometric divide-and-conquer, so that in the conquer step we
need onlyO(

√
n) phases. (Divide-and-conquer has been

used before for special cases of MCPM in the plane, for in-
stance by Marcotte and Suri [15], but these approaches rely
heavily on the properties of the special cases.) The geomet-
ric tool that we use for divide-and-conquer is based on the
technique of Miller et al. [16] for finding geometric sepa-
rators for overlap graphs. Second, we show a single phase
for ann-point set can be implemented inO(n log5 n) time.
To do this, we interpret the dual variables geometrically and
establish certain nice properties that they exhibit. We then
exploit these properties to show that to implement a sin-
gle phase, it suffices to look at a subset ofÕ(n) candidate
edges, and not all then(n − 1)/2 edges. The candidate
edges are not known at the beginning of the phase itself, but
are generated as the phase unfolds, using a total ofÕ(n)
time. Combining this with the data structures of Galil et
al. [11] for implementing a phase of the matching algorithm
for sparse graphs iñO(|E|) time, we obtain anO(n log5 n)-
time implementation of a phase. For generating the candi-
date edges, we introduce a notion called thesemi-separated
decomposition, which is a relaxation of thewell-separated
decompositionof Callahan and Kosaraju [7].

In Section 2, we present our divide-and-conquer algo-
rithm for MCPM, and show that only

√
n phases are needed

in the conquer step for a set ofn points. In Section 3, we de-
scribe our approach for implementing a single phase of the
algorithm. In the appendix, we present the proof of the main
lemma of Section 3. For lack of space, we have omitted the
proofs of several lemmas from this version.

1Combining the divide-and-conquer approach of this paper with
Arora’s technique, Pankaj Agarwal and the author have recently obtained
an algorithm whose running time is near-linear inn and polynomial in1/ε.

2. A Divide-and-Conquer Framework for
Matching

In this section, we present a divide-and-conquer ap-
proach for min-cost perfect matching of the set of pointsV
in the plane. We assume in the following that we are dealing
with the graphG(V) = (V, E) associated with the given set
of pointsV . We say that a subsetQ ⊆ V of V is anodd
subsetor anodd-setif |Q| is odd and|Q| ≥ 3. ForQ ⊆ V ,
let ξ(Q) denote the subset of edgesE with exactly one end-
point inQ, that is,ξ(Q) = {(u, v) ∈ E : |{u, v}∩Q| = 1}.
Let S(p, r) denote the disk of radiusr centered at pointp.

Edmonds’ algorithm is motivated by duality theory for
linear programs; see [8] and [13] for a discussion of lin-
ear programming duality. His algorithm associates a “dual
variable” variableωv for eachv ∈ V and a dual variable
ωQ for each odd setQ. Sometimes, it will be convenient
to denoteωv by ω{v}. Corresponding to edge(u, v), let
πuv = ωu + ωv +

∑
(u,v)∈ξ(Q) ωQ. From duality theory, it

follows that a perfect matchingM is optimal if there exist
valuesωv, for eachv ∈ V , andωQ, for each odd subsetQ,
such that the following conditions hold:
EDGE-FEASIBILITY : πuv ≤ d(u, v) for each(u, v) ∈ E.

POSITIVE-DUAL : ωQ ≥ 0 for each odd subsetQ.

MATCHING-ADMISSIBILITY : (u, v) ∈ M ⇒ πuv =
d(u, v).

MAXIMALITY : For each odd subsetQ, if ωQ > 0, then
the matchingM is maximal withinQ, that is, the
number of edges inM both of whose endpoints are
in Q is (|Q|−1)/2. SinceM is a perfect matching,
this is equivalent toM ∩ ξ(Q) = 1.

Actually, we can prove this using a direct arguement.
We simply note that theEDGE-FEASIBILITY andPOSITIVE-
DUAL conditions imply that the cost of any perfect match-
ing is at least

∑
v∈V ωv +

∑
Q ωQ, while the conditions

MATCHING-ADMISSIBILITY andMAXIMALITY imply that
the cost ofM is exactly

∑
v∈V ωv +

∑
Q ωQ.

Like Edmonds’ algorithm, our approach also com-
putes a perfect matching and a corresponding set of dual
variables such thatEDGE-FEASIBILITY , POSITIVE-DUAL ,
MATCHING-ADMISSIBILITY , andMAXIMALITY are satis-
fied. The difference is that unlike in Edmonds’ algorithm,
we use geometric divide-and-conquer for doing this. Be-
fore describing our approach, we describe the important no-
tion of blossoms that was introduced by Edmonds. Our de-
scription of blossoms and other standard components of the
matching algorithm are based on the presentation of Galil
et al. [11].

Definition 2.1 For any vertexv ∈ V , let λ(v) = ωv +∑
v∈Q ωQ. An edge(u, v) is feasibleif πuv ≤ d(u, v). It is

admissibleif πuv = d(u, v).

2.1. Blossoms

During the course of our algorithm, certain odd subsets
of V are designated asblossoms. The algorithm maintains
the property thatωQ > 0 for an odd subsetQ only if Q
is a blossom. The set of blossoms at any stage have the
following nestedstructure: For any two distinct blossoms
B andB′, eitherB ∩ B′ = ∅, or B ⊂ B′, or B′ ⊂ B.
Eachv ∈ V is a trivial blossom of size one. A non-trivial
blossomB is given by a sequence of blossomsB0, . . . , Br,
wherer = 2k, for k ≥ 1, and a sequence of admissible
edgesei = (ui−1, vi), for i = 1, . . . , r + 1, such that

1. ui, vi ∈ Bi mod(r+1).

2. For1 ≤ i ≤ r + 1, (ui−1, vi) ∈ M if i is even and
(ui−1, vi) 6∈ M if i is odd.

The blossomsB0, . . . , Br are referred to as thesubblos-
somsof B. A blossom that is not a subblossom of any other
blossom is called anoutermostblossom. Clearly, the out-
ermost blossoms induce a partition ofV . It can be shown
from the properties above that any blossomB contains an
odd number of vertices, and that the matchingM is maxi-
mal within B. The unique vertex ofB that is not matched
to any other vertex ofB is called itsbase. The base can also
be defined by induction on the structure of blossoms as fol-
lows. The base of a trivial blossomv is the vertexv itself.
The base of a blossomB whose subblossoms are given by
the sequenceB0, . . . , Br (as above) is the base ofB0.

An alternating path between verticesv0 and vr is a
sequence of admissible edgesei = (vi−1, vi), for i =
1, . . . , r, such that fori = 1, . . . , r − 1, ei ∈ M if and
only if ei+1 6∈ M . In other words, it is a path in which
alternate edges are in the matching. Analternating path be-
tween outermost blossomsB0 andBr is given by a sequence
of admissible edgesei = (ui−1, vi), for i = 1, . . . , r,
and a sequence of outermost blossomsB0, . . . , Br, where
ui, vi ∈ Bi, and fori = 1, . . . , r − 1, ei ∈ M if and only
if ei+1 6∈ M . We say that a vertexv is exposedif no edge
of the matchingM is incident onv; an outermost blossom
B is exposed if no edge of the matchingM is incident on
the base ofB. An alternating path between two exposed
vertices is called anaugmenting path.

Lemma 2.2 Let u and v be points in different outer blos-
soms. The edge(u, v) is feasible iffλ(u) + λ(v) ≤ d(u, v).
The edge(u, v) is admissible iffλ(u) + λ(v) = d(u, v).

Proof: Follows from the fact that ifu andv are in different
outer blossoms,πuv = λ(u) + λ(v). 2

We show later that throughout our algorithm,λ(v) ≥ 0
for any v ∈ V . (We actually show that the triangle in-
equality for distances forcesωv to be non-negative for any

v ∈ V .) We definedisk(v), thediskof vertexv, to be the
disk of radiusλ(v) centered atv. Sinceλ(v) ≥ 0, disk(v)
is well defined. Lemma 2.2 tells us that ifu and v are
vertices in different blossoms, feasibility of(u, v) means
thatdisk(u) anddisk(v) do not overlap (although they can
touch); admissibility of(u, v) meansdisk(u) anddisk(v)
do not overlap but touch. This geometric interpretation is
due to Junger and Pulleyblank [12]; see also Mirzaian [17].

2.2. The Divide-and-Conquer Algorithm

Let U ⊆ V be a subset of the given set of points, and let
|U | = m. We will describe our divide-and-conquer scheme
for the setU . In our algorithm, we are also specified a non-
negative real numberlimitU (u) for eachu ∈ U . (In the
beginning, we setlimitV (v) = ∞ for eachv ∈ V and call
the divide-and-conquer procedure withU set toV .) The
goal in the sub-problem forU is to compute a (not nec-
essarily perfect) matchingM of U , a set of blossoms in
U , and a set of dual variablesωu for eachu ∈ U , and
ωQ for each blossomQ (the dual variables of odd sets that
are not blossoms are assumed to be0), so that (1) the con-
ditionsEDGE-FEASIBILITY , POSITIVE-DUAL , MATCHING-
ADMISSIBILITY , andMAXIMALITY hold for U , and (2) in
addition, the following two conditions are also satisfied:
RADIUS-CONSTRAINT: For eachu ∈ U , λ(u) ≤

limitU (u).

EXPOSED-CONSTRAINT: For each exposed blossomQ
of U , there is aq ∈ Q such thatλ(q) = limitU (q).

Let us call a blossomQ of U constrainedif Q is exposed
and there is aq ∈ Q such thatλ(q) = limitU (q); we say
thatQ is unconstrained otherwise. Thus the last condition
says that every exposed blossom is constrained.

Separating circle. Let C be a circle in the plane, andU1

(resp.U2) be the subset ofU that liesinside(resp.outside)
the circleC. For eachu ∈ U , let β(u) denote the distance
from u to the circleC. We callC a separating circlefor U
if the following conditions hold:

1. min{|U1|, |U2|} ≥ |U |/4.

2. LetW ⊆ U be any subset of points such that the fam-
ily of disks {S(w, β(w))|w ∈ W} has the property
that any two disks in it have disjoint interiors. Then,
|W | = O(

√
m).

Using the techniques of Miller et al. [16] and Eppstein et
al. [10], we show that a separating circle forU exists and
can be computed inO(m) time.

Lemma 2.3 We can compute a separating circle for a given
setU of m points in the plane inO(m) time.

The divide step. If the set U contains morec points,
for some constantc, we find a separating circleC for
U that partitionsU into two non-empty setsU1 and U2

as above. We recurse on the setU1 with limitU1
(u) =

min{limitU (u), β(u)} for eachu ∈ U1. We recurse on the
setU2 with limitU2

(u) = min{limitU (u), β(u)} for each
u ∈ U2.

Suppose that the recursive calls return a matching, blos-
soms, and dual variables forU1 (resp.U2) satisfying the six
conditions forU1 (resp.U2). To begin the conquer step for
U , we obtain an initial matching, dual variables, and blos-
soms by combining the matching, dual variables, and blos-
soms forU1 andU2. At this stage, it is easy to see that all
the six conditions except theEXPOSED-CONSTRAINT are
satisfied forU . We sketch the proof for the most interesting
case, which isEDGE-FEASIBILITY for edge(u, u′) where
u ∈ U1 andu′ ∈ U2. We have

λ(u) ≤ limitU1
(u) = min{limitU (u), β(u)} ≤ β(u).

Similarly λ(u′) ≤ β(u′). Combining the inequalities, we
haveλ(u) + λ(u′) ≤ β(u) + β(u′). Sinceu andu′ lie
on opposite sides of the circleC, we can conclude that
β(u) + β(u′) ≤ d(u, u′). Thus,λ(u) + λ(u′) ≤ d(u, u′);
geometrically, what we have shown is thatdisk(u) and
disk(u′) do not overlap. Sinceu andu′ are obviously in
different outer blossoms, it follows from Lemma 2.2 that
(u, u′) is feasible.

Observe that theEXPOSED-CONSTRAINTcondition may
be violated for a blossomQ of U . The ‘conquer’ stage of
the divide-and-conquer algorithm forU eliminates the vi-
olations of theEXPOSED-CONSTRAINT, thus ‘solving’ the
sub-problem forU . The ‘conquer’ stage consists of a series
of phases; in each phase the number of exposed, uncon-
strained blossoms, is reduced by either one or two.

Base case. The base case for the divide-and-conquer is
when |U | ≤ c. To solve the base case, we initialize the
matching onU to be empty, and set all the dual variables to
be zero. The only blossoms ofU are the trivial blossoms,
and these are considered to be exposed and unconstrained.
We then execute the algorithm for the ‘conquer’ stage for
U , which we now describe.

2.3. The Conquer Stage

As we indicated, the conquer stage consists of
phases. Each phase begins with the current match-
ing M , a set of dual variables, and a set of blos-
soms. Some of the exposed blossoms are constrained, and
are calledc-blossoms. The algorithm always maintains
the five conditionsEDGE-FEASIBILITY , POSITIVE-DUAL ,
MATCHING-ADMISSIBILITY , MAXIMALITY , andRADIUS-
CONSTRAINT. In each phase, the number of exposed, un-

constrained blossoms is decreased by one or two. Thus,
each phase decreases the number of violations of the sixth
condition EXPOSED-CONSTRAINT, and so the algorithm
terminates after a finite number of phases.

During a phase, some unconstrained outer blossoms are
labelledass-blossoms andt-blossoms. (An outer blossom
is labelled as either ans-blossom or at-blossom, but not
both.) An unconstrained outer blossom which is not la-
belled is called afree blossom orf -blossom. (s-, t-, and
f - prefixes are only for unconstrained blossoms.) A vertex
is called ans-vertex,t-vertex,f -vertex, orc-vertex accord-
ing to whether it belongs, respectively, to ans-blossom,t-
blossom,f -blossom, orc-blossom. We letS, T , andF
denote, respectively, the set ofs-vertices,t-vertices, and
f -vertices. For anyv ∈ U , let b(v) denote the outermost
blossom containingv.

A phase is divided intoO(m) sub-phases. At the end of
each sub-phase, the following invariants hold. An exposed,
unconstrained blossom is always ans-blossom. For every
s- or t-blossomB, there is an alternating pathσ(B′, B) be-
tween an exposed, unconstrained blossomB′ andB. If B
is ans-blossom,σ(B′, B) has even length, that is, there are
an even number of edges in the alternating path. IfB is at-
blossom,σ(B′, B) has odd length. Thes- andt-blossoms,
together with the corresponding alternating paths, inducea
forest of rooted trees, a tree being rooted at each exposed,
unconstrained blossom. The trees are calledalternating
trees, and the forest is called analternating forest. (The
c-blossoms are not in the alternating forest.) The leaves of
the alternating trees are alwayss-blossoms.

For everyf -blossomB, there is anotherf -blossomC
such that there is an edge in matchingM between the bases
of B andC. That is,M induces a perfect matching on the
bases of all thef -blossoms.

At the start of the phase, we label each exposed, un-
constrained blossom as ans-blossom; every other uncon-
strained outer blossom is anf -blossom. A sub-phase con-
sists of the following loop, which is repeated until a termi-
nation condition for the phase is met. The above invariants
hold at the end of each iteration of the loop. Let

δ1 = min
Q a nontrivialt-blossom

ωQ,

δ2 = min
u∈S,v∈F

(d(u, v) − πuv),

δ3 = min
u,v∈S; b(u) 6=b(v)

(d(u, v) − πuv)/2,

δ4 = min
u∈S,v a c-vertex

(d(u, v) − πuv),

δ5 = min
u∈S

(limitU (u) − λ(u)),

and letδ = min{δ1, δ2, δ3, δ4, δ5}.
Dual change: Let ωQ be the dual variable corresponding

to the blossomQ. (If Q is a trivial blossom consisting of

a vertexv, thenωQ = ωv.) For eachs-blossomQ, we
increaseωQ by δ, and for eacht-blossomQ, we decrease
ωQ by δ. After the dual change, one ofδ1, δ2, δ3, δ4, or δ5

becomes zero. (In case of a tie, we pick an arbitararyδi that
is zero.) We will be terse about some of the following cases,
which are standard; see [11].

δ1 = 0: In this case, the dual variableωB corresponding
to a (non-trivial)t-blossomB becomes zero. We expandB,
that is, we stop regarding it as a blossom and make its sub-
blossoms outer blossoms. Some of these new outer blos-
soms becomes-blossoms, some becomet-blossoms, and
somef -blossoms.

δ2 = 0: In this case, an edge(u, v), which is now ad-
missible, between ans-vertexu and anf -vertexv has been
discovered. Twof -blossoms are added to the alternating
forest, one as at-blossom and the other as ans-blossom.

δ3 = 0: An edge(u, v) which is now admissible has
been discovered betweens-verticesu andv. Either a new
s-blossom is formed, or an alternating path between two
exposed, unconstraned blossoms is discovered. The latter
subcase ends the phase and is handled in a manner similar
to the case whereδ4 = 0.

δ4 = 0: An edge(u, v), which is now admissible, has
been discovered between ans-vertexu and ac-vertexv. Let
A (resp.B) be thes-blossom (resp.c-blossom) containing
u (resp.v). Let A′ be the exposed, unconstrained blossom
which is the root of the alternating tree containingA, and let
σ(A′, A) denote the corresponding even-length alternating
path betweenA′ andA. Note thatσ(A′, A), the edge(u, v),
and the blossomB together constitute an alternating path
between the exposed blossomsA′ andB. We expand this to
an alternating pathπ between the exposed bases ofA′ and
B. We augment the current matchingM by excluding all
edges ofM belonging toπ and including the other edges of
π. Note that the cardinality of the matchingM increases by
one, and the number of exposed, unconstrained blossoms
falls by one sinceA′ is now no longer exposed. We also
change appropriately the bases of all the blossoms through
which the augmenting path passes. This ends the current
phase of the algorithm.

δ5 = 0: In this case,λ(u) has increased tolimitU (u) for
ans-vertexu. Let A be thes-blossom containingu. Let A′

be the exposed, unconstrained blossom which is the root of
the alternating tree containingA, and letσ(A′, A) denote
the corresponding even-length alternating path betweenA′

andA. We expandσ(A′, A) to an even-length alternating
pathπ between the bases ofA′ andA. We alter the cur-
rent matchingM by excluding all edges ofM belonging
to π and including the other edges ofπ. We change ap-
propriately the bases of all the blossoms through which the
augmenting path passes. This ends the current phase of the
algorithm. We can show that the cardinality of the matching
M remains unchanged, and the number of exposed, uncon-

strained blossoms falls by one. Note that in the next phase,
A is constrained.

This completes the description of a phase. At the end
of the phase, we (recursively) expand all outer blossoms
whose dual variable is zero.

This also completes our description of the overall divide-
and-conquer scheme for min-cost perfect matching.

Lemma 2.4 The number of phases in the conquer step for
U is O(

√
m).

Proof: Let E denote the number of exposed, unconstrained
blossoms at the beginning of the conquer step. Since each
phase decreases the total number of exposed, unconstrained
blossoms by one or two, the number of phases is at most
|E|. Hence it suffices to show|E| = O(

√
m). To do this,

we will use the properties of the separating circleC. We
first argue that for eachQ ∈ E , there is aq ∈ Q such that
λ(q) = β(q). Assume, w.l.o.g., thatQ ⊆ U1. SinceQ
is exposed, the conditionEXPOSED-CONSTRAINT for U1

implies that there is aq ∈ Q such that

λ(q) = limitU1
(q) = min{limitU (q), β(q)}.

SinceQ is unconstrained at the beginning of the conquer
step forU , λ(q) < limitU (q). It follows thatλ(q) = β(q).

Consider the family of disks formed by picking for each
Q ∈ E a diskS(q, β(q)) such thatq ∈ Q andβ(q) = λ(q).
From Lemma 2.2 and the fact that theEDGE-FEASIBILITY

condition holds, we see that this family of disks have pair-
wise disjoint interiors. The second property of the separat-
ing circleC implies that there are onlyO(

√
m) disks in the

family. We conclude that|E| = O(
√

m). 2
For a fast implementation of one phase of the conquer

algorithm (or of Edmonds’ algorithm), we need a mecha-
nism to quickly compute whenδi becomes zero. As in a
phase of Edmonds’ algorithm, handlingδ2 andδ3 seem to
be the hard cases. We can easily maintainδ1 andδ5 in a
total of Õ(n) per phase, as this involves only the dual vari-
ables corresponding toO(n) blossoms. We can maintain
δ4 efficiently using a data-structure for answering closest
point queries [4]. Maintainingδ2 andδ3 using such an ap-
proach is more problematic because of the way the blos-
soms and the labels change. However, Vaidya [21] showed
that geometry can be exploited to maintainδi using a total of
Õ(m3/2) time per phase (in Edmonds’ algorithm), thus ob-
taining a running time of̃O(n5/2) for MCPM. In Section 3
(Lemma 3.9), we show that we can detect whenδi becomes
zero using a total ofO(m log5 m) time per phase (we can
show this for a phase in Edmonds’ algorithm as well). The
following theorem results from a careful implementation of
a phase, similar to the implementation of a phase of Ed-
monds’ algorithm described by Galil et al. [11] or Vaidya
[21].

Theorem 2.5 Suppose that we can detect whenδi becomes
zero using a total ofO(λ) time in a single phase of the con-
quer step forU . Then, one phase can be implemented in
O(m log m + λ) time, wherem = |U |.

Thus, a phase of the conquer step takesO(m log5 m)
time. As there areO(

√
m) phases, the conquer step takes

O(m3/2 log5 m) time. Since a separating circle forU can
be found inO(m) time, we conclude that the time for solv-
ing the sub-problem forU , not counting the time for solving
the recursive sub-problemsU1 andU2, is O(m3/2 log5 m).
Since|U1|, |U2| ≥ |U |/4 (first property of separating cir-
cle), a standard analysis tells us that the overall time needed
to solve the sub-problem forU is O(m3/2 log5 m). Putting
everything together, we conclude:

Theorem 2.6 A min-cost perfect matching of a setV of 2n
points in the plane can be computed inO(n3/2 log5 n) time.

3. Implementing a Phase

In this section, we describe an efficient algorithm for im-
plementing a single phase of the conquer step forU . We
begin by making some useful observations about our algo-
rithm. Some other geometric observations needed for the
correctness of our algorithm are presented in the appendix.
The following lemma uses the triangle inequality for dis-
tances in the Euclidean metric.

Lemma 3.1 For any vertexv ∈ V , ωv ≥ 0 at all stages in
the algorithm. Consequently,λ(v) ≥ 0, for all v ∈ V .

Definition 3.2 The time at any point in a single phase of
the algorithm is the sum

∑
δ of all the dual changes made

by the algorithm since the beginning of the phase. That is,
the time at the beginning of the phase is zero, and each dual
change step increments the time byδ.

Suppose a dual change step increments the time fromt1
to t1 + δ. For anyt, t1 < t < t1 + δ, we define the value of
a dual variableµ at timet by linear interpolation between
the values ofµ at t1 andt1 + δ. Within a single phase, the
dual variables, and the quantities that depend on them, can
now be regarded as functions of time. Hence, we will de-
note byµ[t] the value of a dual variableµ at timet of the
algorithm. We will do the same for quantities that depend
on the dual variables. The following observation depends
on the fact that the algorithm increases the dual variables
corresponding to thes-blossoms, decreases the dual vari-
ables corresponding to thet-blossoms, and does not change
the dual variables corresponding to thef -blossoms. It also
expresses a property of the algorithm’s labelling scheme.

Fact 3.3 During a phase, a vertexv may change its sta-
tus from anf -vertex to at-vertex (and vice versa) a num-
ber of times. In this part of the phase,λ(v) can only de-
crease. However, oncev becomes ans-vertex, it remains an
s-vertex until the end of the phase. In this part of the phase,
λ(v) can only increase. Ifv belongs to ac-blossom,λ(v)
does not change at all during the phase.

Recall that we defineddisk(v) to be the disk of radius
λ(v) centered atv. Sinceλ(v) ≥ 0 (Lemma 3.1),disk(v) is
well defined. Lemma 2.2 tells us that ifu andv are vertices
in different blossoms,disk(u) anddisk(v) do not overlap
(although they can touch). Thus, the question of detecting
whenδ2, δ3, or δ4 becomes zero (as a consequence of dual
changes) boils down to detecting when disks of points in
different blossoms touch.

3.1. Candidates

To detect whenδ2, δ3, orδ4 becomes zero during a phase,
we could ‘monitor’ all the edges(u, v) and detect when
disk(u) anddisk(v) touch. In this section, we show that it is
sufficient to monitor a certain set of̃O(n) candidateedges.
This is shown in Lemma 3.8, the main result of this sec-
tion. To prove this result, we use the properties established
above. Before we can specify how the candidate edges are
generated, we need to introduce a certain cover of the set of
edges.

A semi-separated decomposition. Let C(p, r) denote
the closure ofR2 − S(p, r), whereS(p, r) is the disk of
radiusr centered atp. We say that two point setsA andB
aresemi-separatedif there exists a pointp and a real num-
berr ≥ 0 so that

1. A ⊆ S(p, r), and

2. B ⊆ C(p, sr). Here,s is theseparation constant, as-
sumed throughout to be fixed to a constant greater than
1. (For this paper, we takes = 9.)

A set{(A1, B1), . . . , (Ak, Bk)} of pairs is said to be a
semi-separated decomposition(SSD) ofU if

1. For any edge(u, v) of G(U), there is a pair(Ai, Bi)
such that eitheru ∈ Ai andv ∈ Bi, or v ∈ Ai and
u ∈ Bi.

2. Ai andBi are semi-separated, for alli = 1, . . . , k. Let
pi denote the point andri the radius such thatAi ⊆
S(pi, ri), andB ⊆ C(pi, sri).

For the pair(Ai, Bi) of the SSD, we will refer topi as the
centerandri theradiuscorresponding to(Ai, Bi). Thesize
of the semi-separated decomposition is

∑
i(|Ai| + |Bi|).

Note that the SSD is similar to the well-separated decom-
position of Callahan and Kosaraju [7]. In fact, any well-
separated decomposition ofU is an SSD ofU . Our weaker
notion of an SSD is motivated by the fact that the size (ac-
cording to our definition) of any well-separated decomposi-
tion of certainm-point isΩ(m2). (See [7].) In contrast, we
develop a scheme to construct an SSD ofU whose size is
O(m log4 m).

Lemma 3.4 Given a setU of m points in the plane, we can
construct, inO(m log5 m) time, an SSD ofU whose size is
O(m log4 m).

Let θ = 2π/h, whereh is a sufficiently large integer
constant. We refine the SSD as follows. Assume that for
the semi-separated pair(Ai, Bi), Ai ⊆ S(pi, r) andBi ⊆
C(pi, sr), for some pointpi andr > 1. We subdivide the
plane intoh conesc1, . . . , ch such that eachcj haspi has
its apex and an angular opening ofθ. Let D(j) = Bi ∩ cj

denote the set of points inBi that are contained in the cone
cj . We replace each pair(Ai, Bi) in the original SSD by
the set of pairs(Ai, D(j)), for 1 ≤ j ≤ h to obtain the
refined semi-separated decomposition(RSSD) ofU . See
Figure 1 at the beginning of the appendix for an illustration.
We define the center and radius of(Ai, D(j)), for 1 ≤ j ≤
h, to be the center and radius of(Ai, Bi). We will refer to
θ as theangular constantof our RSSD. (In this paper, we
chooseθ = 1/18 radians.) In the description that follows,
we assume that we have computed an RSSD ofU whose
size isO(m log4 m). Using the algorithm of Lemma 3.4,
we can compute the RSSD inO(m log5 m) time.

D(1)

D(2)

D(3)D(4)

D(5)

D(6)

D(7) D(8)

Bi

Ai

Ai

Figure 1: A pair(Ai, Bi) in the SSD; and its refinement to
get the RSSD.

The event queue. We do not know all the candidate edges
at the beginning of the phase itself. Rather, we generate the
candidates as the phase progresses, when certain ‘events’
occur. We maintain anevent-queueto detect these events.

Definition3.5 Let {(A1, B1), . . . , (Ak, Bk)} be an RSSD
of the given set of pointsV . Consider a pair(Ai, Bi) with
centerpi and radiusri. We pick an arbitrary pointai ∈

Ai as therepresentativeof Ai. Let bi ∈ Bi be the point
in Bi that is closest topi, and letℓi = d(pi, bi) denote
the Euclidean distance betweenbi andpi. We letbi be the
representative ofBi.

There can be two entries in the event queue correspond-
ing to the pair(Ai, Bi). The representativeai is present if
ai is ans-vertex andλ(ai) ≤ 2ri. We define thepriority
of ai to be2ri − λ(ai). The representativebi is present if
bi is ans-vertex andλ(bi) ≤ θℓi + 3ri; here,θ is the an-
gular constant of the RSSD. We define the priority ofbi to
beθℓi + 3ri − λ(bi). (The entry corresponding toai (resp.
bi) is there to detect the event whenλ(ai) increases to2ri

(resp. λ(bi) increases toθℓi + 3ri).) Note that the prior-
ities of all the entries in the event queue are non-negative.
Also, the priorities decrease uniformly with time, because
the disks ofs-vertices grow uniformly with time. When the
priority of an entry becomes zero, it is removed from the
event queue.

Generation of candidates. We now describe how the
candidates are generated during a phase. At the begin-
ning of the phase, we use the dual variables to compute
λ(v), for each pointv ∈ V . We generate an initial set
of candidate edges by examining each pair(Ai, Bi) of the
RSSD as follows. Ifλ(ai) ≥ 2ri, we execute the pro-
cedureGenerate-candidates(Ai, Bi) described be-
low. If λ(bi) ≥ θℓi + 3ri, we execute the procedure
Generate-candidates(Bi, Ai).

As mentioned before, the other candidates are generated
as the phase unfolds, when certain events are triggered.
Such an event occurs when the priority of some element
in the event-queue becomes zero (as a consequence of a
change in the dual variables). When this happens, the el-
ement is removed from the event queue. Suppose the el-
ement corresponds to some pair(Ai, Bi) of the RSSD of
U . If the element is the representative ofAi (resp. Bi),
we first computeλ(a), for eacha ∈ Ai (resp. λ(b), for
eachb ∈ Bi). We then generate a set of candidates by
calling the procedureGenerate-candidates(Ai, Bi)
(resp. Generate-candidates(Bi, Ai)). To complete
the description of our scheme for candidate generation, we
now describe the procedureGenerate-candidates.

Definition 3.6 For any pointp and anyv ∈ V , the
weighted distance ofp from v, denoted wd(v, p), equals
d(v, p) − λ(v).

Generate-candidates(X, Y): We assume thatλ(x)
is known for eachx ∈ X . For eachy ∈ Y , we find
the ‘closest point’ inX , that is, x ∈ X that minimizes
wd(x, y) = d(x, y) − λ(x), and add(x, y) to the list
of candidate edges. For an efficient implementation, we

compute, inO(|X | log |X |) time, the weighted Voronoi-
diagram ofX , where the weight of an elementx ∈ X is
λ(x). (See [4] for a survey of results on weighted Voronoi
diagrams.) For anyy, the ‘closest point’ inX can be
found using this data-structure inO(log |X |) time. Hence,
Generate-candidates(X, Y) can be implemented in
O((|X | + |Y |) log |X |) time.

Using Fact 3.3, we can show that the number of candi-
date edges generated per phase is proportional to the size
of the RSSD, which isO(m log4 m). The time spent in
candidate generation and in maintaining the event-queue is
O(m log5 m).

Definition 3.7 Let C(t) denote the set of candidate edges
generated before timet in the phase. At any timet, we letδ∗2
be the minimum of(d(u, v)−πuv) over all candidate edges
(u, v) ∈ C(t) such thatu ∈ S andv ∈ F . We let δ∗3 be
the minimum of(d(u, v)− πuv)/2 over all candidate edges
(u, v) ∈ C(t) such thatu andv ares-vertices not in the
same blossom. We letδ∗4 be the minimum of(d(u, v)−πuv)
over all candidate edges(u, v) ∈ C(t) such thatu is ans-
vertex andv is ac-vertex.

Candidate edges are sufficient. Let us suppose that at
some timet during the phase, there are two verticesu and
v in different maximal blossomsM and N , respectively,
such thatπuv = d(u, v), that is,disk(u) anddisk(v) touch.
Then the following lemma, proved in Section A in the ap-
pendix, says that the edge(u, v) is in C(t), the set of candi-
date edges generated before timet. (If more that one pair of
disks from blossomsM andN touch, the lemma guarantees
that the edge corresponding to at least one pair is inC(t).)

The main consequence of the lemma is that at any time
t, δ2 = 0 ⇔ δ∗2 = 0, δ3 = 0 ⇔ δ∗3 = 0, andδ4 = 0 ⇔
δ∗4 = 0. So it is sufficient for our algorithm to maintainδ∗2 ,
δ∗3 , andδ∗4 instead ofδ2, δ3 andδ4.

Lemma 3.8 Suppose that at some timet′ during the phase,
there are two verticesu andv in different maximal blossoms
M andN , repectively, such thatπuv = d(u, v). Then there
is a candidate edge(x, y) ∈ C(t′) such thatx ∈ M , y ∈ N ,
andπxy[t′] = d(x, y).

3.2. Data structures

In their algorithm for matching in general graphs, Galil
et al. [11] give a method for maintainingδ2 andδ3 using
a total ofO(|E| log |V |) time per phase, where|V | and|E|
are, respectively, the number of vertices and edges in the
graph. Using their approach along with our procedure for
generating candidate edges, we can maintainδ∗2 , δ∗3 , andδ∗4
using a total ofO(m log5 m) time per phase. We omit here
the other details of implementing a phase; many of these are
quite similar to their approach.

Lemma 3.9 During a single phase of the conquer step for
a setU of m points, we can detect whenδi becomes zero
using a total ofO(m log5 m) time.

References

[1] P. K. Agarwal, A. Efrat, and M. Sharir. Vertical decompo-
sition of shallow levels in3-dimensional arrangements and
its applications. InProc. 11th Annu. ACM Sympos. Comput.
Geom., pages 39–50, 1995.

[2] S. G. Akl. A note on Euclidean matchings, triangulations,
and spanning trees.Journal of Combinatorics, Information
and System Sciences, 8(3):169–174, 1983.

[3] S. Arora. Nearly linear time approximation schemes for Eu-
clidean TSP and other geometric problems. InProc. 38th
Annu. IEEE Sympos. Found. Comput. Sci., pages 554–563,
1997.

[4] F. Aurenhammer. Voronoi diagrams: A survey of a fun-
damental geometric data structure.ACM Comput. Surv.,
23:345–405, 1991.

[5] D. Avis. A survey of heuristics for the weighted matching
problem.Networks, 13:475–493, 1983.

[6] S. Buss and P. Yianilos. Linear andO(n log n) time
minimum-cost matching algorithms for quasi-convex tours.
In Proc. 5th ACM-SIAM Sympos. Discrete Algorithms, pages
65–76, 1994.

[7] P. B. Callahan and S. R. Kosaraju. A decomposition of
multi-dimensional point-sets with applications tok-nearest-
neighbors andn-body potential fields. InProc. 24th Annu.
ACM Sympos. Theory Comput., pages 546–556, 1992.

[8] J. Edmonds. Maximum matching and a polyhedron with
(0,1) vertices. J. Res. National Bureau of Standards,
69B:125–130, 1965.

[9] J. Edmonds and E. J. Johnson. Matching, euler tours, and
the chinese postman.Mathematical Programming, 5:88–
124, 1973.

[10] D. Eppstein, G. L. Miller, and S.-H. Teng. A deterministic
linear time algorithm for geometric separators and its appli-
cations. InProc. 9th Annu. ACM Sympos. Comput. Geom.,
pages 99–108, 1993.

[11] Z. Galil, S. Micali, and H. N. Gabow. Priority queues with
variable priority and ano(ev log v) algorithm for finding
a maximal weighted matching in general graphs. InProc.
22nd Annual IEEE Symposium on Foundations of Computer
Science, pages 255–261, 1982.

[12] M. Jünger and W. Pulleyblank. New primal and dual match-
ing heuristics.Algorithmica, 13(4):357–380, 1995.

[13] E. Lawler.Combinatorial Optimization: Networks and Ma-
troids. Holt, Rinehart & Winston, New York, 1976.

[14] L. Lovasz and M. D. Plummer.Matching Theory, volume 29
of Ann. Discrete Math.North-Holland, 1986.

[15] O. Marcotte and S. Suri. Fast matching algorithms for points
on a polygon. InProc. 30th Annu. IEEE Sympos. Found.
Comput. Sci., pages 60–65, 1989.

[16] G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis.
Geometric separators for finite element meshes.SIAM J.
Sci. Comput., 19:364–386, 1998.

[17] A. Mirzaian. Minimum weight euclidean matching and
weighted relative neighbourhood graphs.3rd Worksh. Al-
gorithms and Data Structures, LNCS, 709:506–517, 1993.

[18] C. H. Papadimitriou and K. Steiglitz.Combinatorial Opti-
mization: Algorithms and Complexity. Prentice Hall, Engle-
wood Cliffs, NJ, 1982.

[19] F. P. Preparata and M. I. Shamos.Computational Geometry:
An Introduction. Springer-Verlag, New York, NY, 1985.

[20] P. M. Vaidya. Approximate minimum weight matching on
points in k-dimensional space.Algorithmica, 4:569–583,
1989.

[21] P. M. Vaidya. Geometry helps in matching.SIAM J. Com-
put., 18:1201–1225, 1989.

[22] A. C. Yao. On constructing minimum spanning trees ink-
dimensional spaces and related problems.SIAM J. Comput.,
11:721–736, 1982.

A. Proof of Lemma 3.8

Lemma 3.8 Suppose that at some timet′ during the
phase, there are two verticesu andv in different maximal
blossomsM andN , repectively, such thatπuv = d(u, v).
Then there is a candidate edge(x, y) ∈ C(t′) such that
x ∈ M , y ∈ N , andπxy[t′] = d(x, y).

Before proving the lemma, we state some additional
properties of the matching algorithm that are needed in the
proof. The following is a useful corollary of Lemma 2.2 and
Lemma 3.1.

Corollary A.1 For anyu, v ∈ U , if d(u, v) < λ(u) in the
conquer step forU , thenu and v are in the same outer
blossom.

Corollary A.2 For anyu, v ∈ U , λ(u) ≤ λ(v)+d(u, v) in
the conquer step forU .

Proof: FromEDGE-FEASIBILITY , we have

λ(u) + λ(v) ≤ d(u, v) + 2
∑

u,v∈Q

ωQ.

Since all dual variables are non-negative,
∑

u,v∈Q

ωQ ≤
∑

v∈Q

ωQ ≤ λ(v).

Combining the two inequalities, we get the statement of
the corollary. 2

We will now state a useful lemma about a single phase
in the conquer step forU .

Lemma A.3 Let u andv be two vertices such thatb(u) =
b(v) at all times betweent′′ andt′ in a phase. Then for any
t, t′′ ≤ t ≤ t′,

λ(u)[t] − λ(v)[t] = λ(u)[t′′] − λ(v)[t′′].

Proof: The lemma follows from the fact that ifu andv are
vertices in the same blossom, the dual change step changes
λ(u) andλ(v) by the same amount. 2

We are now ready for the proof of Lemma 3.8.

Proof of Lemma 3.8: There is a pair(A, B) in the RSSD
of the pointsV such that eitheru ∈ A andv ∈ B or v ∈ A
andu ∈ B. Assume, w.l.o.g., thatu ∈ A andv ∈ B. Let
p andr be the center and radius corresponding to(A, B).
Let a andb be the representatives ofA andB, respectively.
Note thatA is contained in a diskS(p, r) that is centered at
p and has radiusr. B is contained in a coneK with apex
at p and whose angular opening isθ, the angular constant
of the RSSD. Note thatℓ = d(p, b) ≥ sr, wheres is the
separation constant, andd(p, b′) ≥ ℓ for anyb′ ∈ B.

Sinceπuv = d(u, v), andu andv lie in different maxi-
mal blossoms, it follows from Lemma 2.2 that

λ(u)[t′] + λ(v)[t′] = d(u, v) (1)

To prove the lemma, we consider two cases: either
λ(u)[t′] ≥ 4r, or λ(u)[t′] < 4r.

Case 1: λ(u)[t′] ≥ 4r. Sinced(u, a) ≤ 2r, we can con-
clude from Corollary A.2 thatλ(a)[t′] ≥ 2r. Let t′′ ≤ t′ be
the earliest time such thatλ(a) ≥ 2r at all times between
t′′ andt′. (Possibly,t′′ = 0.) From Corollary A.1, we can
conclude that at any given time betweent′′ andt′, all points
in A belong to the same maximal blossom.

At time t′′, our procedure for generating candidate
edges finds ana′ ∈ A that minimizes wd(c, v), over
all c ∈ A, and introduces(a′, v) as a candidate edge.
Thus, wd(a′, v)[t′′] ≤ wd(u, v)[t′′]. This implies, by
Lemma A.3, that wd(a′, v)[t′] ≤ wd(u, v)[t′]. We
conclude thatd(a′, v) − πa′v[t

′] ≤ d(u, v) − πuv[t′].
Sinceπuv[t′] = d(u, v), EDGE-FEASIBILITY implies that
πa′v[t

′] = d(a′, v). Hence the lemma holds withx = a′

andy = v.

Case 2: λ(u)[t′] < 4r. In this case, the lemma follows
from a series of claims, whose proofs we provide later.
From the triangle inequality,

d(u, v) + d(u, p) ≥ d(p, v).

Using equation 1 and the fact thatu ∈ A,

λ(u)[t′] + λ(v)[t′] + r ≥ d(p, v).

Sinceλ(u)[t′] < 4r, we obtain

λ(v)[t′] ≥ d(p, v) − 5r.

Let pr(v) denote the ‘projection’ ofv onto the disk
S(p, ℓ), that is, the point of intersection of the segmentpv
with the circle of radiusℓ centered atp. We can write

d(p, v) = d(p, pr(v)) + d(pr(v), v) = ℓ + d(pr(v), v).

SinceB lies within the coneK with apex atp and angular
openingθ, d(pr(v), b) ≤ θℓ.

Claim A.4 At timet′, (i) b andv are in the same blossom,
and (ii) λ(b) ≥ θℓ + 3r.

Let t′′ be the earliest time such thatλ(b) ≥ θℓ+3r at all
times betweent′′ andt′. (Possibly,t′′ = 0.) At time t′′, our
procedure for generating candidate edges finds ab′ ∈ B that
minimizes wd(c, u) over all c ∈ B, and introduces(u, b′)
as a candidate edge.

Claim A.5 The pointsb′ andv belong to the same blossom
at all times betweent′′ andt′.

We have wd(b′, u)[t′′] ≤ wd(v, u)[t′′]. By Lemma A.3,
this implies that wd(b′, u)[t′] ≤ wd(v′u)[t′]. We
conclude thatd(b′, u) − πb′u[t′] ≤ d(v, u) − πvu[t′].
Sinceπvu[t′] = d(v, u), EDGE-FEASIBILITY implies that
πb′u[t′] = d(b′, u). Hence the lemma holds withx = u and
y = b′. 2
Proof of Claim A.4. We have

λ(v) − d(v, b)
≥ (d(p, v) − 5r) − (d(v, pr(v)) + d(pr(v), b))
≥ (ℓ + d(v, pr(v)) − 5r) − (d(v, pr(v)) + θℓ)
= ℓ(1 − θ) − 5r
≥ θℓ + 3r,

sinceθ = 1/18 andℓ ≥ 9r. Sinceθℓ + 3r > 0, part
(i) of the claim follows from Corollary A.1. Part (ii) of the
claim follows from Corollary A.2. 2

Proof of Claim A.5. We prove the claim in two parts: (1)
At any time betweent′′ andt′, the pointsb andv belong to
the same blossom, and (2) at any time betweent′′ and t′,
the pointsb′ andb belong to the same blossom. Clearly, the
claim is proved if we prove (1) and (2).

We first argue that

wd(v, pr(v))[t′] − wd(b, pr(v))[t′] ≤ 2r. (2)

Assume the contrary, that is,d(pr(v), v) − λ(v)[t′] >
d(pr(v), b)[t′] − λ(b) + 2r. Then

wd(v, u)[t′]
= d(u, v) − λ(v)[t′]
≥ d(p, v) − d(p, u) − λ(v)[t′]
= d(p, pr(v)) + d(pr(v), v) − d(p, u) − λ(v)[t′]
= d(p, pr(v)) − d(p, u) + d(pr(v), v) − λ(v)[t′]
> d(p, pr(v)) − d(p, u) + d(pr(v), b) − λ(b)[t′] + 2r
≥ d(p, pr(v)) − d(p, u) + d(pr(v), b) − λ(b)[t′]

+2d(p, u)
= d(p, pr(v)) + d(p, u) + d(pr(v), b) − λ(b)[t′]
≥ d(u, b) − λ(b)[t′]
= wd(b, u)[t′].

This is a contradiction, since the setting of the lemma and
the fact thatb andv belong to the same blossom att′ (part
(i) of Claim A.4) imply that wd(v, u)[t′] ≤ wd(b, u)[t′].

We are now ready to prove part (1) of the claim. Assume
that part (1) of the claim is false, that is, there is a time
t, wheret′′ ≤ t ≤ t′, so thatb andv belong to different
blossoms at timet. Also suppose thatt is the largest such
time. This means that at any time aftert and uptot′, b and
v belong to the same blossom. From the inequality 2 and
Lemma A.3, we conclude that

wd(v, pr(v))[t] − wd(b, pr(v))[t] ≤ 2r. (3)

Now, sinced(pr(v), b) ≤ θℓ, andλ(b)[t] ≥ θℓ + 3r at all
times, wd(b, pr(v))[t] ≤ −3r. Using inequality 3, we con-
clude that wd(v, pr(v))[t] ≤ −r.

Since both wd(v, pr(v))[t] and wd(b, pr(v))[t] are neg-
ative, we haved(pr(v), v) < λ(v)[t], andd(pr(v), b) <
λ(b)[t]. By Lemma 2.2,v andb belong to the same blos-
som at timet. This contradicts the assumption thatb and
v were in different blossoms at timet. This completes the
proof of part (1).

To prove part (2), we first argue that wd(pr(b′), b′)[t′′]−
wd(pr(b′), b)[t′′] ≤ 2r. Assuming the contrary, we get
wd(b′, u)[t′′] > wd(b, u)[t′′] as above. This contradicts the
fact that(b′, u) was chosen as the candidate edge at time
t′′. To complete the proof of part (2), we proceed exactly as
in the proof of part (1). Only, we proceed in the ‘opposite’
direction, fromt′′ to t′. 2

