Algorithms: Lecture for 12/05

Kasturi Varadarajan

Department of Computer Science, University of lowa

December 5, 2010



An Efficient Certifier

> Informally, an efficient certifier for decision problem X is a
foolproof mechanism for a computationally bounded entity
that a computationally unbounded entity (a prover) can use
to convince the certifier of yes-instances of X.

Let us now move to the formal definition starting from this
informal one. Keep an example of X in mind, say 3CNF-SAT.



Mechanism

> The mechanism is an algorithm B that takes as two inputs s
and t.

» The first input is always an instance s of X.
» The second input t is any proof string

» Think of the action of B as: does the proof t convince me
that s is a yes-instance of X7



Foolproof Mechanism

» If s is a no-instance of X, then for every string t, B(s, t) must
output “No”.

This is a requirement of B that captures the aspect of being
foolproof.



Yes Instances

» If s is a yes-instance of X, then for some string t, B(s, t)
must output “Yes”.

This is the feature of the mechanism that the prover can use to
convince the certifier that s is a yes-instance. It simply provides
the correct proof/witness t.



Computationally Bounded Certifier

» B must run in time that is polynomial in the sum of the
lengths (sizes) of s and t.

> If s is a yes-instance of X, then for some string t whose length

is bounded by a polynomial in the length of s, B(s, t) must
output “Yes".



The Formal Definition

An efficient certifier for a decision problem X is a polynomial-time
algorithm that takes two inputs s and t and outputs “Yes/No",
with the property that

» If s is a no-instance of X, then B(s, t) outputs “No" for every
t.
> if s is a yes-instance of X, there is a t whose length is

bounded by a polynomial in the length of s, for which B(s, t)
outputs “Yes”.



Efficient certifier for 3SCNF-SAT

Our certifier B works as follows: its first input s is a
3CNF-formula; if this has n variables, it
> outputs “Yes” if t is an n-bit 0-1 string that is a satisfying
assignment for formula s.
» outputs “No” if t is not an n-bit 0-1 string that is a satisfying
assignment for s.



A Bogus certifier for 3CNF-SAT

Our certifier, on input 3CNF-formula s, and t,
> outputs “Yes" if t is the string consisting of the bit “1".
» outputs “No" otherwise.

Why is this not an efficient certifier?



Efficient Certifier for Independent Set

Our certifier, on input s = (G, k) and t,

» outputs “Yes" if t encodes a set of vertices in the graph G,
and this set is an independent set and has size at least k.

» outputs “No"” otherwise.



Problems with (apparently) No Efficient Certifiers

Consider the problem 3CNF-UNSAT:

» yes-instances are 3CNF formulae that are not satisfiable (have
no satisfying assignment)

» no-instances are 3CNF formulae that are satisfiable (have at
least one satisfying assignment)



Efficiently Solvable Problems have Efficient Certifiers

Let X be a decision problem that has a poly-time algorithm A.
Then an efficient verifer for B is:

» On inputs s and t, B ignores t, runs A on s and outputs A(s).



P and NP

v

P is the set of all decision problems that have poly-time
algorithms.

Thus, decision versions of weighted interval scheduling,
weighted interval covering, and shortest path are in P.

NP is the set of all decision problems that have efficient
certifiers.

So NP includes not only the above 3 problems and the other
known to be in in P, but also ...

3CNF-SAT, Independent Set, Colorability, Set Cover, and
many other problems we've not looked at.



The P = NP question

» We know that P C NP, but

> Is NP = P? That is, are there problems that have efficient
certifiers but no efficient algorithms?



The P = NP question




NP-Complete Problems

A decision problem X is said to be NP-complete if
1. X € NP, that is, X has an efficient certifier

2. For every decision problem Y € NP, Y <p X (Y is
polynomial time reducible to X)



NP-Complete Problems

Claim: Suppose X is NP-complete. Then X € P implies NP C P.

» Proof: Suppose Y € NP. Since X is NP-complete, we know
Y <p X. Since Y <p X and X € P, we have Y € P.

This claim explains the sense in which NP-complete problems are
the hardest ones in NP.



If X is NP-Complete:




If X is NP-Complete, this can't hold:



NP-Completeness

> Notice that if X and Y are two NP-complete problems, then
we have X <p Y and Y <p X

» Either both problems are in P, or neither is.

» So, all NP-complete problems share the same fate, though we
don’t know what that fate is.



Excuse Me

That's all very well, but are there actual problems that are
NP-complete?



3CNF-SAT is NP-Complete

Theorem: 3CNF-SAT is NP-complete.
To show this, we need to show two things:

» 3CNF-SAT is in NP. We already did that.

» Forany Y € NP, Y <p 3CNF-SAT. We won't show this. It
has been shown to be true by others, and we'll just assume it,
at least for now.



INDEPENDENT SET is NP-Complete

» We need to show INDEPENDENT SET is in NP. We already
did that.

» We need to show that for any Y € NP,
Y <p INDEPENDENT SET. To do this, we'll simply show
3CNF-SAT <p INDEPENDENT SET.

» This suffices. Why? Let Y € NP. Since 3CNF-SAT is
NP-complete, Y <p 3CNF-SAT. Since
3CNF-SAT <p INDEPENDENT SET, and poly-time
reducibility is transitive, Y <p INDEPENDENT SET.



NP-Completeness Recipe

In general, to show a brand new problem X to be NP-complete, we
will
1. show that X € NP. This is typically easy (at least for the
homework problems).

2. choose an appropriate known NP-complete problem Z, and
show that Z <p X. (Not X <p Z !ll) This is less easy, but
one can become good at it (that's the point of the
homework).



3CNF-SAT <p INDEPENDENT SET

» We need an algorithm, A, that takes as input an instance ¢ of
3CNF-SAT (¢ is a 3CNF-formula)

» A must output an instance A(¢) of INDEPENDENT SET
» A must guarantee that ¢ is a Yes-instance of 3CNF-SAT if
and only if A(¢) is a Yes-instance of INDEPENDENT SET

Imagine some ¢ = (x1 VX2 V x3), (x2 V X3 V xa), . .., with m clauses
and n variables.



3CNF-SAT <p INDEPENDENT SET

3CNF-SAT INDEPENDENT SET

o = - = = 9ace



3CNF-SAT <p INDEPENDENT SET

NO

3CNF-SAT INDEPENDENT SET



The Algorithm A

» Imagine some input ¢ = (x1 V2 V x3), (%2 VX3V xa), ..., with
m clauses and n variables.

» For each clause, A creates 3 vertices, labelled by
corresponding literals, and adds edges between them

X4
X3

X1 Xo



The Algorithm A

» A adds an edge between two vertices in different clauses if
they are labelled by a literal and its complement literal

X4
X3

X1 Xo



The Algorithm A

» This completes the graph construction.

» The INDEPENDENT SET instance A(¢) that is generated is:
Does this graph have an independent set of size at least m
(the number of clauses in ¢)



Yes mapped to Yes

» Suppose ¢ was a satisfiable instance

» We need to argue that the graph constructed has an
independent set of size m:

» Fix a satisfying assignment for ¢.

» It makes true at least one literal in each clause. Pick one such
literal from each clause.

» The corresponding vertices in the graph form an independent
set of size m.



No mapped to No

» Suppose ¢ was not a satisfiable instance

» We need to argue that the graph constructed does not have
an independent set of size m.

» To do this, we'll argue: if the graph does have an independent
set of size m, then ¢ is satisfiable.



No mapped to No

> Suppose the graph does have an independent set of size m.

» The independent set cannot have two vertices from the same
“clause”

» So the independent set has one vertex from each “clause”.
> Take the labels of these vertices

» These literals do not include both x; and X; for any i.

> Thus there is an assignment that makes these literals true.

» This assignment makes every clause true. Thus, ¢ is
satisfiable.



