Limits of Computation (CS:4340:0001 or 22C:131:001)

Kasturi Varadarajan

1 Proving Languages to be Undecidable using Reductions

Given a language $L \subseteq \{0,1\}^*$, we can define a corresponding function $f_L : \{0,1\}^* \to \{0,1\}$: let $f_L(x) = 1$ if $x \in L$ and $f_L(x) = 0$ if $x \notin L$.

Going the other way around, let $f: \{0,1\}^* \to \{0,1\}^*$ be a function. We can define the corresponding language $L_f = \{x \in \{0,1\}^* \mid f(x) = 1\}$.

We say that Turing machine M decides a language L to mean that M computes the corresponding function f_L .

Reducibility. Let L_1 and L_2 be two languages. We say that L_1 is many-one reducible to L_2 if there is an algorithm (i.e., a Turing Machine) A that halts on every input $x \in \{0, 1\}^*$, and has the property that for any $x \in \{0, 1\}^*$,

$$x \in L_1 \Leftrightarrow A(x) \in L_2$$
.

This is similar to the Karp-reducibility that we use to show NP-completeness of problems, except that we do not require that the algorithm A run in polynomial time.

Claim 1. Suppose that L_1 is many-one reducible to L_2 , and that L_2 is decidable. Then L_1 is decidable as well.

Proof. Let A be the algorithm (TM) that "reduces" L_1 to L_2 and M_{L_2} be the algorithm (TM) that decides L_2 . We describe a TM M_{L_1} that decides L_1 .

On input $x \in \{0,1\}^*$, M_{L_1} runs A on x to get A(x) and then runs M_{L_2} on A(x). It outputs $M_{L_2}(A(x))$. We observe:

$$x \in L_1 \implies A(x) \in L_2 \implies M_{L_2}(A(x)) = 1 \implies M_{L_1}(x) = 1;$$

 $x \notin L_2 \implies A(x) \notin L_2 \implies M_{L_2}(A(x)) = 0 \implies M_{L_1}(x) = 0.$

Thus M_{L_1} decides L_1 .

Hello-World. We define a function Hello-World: $\{0,1\}^* \to \{0,1\}$. Let Hello-World(α) = 1 if M_{α} , when input the empty string, halts and outputs the string 10101010; let Hello-World(α) = 0 otherwise. Abusing notation slightly, let Hello-World denote the language corresponding to this function as well.

Claim 2. Hello-World is undecidable.

Proof. We show that Halt is many-one reducible to Hello-World. By Claim 1, this is all we need to show.

Recall that $\text{Halt} = \{ \langle \alpha, x \rangle \mid M_{\alpha} \text{ halts on } x \}$. Given $\langle \alpha, x \rangle$, our reduction algorithm A constructs the encoding of the TM $M' = M'_{\alpha,x}$ that works as follows:

"On input y, (a) Write α , x on one of the tapes; (b) Use the universal TM U to simulate M_{α} on x; (c) If U halts, output 10101010 and halt."

Essentially, the transition function of M' resembles that of the universal TM. However, it also has two additional parts:

- 1. M' needs to write α and x on its tape before invoking the universal TM on α and x. The logic for this writing is hard-coded into the transition function of M'. Note that α and x are not inputs to M'.
- 2. After the universal TM halts, M' needs to write 10101010 on its output tape. This is again hard-coded onto the transition function of M'.

What is the behavior of M'? If $\langle \alpha, x \rangle \in \text{Halt}$, then M'(y) = 10101010 for every y and in particular when y is the empty string. Thus $|M'| \in \text{Hello-World}$ in this case.

If $\langle \alpha, x \rangle \notin \text{Halt}$, then M' does not halt on any input. Thus $\lfloor M' \rfloor \notin \text{Hello-World}$ in this case.

So we have shown that Halt is many-one reducible to Hello-World as desired. \Box

AAS. We define a function AAS: $\{0,1\}^* \to \{0,1\}$. Let $AAS(\alpha) = 1$ if $M_{\alpha}(y) = 1$ for every $y \in \{0,1\}^*$; let $AAS(\alpha) = 0$ otherwise. AAS is an abbreviation for "Accepts All Strings". Let AAS also denote the corresponding language.

Claim 3. AAS is undecidable.

Proof. It suffices to show that Halt is reducible to AAS.

Given $\langle \alpha, x \rangle$, our reduction algorithm A constructs the encoding of the TM $M' = M'_{\alpha,x}$ that works as follows:

"On input y, (a) Write α , x on one of the tapes; (b) Use the universal TM U to simulate M_{α} on x; (c) If U halts, output 1 and halt."

What is the behavior of M'? If $\langle \alpha, x \rangle \in \text{Halt}$, then M'(y) = 1 for every y. Thus $\lfloor M' \rfloor \in \text{AAS}$ in this case.

If $\langle \alpha, x \rangle \notin \text{Halt}$, then M' does not halt on any input y. Thus $\lfloor M' \rfloor \notin \text{AAS}$ in this case.

You can see a general pattern in the arguments that Hello-World and AAS are undecidable. Informally, any question about the run-time behavior of Turing machines is undecidable.¹ One very general result in this direction is Rice's Theorem, see Exercise 1.12 of the textbook [1] and the book by Sipser [2].

In contrast, consider the language

Has-Ten-States =
$$\{\alpha \in \{0,1\}^* | M_{\alpha} \text{ has ten states} \}$$
.

¹Update: This sentence is an example of something I wrote without thinking things through. Perhaps it is better to say that many such questions are undecidable.

To be more precise, for a string α to be in the language, α must really be the encoding of a TM according to our scheme, and this TM must have 10 states. This language is of course decidable. Deciding this language is about answering a question about the transition function of the TM, and not its run-time behavior.

References

- [1] S. Arora and B. Barak. Computational Complexity, A Modern Approach. Cambridge University Press.
- [2] M. Sipser. Introduction to the Theory of Computation. PWS Publishing Company.