Trees

[Make Money Fast!]

Stock Ponzi
Fraud Scheme

Bank
Robbery

© 2010 Goodrich, Tamassia Trees

AN

What is a Tree

o In computer science, a
tree is an abstract model [Computers”R"Us]
of a hierarchical
structure

o A tree consists of nodes
with a parent-child
relation

o Applications:

= Organization charts

= File systems Europe | Asia | Canada
= Programming

environments

N

[Manufacturing]

N

[US] [International] [Laptops] [Desktops]

© 2010 Goodrich, Tamassia Trees 2

Tree Terminology

N

Root: node without parent (A) a Subtree: tree consisting of
a Internal node: node with at least a node and its
one child (A, B, C, F) descendants

o External node (a.k.a. leaf): node
without children (E, I, J, K, G, H, D)

o Ancestors of a node: parent,
grandparent, grand-grandparent,
etc.

a Depth of a node: number of
ancestors

o Height of a tree: maximum depth
of any node (3)

o Descendant of a node: child, 1]l (3 [K]
grandchild, grand-grandchild, etc.

subtree

© 2010 Goodrich, Tamassia Trees 3

Tree ADT

g
T a We use positions to abstract 4 Query methods:
nodes = boolean isInternal(p)
o Generic methods: = boolean isExternal(p)
= integer size() = boolean isRoot(p)
= boolean isEmpty() # Update method:
= Iterator iterator() = element replace (p, 0)
= Iterable positions() # Additional update methods
o Accessor methods: may be defined by data
= position root() structures implementing the
= position parent(p) Tree ADT

= Iterable children(p)

© 2010 Goodrich, Tamassia Trees 4

Preorder Traversal

a A traversal visits the nodes of a Algorithm preOrder(v)
tree in a systematic manner visit(v)

o In a preorder traversal, a node is :
visited before its descendants for each child w of v

a Application: print a structured preorder (w)
document

N

! [Make Money Fast!]

N e I e e

[1. Motivations] [2. Methods] [References]

; /\4 6 7 8
. 2.1 Stock 2.2 Ponzi 2.3 Bank
[oA (e] [25 el] [Fraud J [Scheme J [RobberyJ

© 2010 Goodrich, Tamassia Trees 5

Postorder Traversal

N

o In a postorder traversal, a Algorithm postOrder(v)
node is visited after its for each child w of v

descendants
a Application: compute space postOrder (w)
used by files in a directory and Visit(Vv)

its subdirectories

todo.txt
1K

2 4 5 6

hic.doc hinc.doc DDR.java Stocks.java Robot.java
3K 2K 10K 25K 20K

© 2010 Goodrich, Tamassia Trees 6

[programs/]

Binary Trees

o A binary tree is a tree with the
fO”OW'”g_ properties: » arithmetic expressions
= Each internal node has at most two

children (exactly two for proper - deCISIﬁ.n Processes
binary trees) = Sedrenig

m The children of a node are an
ordered pair
o We call the children of an internal
node left child and right child

o Alternative recursive definition: a
binary tree is either
= 3 tree consisting of a single node, or

= a tree whose root has an ordered
pair of children, each of which is a
binary tree

N

o Applications:

© 2010 Goodrich, Tamassia Trees 7

Arithmetic Expression Tree

N

o Binary tree associated with an arithmetic expression
= internal nodes: operators
= external nodes: operands

a Example: arithmetic expression tree for the
expression (2 x (@ —-1) + (3 x b))

© 2010 Goodrich, Tamassia Trees

Decision Tree

N

o Binary tree associated with a decision process
= internal nodes: questions with yes/no answer
= external nodes: decisions

o Example: dining decision

[Want a fast meal?]
Yes No

[How about coffee?] [On expense account?]

Y, es/No Y, esNO

Starbucks| |Spike's| |Al Forno Café Paragon

© 2010 Goodrich, Tamassia Trees

9

Properties of Proper Binary Trees

.
o Notation 4 Properties:
n number of nodes me=i+1
e number of S =% 1
external nodes _
i number of internal s h<|
nodes m h<(n-1)/2
h height . e<oh
= h>log,e

m h>log,(nN+1)-1

© 2010 Goodrich, Tamassia Trees 10

BinaryTree ADT

N

a The BinaryTree ADT o Update methods

extends the Tree may be defined by
ADT, i.e., it inherits data structures

all the methods of implementing the
the Tree ADT BinaryTree ADT

a Additional methods:
= position left(p)
= position right(p)
= boolean hasLeft(p)
= boolean hasRight(p)

© 2010 Goodrich, Tamassia Trees 11

N

o In an inorder traversal a

subtree

tree

= Yy(v) = depth of v

Inorder Traversal

node is visited after its left
subtree and before its right

o Application: draw a binary

= X(v) = inorder rank of v

6

Algorithm inOrder(v)
If hasLeft (v)
INOrder (left (v))
visit(Vv)
If hasRight (v)
INOrder (right (v))

© 2010 Goodrich, Tamassia

Trees 12

N

o Specialization of an inorder
traversal

= print operand or operator
when visiting node

= print “(" before traversing left
subtree

s print)" after traversing right
subtree

a 1

© 2010 Goodrich, Tamassia

Print Arithmetic Expressions

Algorithm printExpression(v)
If hasLeft (v)
print("(")
INOrder (left(v))
print(v.element ())
If hasRight (v)
INOrder (right(v))
print (*)")

(2x(@-1))+(3 xb))

Trees 13

N

o Specialization of a postorder
traversal

= recursive method returning
the value of a subtree

= Wwhen visiting an internal
node, combine the values
of the subtrees

Evaluate Arithmetic Expressions

Algorithm evalExpr(v)

If isExternal (V)
return v.element ()

else
X < evalExpr(leftChild (v))
y <« evalExpr(rightChild (v))
¢ «— operator stored at v
return x ¢y

5 1

© 2010 Goodrich, Tamassia

Trees 14

Euler Tour Traversal

o Generic traversal of a binary tree
o Includes a special cases the preorder, postorder and inorder traversals
o Walk around the tree and visit each node three times:

= on the left (preorder)

= from below (inorder)

= 0on the right (postorder)

N

© 2010 Goodrich, Tamassia Trees 15

Linked Structure for Trees

o A node is represented by

N

an object storing 1 || -
= Element l r
= Parent node B

= Sequence of children
nodes

o Node objects implement
the Position ADT

(B)
Al (D) |F

C E

© 2010 Goodrich, Tamassia Trees

Linked Structure for Binary Trees

N

o A node is represented
by an object storing %)
= Element ?
= Parent node l
= Left child node B
= Right child node
o Node objects implement [Q . Q] ‘
the Position ADT I I
(B) : / D\

C E

© 2010 Goodrich, Tamassia Trees 17

Array-Based Representation of

Binary Trees

N

a Nodes are stored in an array A 1
[A|l|B||D| ... |G||H
0 1 2 3 10 11

0 Node v is stored at A[rank(v)]
m rank(root) = 1

m if node is the left child of parent(node),
rank(node) = 2 - rank(parent(node))

m if node is the right child of parent(node),
rank(node) = 2 - rank(parent(node)) + 1

© 2010 Goodrich, Tamassia Trees 18

Template Method Pattern

f‘\

o Generic algorithm

o Implemented by
abstract Java class

o Visit methods
redefined by
subclasses

o Template method
eulerTour

= Recursively called on
left and right children

= A TourResult object
with fields left, right
and out keeps track of
the output of the
recursive calls to

eulerTour

public abstract class EulerTour <E, R> {

protected BinaryTree<E> tree;
public abstact R execute(BinaryTree<E> T);
protected void init(BinaryTree<E>T) {tree = T; }
protected R eulerTour(Position<E> v) {
TourResult<R> r = new TourResult<R>();
visitLeft(v, r);
if (tree.hasLeft(p))
{ rleft=eulerTour(tree.left(v)); }
visitBelow(v, r);
if (tree.hasRight(p))
{ r.right=eulerTour(tree.right(v)); }
return r.out;
}
protected void visitLeft(Position<E> v, TourResult<R> r) {}
protected void visitBelow(Position<E> v, TourResult<R> r) {}
protected void visitRight(Position<E> v, TourResult<R>r) {}

© 2010 Goodrich, Tamassia

Trees 19

SpeC|aI|zat|ons of EulerTour

f‘\

o Specialization of class
EulerTour to evaluate
arithmetic expressions

o Assumptions

Nodes store
ExpressionTerm objects
with method getValue

ExpressionVariable
objects at external
nodes

ExpressionOperator
objects at internal
nodes with method

setOperands(Integer,
Integer)

© 2010 Goodrich, Tamassia

public class EvaluateExpressionTour
extends EulerTour<ExpressionTerm, Integer> {
public Integer execute
(BinaryTree<ExpressionTerm> T) {
init(T);
return eulerTour(tree.root());

}
protected void visitRight

(Position<ExpressionTerm> v,
TourResult<Integer>r) {
ExpressionTerm term = v.element();
if (tree.isInternal(v)) {
ExpressionOperator op = (ExpressionOperator) term;
op.setOperands(r.left, r.right); }
r.out = term.getValue();

}

Trees 20

