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Recall the Map ADT
 get(k): if the map M has an entry with key k, return its 

associated value; else, return null 

 put(k, v): insert entry (k, v) into the map M; if key k is not 
already in M, then return null; else, return old value 
associated with k

 remove(k): if the map M has an entry with key k, remove 
it from M and return its associated value; else, return null 

 size(), isEmpty()

 entrySet(): return an iterable collection of the entries in M

 keySet(): return an iterable collection of the keys in M

 values(): return an iterator of the values in M
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Hash Functions and 
Hash Tables

 A hash function h maps keys of a given type to 
integers in a fixed interval [0, N - 1]

 Example:
h(x) = x mod N

is a hash function for integer keys

 The integer h(x) is called the hash value of key x

 A hash table for a given key type consists of

 Hash function h

 Array (called table) of size N

 When implementing a map with a hash table, the goal 
is to store item (k, o) at index i = h(k)
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Example

 We design a hash table for 
a map storing entries as 
(SSN, Name), where SSN 
(social security number) is a 
nine-digit positive integer

 Our hash table uses an 
array of size N = 10,000 and 

the hash function
h(x) = last four digits of x
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Hash Functions

 A hash function is 
usually specified as the 
composition of two 
functions:

Hash code:
h1: keys  integers

Compression function:
h2: integers  [0, N - 1]

 The hash code is 
applied first, and the 
compression function 
is applied next on the 
result, i.e., 

h(x) = h2(h1(x))

 The goal of the hash 
function is to  
“disperse” the keys in 
an apparently random 
way

© 2010 Goodrich, Tamassia



Hash Tables 6

Hash Codes
 Memory address:

 We reinterpret the memory 
address of the key object as 
an integer (default hash code 
of all Java objects)

 Good in general, except for 
numeric and string keys

 Integer cast:
 We reinterpret the bits of the 

key as an integer

 Suitable for keys of length less 
than or equal to the number of 
bits of the integer type (e.g., 
byte, short, int and float in 
Java)

 Component sum:

 We partition the bits of 
the key into components 
of fixed length (e.g., 16 
or 32 bits) and we sum 
the components 
(ignoring overflows)

 Suitable for numeric keys 
of fixed length greater 
than or equal to the 
number of bits of the 
integer type (e.g., long 
and double in Java)
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Hash Codes (cont.)

 Polynomial accumulation:
 We partition the bits of the 

key into a sequence of 
components of fixed length 
(e.g., 8, 16 or 32 bits)

a0 a1 … an-1

 We evaluate the polynomial

p(z) = a0 + a1 z + a2 z
2 + … 

… + an-1z
n-1

at a fixed value z, ignoring 
overflows

 Especially suitable for strings 
(e.g., the choice z = 33 gives 
at most 6 collisions on a set 
of 50,000 English words)

 Polynomial p(z) can be 
evaluated in O(n) time 

using Horner’s rule:

 The following 
polynomials are 
successively computed, 
each from the previous 
one in O(1) time

p0(z) = an-1

pi (z) = an-i-1 + zpi-1(z)

(i = 1, 2, …, n -1)

 We have p(z) = pn-1(z) 
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Compression Functions

 Division:

 h2 (y) = y mod N

 The size N of the 

hash table is usually 
chosen to be a prime 

 The reason has to do 
with number theory 
and is beyond the 
scope of this course

 Multiply, Add and 
Divide (MAD):

 h2 (y) = (ay + b) mod N

 a and b are 

nonnegative integers 
such that

a mod N  0

 Otherwise, every 
integer would map to 
the same value b
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Collision Handling

 Collisions occur when 
different elements are 
mapped to the same 
cell

 Separate Chaining: let 
each cell in the table 
point to a linked list of 
entries that map there

 Separate chaining is 
simple, but requires 
additional memory 
outside the table
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Map with Separate Chaining
Delegate operations to a list-based map at each cell:

Algorithm get(k):
return A[h(k)].get(k) 

Algorithm put(k,v):
t = A[h(k)].put(k,v) 
if t = null then {k is a new key}

n = n + 1
return t

Algorithm remove(k):
t = A[h(k)].remove(k)
if t ≠ null then {k was found}

n = n - 1
return t
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Linear Probing

 Open addressing: the 
colliding item is placed in a 
different cell of the table

 Linear probing: handles 
collisions by placing the 
colliding item in the next 
(circularly) available table cell

 Each table cell inspected is 
referred to as a “probe”

 Colliding items lump together, 
causing future collisions to 
cause a longer sequence of 
probes

 Example:

 h(x) = x mod 13

 Insert keys 18, 41, 
22, 44, 59, 32, 31, 
73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12

41 18 44 59 32 22 31 73

0 1 2 3 4 5 6 7 8 9 10 11 12
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Search with Linear Probing

 Consider a hash table A

that uses linear probing

 get(k)

 We start at cell h(k) 

 We probe consecutive 
locations until one of the 
following occurs

 An item with key k is 

found, or

 An empty cell is found, 
or

 N cells have been 

unsuccessfully probed 

Algorithm get(k)

i  h(k)

p  0

repeat

c  A[i]

if c = 

return null

else if c.getKey () = k

return c.getValue()

else

i  (i + 1) mod N

p  p + 1

until p = N

return null
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Updates with Linear Probing
 To handle insertions and 

deletions, we introduce a 
special object, called 
AVAILABLE, which 
replaces deleted elements

 remove(k)

 We search for an entry 
with key k

 If such an entry (k, o) is 
found, we replace it with 
the special item 
AVAILABLE and we return 

element o

 Else, we return null

 put(k, o)

 We throw an exception 
if the table is full

 We start at cell h(k) 

 We probe consecutive 
cells until one of the 
following occurs
 A cell i is found that is 

either empty or stores 
AVAILABLE, or

 N cells have been 
unsuccessfully probed

 We store (k, o) in cell i
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Double Hashing
 Double hashing uses a 

secondary hash function 
d(k) and handles collisions 
by placing an item in the 
first available cell of the 
series

(i + jd(k)) mod N
for j = 0,  1, … , N - 1

 The secondary hash 
function d(k) cannot have 
zero values

 The table size N must be a 
prime to allow probing of 
all the cells

 Common choice of 
compression function for 
the secondary hash 
function: 
d2(k) = q - k mod q

where
 q < N

 q is a prime

 The possible values for 
d2(k) are

1, 2, … , q
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 Consider a hash 
table storing integer 
keys that handles 
collision with double 
hashing

 N = 13

 h(k) = k mod 13

 d(k) = 7 - k mod 7

 Insert keys 18, 41, 
22, 44, 59, 32, 31, 
73, in this order

Example of Double Hashing

0 1 2 3 4 5 6 7 8 9 10 11 12

31 41 18 32 59 73 22 44

0 1 2 3 4 5 6 7 8 9 10 11 12

k h (k ) d (k ) Probes
18 5 3 5
41 2 1 2
22 9 6 9
44 5 5 5 10
59 7 4 7
32 6 3 6
31 5 4 5 9 0
73 8 4 8
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Performance of 
Hashing
 In the worst case, searches, 

insertions and removals on a 
hash table take O(n) time

 The worst case occurs when 
all the keys inserted into the 
map collide

 The load factor a = n/N 
affects the performance of a 
hash table

 Assuming that the hash 
values are like random 
numbers, it can be shown 
that the expected number of 
probes for an insertion with 
open addressing is

1 / (1 - a)

 The expected running 
time of all the dictionary 
ADT operations in a 
hash table is O(1)

 In practice, hashing is 
very fast provided the 
load factor is not close 
to 100%

 Applications of hash 
tables:
 small databases

 compilers

 browser caches
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