
Hash Tables 1

Hash Tables

0
1
2
3
4 451-229-0004

981-101-0002

025-612-0001

© 2010 Goodrich, Tamassia

Hash Tables 2

Recall the Map ADT
 get(k): if the map M has an entry with key k, return its

associated value; else, return null

 put(k, v): insert entry (k, v) into the map M; if key k is not
already in M, then return null; else, return old value
associated with k

 remove(k): if the map M has an entry with key k, remove
it from M and return its associated value; else, return null

 size(), isEmpty()

 entrySet(): return an iterable collection of the entries in M

 keySet(): return an iterable collection of the keys in M

 values(): return an iterator of the values in M

© 2010 Goodrich, Tamassia

Hash Tables 3

Hash Functions and
Hash Tables

 A hash function h maps keys of a given type to
integers in a fixed interval [0, N - 1]

 Example:
h(x) = x mod N

is a hash function for integer keys

 The integer h(x) is called the hash value of key x

 A hash table for a given key type consists of

 Hash function h

 Array (called table) of size N

 When implementing a map with a hash table, the goal
is to store item (k, o) at index i = h(k)

© 2010 Goodrich, Tamassia

Hash Tables 4

Example

 We design a hash table for
a map storing entries as
(SSN, Name), where SSN
(social security number) is a
nine-digit positive integer

 Our hash table uses an
array of size N = 10,000 and

the hash function
h(x) = last four digits of x

0
1
2
3
4

9997
9998
9999

…

451-229-0004

981-101-0002

200-751-9998

025-612-0001

© 2010 Goodrich, Tamassia

Hash Tables 5

Hash Functions

 A hash function is
usually specified as the
composition of two
functions:

Hash code:
h1: keys integers

Compression function:
h2: integers [0, N - 1]

 The hash code is
applied first, and the
compression function
is applied next on the
result, i.e.,

h(x) = h2(h1(x))

 The goal of the hash
function is to
“disperse” the keys in
an apparently random
way

© 2010 Goodrich, Tamassia

Hash Tables 6

Hash Codes
 Memory address:

 We reinterpret the memory
address of the key object as
an integer (default hash code
of all Java objects)

 Good in general, except for
numeric and string keys

 Integer cast:
 We reinterpret the bits of the

key as an integer

 Suitable for keys of length less
than or equal to the number of
bits of the integer type (e.g.,
byte, short, int and float in
Java)

 Component sum:

 We partition the bits of
the key into components
of fixed length (e.g., 16
or 32 bits) and we sum
the components
(ignoring overflows)

 Suitable for numeric keys
of fixed length greater
than or equal to the
number of bits of the
integer type (e.g., long
and double in Java)

© 2010 Goodrich, Tamassia

Hash Tables 7

Hash Codes (cont.)

 Polynomial accumulation:
 We partition the bits of the

key into a sequence of
components of fixed length
(e.g., 8, 16 or 32 bits)

a0 a1 … an-1

 We evaluate the polynomial

p(z) = a0 + a1 z + a2 z
2 + …

… + an-1z
n-1

at a fixed value z, ignoring
overflows

 Especially suitable for strings
(e.g., the choice z = 33 gives
at most 6 collisions on a set
of 50,000 English words)

 Polynomial p(z) can be
evaluated in O(n) time

using Horner’s rule:

 The following
polynomials are
successively computed,
each from the previous
one in O(1) time

p0(z) = an-1

pi (z) = an-i-1 + zpi-1(z)

(i = 1, 2, …, n -1)

 We have p(z) = pn-1(z)

© 2010 Goodrich, Tamassia

Hash Tables 8

Compression Functions

 Division:

 h2 (y) = y mod N

 The size N of the

hash table is usually
chosen to be a prime

 The reason has to do
with number theory
and is beyond the
scope of this course

 Multiply, Add and
Divide (MAD):

 h2 (y) = (ay + b) mod N

 a and b are

nonnegative integers
such that

a mod N 0

 Otherwise, every
integer would map to
the same value b

© 2010 Goodrich, Tamassia

Hash Tables 9

Collision Handling

 Collisions occur when
different elements are
mapped to the same
cell

 Separate Chaining: let
each cell in the table
point to a linked list of
entries that map there

 Separate chaining is
simple, but requires
additional memory
outside the table

0
1
2
3
4 451-229-0004 981-101-0004

025-612-0001

© 2010 Goodrich, Tamassia

Hash Tables 10

Map with Separate Chaining
Delegate operations to a list-based map at each cell:

Algorithm get(k):
return A[h(k)].get(k)

Algorithm put(k,v):
t = A[h(k)].put(k,v)
if t = null then {k is a new key}

n = n + 1
return t

Algorithm remove(k):
t = A[h(k)].remove(k)
if t ≠ null then {k was found}

n = n - 1
return t

© 2010 Goodrich, Tamassia

Hash Tables 11

Linear Probing

 Open addressing: the
colliding item is placed in a
different cell of the table

 Linear probing: handles
collisions by placing the
colliding item in the next
(circularly) available table cell

 Each table cell inspected is
referred to as a “probe”

 Colliding items lump together,
causing future collisions to
cause a longer sequence of
probes

 Example:

 h(x) = x mod 13

 Insert keys 18, 41,
22, 44, 59, 32, 31,
73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12

41 18 44 59 32 22 31 73

0 1 2 3 4 5 6 7 8 9 10 11 12

© 2010 Goodrich, Tamassia

Hash Tables 12

Search with Linear Probing

 Consider a hash table A

that uses linear probing

 get(k)

 We start at cell h(k)

 We probe consecutive
locations until one of the
following occurs

 An item with key k is

found, or

 An empty cell is found,
or

 N cells have been

unsuccessfully probed

Algorithm get(k)

i h(k)

p 0

repeat

c A[i]

if c =

return null

else if c.getKey () = k

return c.getValue()

else

i (i + 1) mod N

p p + 1

until p = N

return null

© 2010 Goodrich, Tamassia

Hash Tables 13

Updates with Linear Probing
 To handle insertions and

deletions, we introduce a
special object, called
AVAILABLE, which
replaces deleted elements

 remove(k)

 We search for an entry
with key k

 If such an entry (k, o) is
found, we replace it with
the special item
AVAILABLE and we return

element o

 Else, we return null

 put(k, o)

 We throw an exception
if the table is full

 We start at cell h(k)

 We probe consecutive
cells until one of the
following occurs
 A cell i is found that is

either empty or stores
AVAILABLE, or

 N cells have been
unsuccessfully probed

 We store (k, o) in cell i

© 2010 Goodrich, Tamassia

Hash Tables 14

Double Hashing
 Double hashing uses a

secondary hash function
d(k) and handles collisions
by placing an item in the
first available cell of the
series

(i + jd(k)) mod N
for j = 0, 1, … , N - 1

 The secondary hash
function d(k) cannot have
zero values

 The table size N must be a
prime to allow probing of
all the cells

 Common choice of
compression function for
the secondary hash
function:
d2(k) = q - k mod q

where
 q < N

 q is a prime

 The possible values for
d2(k) are

1, 2, … , q

© 2010 Goodrich, Tamassia

Hash Tables 15

 Consider a hash
table storing integer
keys that handles
collision with double
hashing

 N = 13

 h(k) = k mod 13

 d(k) = 7 - k mod 7

 Insert keys 18, 41,
22, 44, 59, 32, 31,
73, in this order

Example of Double Hashing

0 1 2 3 4 5 6 7 8 9 10 11 12

31 41 18 32 59 73 22 44

0 1 2 3 4 5 6 7 8 9 10 11 12

k h (k) d (k) Probes
18 5 3 5
41 2 1 2
22 9 6 9
44 5 5 5 10
59 7 4 7
32 6 3 6
31 5 4 5 9 0
73 8 4 8

© 2010 Goodrich, Tamassia

Hash Tables 16

Performance of
Hashing
 In the worst case, searches,

insertions and removals on a
hash table take O(n) time

 The worst case occurs when
all the keys inserted into the
map collide

 The load factor a = n/N
affects the performance of a
hash table

 Assuming that the hash
values are like random
numbers, it can be shown
that the expected number of
probes for an insertion with
open addressing is

1 / (1 - a)

 The expected running
time of all the dictionary
ADT operations in a
hash table is O(1)

 In practice, hashing is
very fast provided the
load factor is not close
to 100%

 Applications of hash
tables:
 small databases

 compilers

 browser caches

© 2010 Goodrich, Tamassia

