Hash Tables

Recall the Map ADT

- get(k): if the map M has an entry with key k, return its associated value; else, return null
- put(k, v): insert entry (k, v) into the map M; if key k is not already in M, then return null; else, return old value associated with k
- remove(k): if the map M has an entry with key k, remove it from M and return its associated value; else, return null
- size(), isEmpty()
- entrySet(): return an iterable collection of the entries in M
- keySet(): return an iterable collection of the keys in M
- values(): return an iterator of the values in M

Hash Functions and Hash Tables

- A hash function h maps keys of a given type to integers in a fixed interval $[0, \boldsymbol{N}-1]$
- Example:

$$
\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{x} \bmod \boldsymbol{N}
$$

is a hash function for integer keys

- The integer $\boldsymbol{h}(\boldsymbol{x})$ is called the hash value of key \boldsymbol{x}
- A hash table for a given key type consists of
- Hash function h
- Array (called table) of size N
- When implementing a map with a hash table, the goal is to store item $(\boldsymbol{k}, \boldsymbol{o})$ at index $\boldsymbol{i}=\boldsymbol{h}(\boldsymbol{k})$

Example

- We design a hash table for a map storing entries as (SSN, Name), where SSN (social security number) is a nine-digit positive integer
- Our hash table uses an array of size $N=10,000$ and the hash function $\boldsymbol{h}(\boldsymbol{x})=$ last four digits of \boldsymbol{x}

Hash Functions

- A hash function is usually specified as the composition of two functions:

Hash code:

\boldsymbol{h}_{1} : keys \rightarrow integers
Compression function:
\boldsymbol{h}_{2} : integers $\rightarrow[0, N-1]$

- The hash code is applied first, and the compression function is applied next on the result, i.e.,

$$
h(x)=h_{2}\left(h_{1}(x)\right)
$$

- The goal of the hash function is to
"disperse" the keys in an apparently random way

Hash Codes

- Memory address:
- We reinterpret the memory address of the key object as an integer (default hash code of all Java objects)
- Good in general, except for numeric and string keys
- Integer cast:
- We reinterpret the bits of the key as an integer
- Suitable for keys of length less than or equal to the number of bits of the integer type (e.g., byte, short, int and float in Java)
- Component sum:
- We partition the bits of the key into components of fixed length (e.g., 16 or 32 bits) and we sum the components (ignoring overflows)
- Suitable for numeric keys of fixed length greater than or equal to the number of bits of the integer type (e.g., long and double in Java)

Hash Codes (cont.)

- Polynomial accumulation:
- We partition the bits of the key into a sequence of components of fixed length (e.g., 8,16 or 32 bits)

$$
a_{0} a_{1} \ldots a_{n-1}
$$

- We evaluate the polynomial $p(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots$

$$
\ldots+a_{n-1} z^{n-1}
$$

at a fixed value z, ignoring overflows

- Especially suitable for strings (e.g., the choice $z=33$ gives at most 6 collisions on a set of 50,000 English words)
- Polynomial $p(z)$ can be evaluated in $\boldsymbol{O}(\boldsymbol{n})$ time using Horner's rule:
- The following polynomials are successively computed, each from the previous one in $\boldsymbol{O}(1)$ time

$$
\begin{align*}
& p_{0}(z)=a_{n-1} \\
& p_{i}(z)=a_{n-i-1}+z p_{i-1}(z) \\
& (i=1,2, \ldots, n-1) \tag{}
\end{align*}
$$

- We have $p(z)=p_{n-1}(z)$

Compression Functions

- Division:
- $\boldsymbol{h}_{2}(\boldsymbol{y})=\boldsymbol{y} \bmod \boldsymbol{N}$
- The size N of the hash table is usually chosen to be a prime
- The reason has to do with number theory and is beyond the scope of this course
- Multiply, Add and Divide (MAD):
- $\boldsymbol{h}_{2}(\boldsymbol{y})=(\boldsymbol{a} \boldsymbol{y}+\boldsymbol{b}) \bmod N$
- a and b are nonnegative integers such that $a \bmod N \neq 0$
- Otherwise, every integer would map to the same value b

Collision Handling

- Collisions occur when different elements are mapped to the same cell

- Separate Chaining: let each cell in the table a Separate chaining is point to a linked list of simple, but requires entries that map there additional memory outside the table

Map with Separate Chaining

Delegate operations to a list-based map at each cell:
Algorithm get(k):
return A[h(k)].get(k)
Algorithm put(k, v):
$\mathrm{t}=\mathrm{A}[\mathrm{h}(\mathrm{k})]$.put(k, v$)$
if $\mathrm{t}=$ null then
$\mathrm{n}=\mathrm{n}+1$
return t
Algorithm remove(k):
$\mathrm{t}=\mathrm{A}[\mathrm{h}(\mathrm{k})] \cdot \operatorname{remove}(\mathrm{k})$
if $\mathrm{t}=$ null then
\{k was found\}
$\mathrm{n}=\mathrm{n}-1$
return t

Linear Probing

- Open addressing: the colliding item is placed in a different cell of the table
- Linear probing: handles collisions by placing the colliding item in the next (circularly) available table cell
- Each table cell inspected is referred to as a "probe"
- Colliding items lump together, causing future collisions to cause a longer sequence of probes
- Example:
- $\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{x} \bmod 13$
- Insert keys 18, 41, 22, 44, 59, 32, 31, 73 , in this order

Search with Linear Probing

- Consider a hash table A that uses linear probing
- get (k)
- We start at cell $\boldsymbol{h}(\boldsymbol{k})$
- We probe consecutive locations until one of the following occurs
- An item with key k is found, or
- An empty cell is found, or
- N cells have been unsuccessfully probed

```
Algorithm get (k)
    \(i \leftarrow h(k)\)
    \(p \leftarrow 0\)
    repeat
    \(c \leftarrow A[i]\)
    if \(c=\varnothing\)
        return null
    else if \(\operatorname{c.getKey}()=\boldsymbol{k}\)
        return c.getValue()
    else
        \(i \leftarrow(i+1) \bmod N\)
        \(\boldsymbol{p} \leftarrow \boldsymbol{p}+1\)
until \(p=N\)
return null
```


Updates with Linear Probing

- To handle insertions and deletions, we introduce a special object, called AVAILABLE, which replaces deleted elements
- remove (\boldsymbol{k})
- We search for an entry with key k
- If such an entry $(\boldsymbol{k}, \boldsymbol{o})$ is found, we replace it with the special item
AVAILABLE and we return element o
- Else, we return null
- put $(\boldsymbol{k}, \boldsymbol{o})$
- We throw an exception if the table is full
- We start at cell $\boldsymbol{h}(\boldsymbol{k})$
- We probe consecutive cells until one of the following occurs
- A cell i is found that is either empty or stores AVAILABLE, or
- N cells have been unsuccessfully probed
- We store $(\boldsymbol{k}, \boldsymbol{o})$ in cell \boldsymbol{i}

Double Hashing

- Double hashing uses a secondary hash function $d(k)$ and handles collisions by placing an item in the first available cell of the series

$$
(i+j d(k)) \bmod N
$$

$$
\text { for } j=0,1, \ldots, N-1
$$

- The secondary hash
function $d(k)$ cannot have zero values
- The table size N must be a prime to allow probing of all the cells
- Common choice of compression function for the secondary hash function:
$d_{2}(k)=q-k \bmod q$ where
- $q<N$
- q is a prime
- The possible values for $d_{2}(k)$ are

$$
1,2, \ldots, \boldsymbol{q}
$$

Example of Double Hashing

- Consider a hash table storing integer keys that handles collision with double hashing
- $N=13$

	$\boldsymbol{h}(\boldsymbol{k}) \boldsymbol{d}(\boldsymbol{k})$ Probes				
18	5	3	5		
41	2	1	2		
22	9	6	9		
44	5	5	5	10	
59	7	4	7		
32	6	3	6		
31	5	4	5	9	0
73	8	4	8		

- $\boldsymbol{h}(\boldsymbol{k})=\boldsymbol{k} \bmod 13$
- $\boldsymbol{d}(\boldsymbol{k})=7-\boldsymbol{k} \bmod 7$
- Insert keys 18, 41, 22, 44, 59, 32, 31, 73 , in this order

Performance of Hashing

- In the worst case, searches, insertions and removals on a hash table take $\boldsymbol{O}(\boldsymbol{n})$ time
- The worst case occurs when all the keys inserted into the map collide
- The load factor $\boldsymbol{\alpha}=\boldsymbol{n} / \boldsymbol{N}$ affects the performance of a hash table
- Assuming that the hash values are like random numbers, it can be shown that the expected number of probes for an insertion with open addressing is $1 /(1-\alpha)$

- The expected running time of all the dictionary ADT operations in a hash table is $\boldsymbol{O}(1)$
- In practice, hashing is very fast provided the load factor is not close to 100\%
- Applications of hash tables:
- small databases
- compilers
- browser caches

