
Steering Behaviors for Autonomous Vehicles in Virtual Environments

Hongling Wang∗

Dept of Computer Science

University of Iowa

Joseph K. Kearney

Dept of Computer Science

University of Iowa

James Cremer

Dept of Computer Science

University of Iowa

Peter Willemsen†

School of Computing

University of Utah

ABSTRACT

This paper presents steering behaviors that control autonomous ve-
hicles populating roadways in virtual urban environments. Behav-
ior programming is facilitated by a set of representations of the en-
vironment that use convenient frames of reference in natural coordi-
nate systems. Roadway surfaces are modeled as three-dimensional
ribbons that make the local orientation of the road explicit and allow
relative distances on the road to be simply computed. Roads and in-
tersections are connected to form a ribbon network. An egocentric
representation called a path melds road and intersection segments
into a single, continuous ribbon that captures the vehicle’s short-
term plan of navigation. A topological structure called a route sup-
ports wayfinding. We describe how the interrelated ribbon, path,
and route representations are used to build multi-component behav-
iors that plan routes and safely navigate through traffic filled road
networks – tracking lanes, shifting lanes to avoid congestion, an-
ticipating lane changes needed to make turns dictated by the route,
negotiating intersections, and respecting the rules of the road.

CR Categories: I.6.3 [SIMULATION AND MODELING]: Ap-
plications; K.7.m [SIMULATION AND MODELING]: Simulation
Support Systems—Environments

Keywords: virtual environments, autonomous agent behavior,
steering behavior

1 INTRODUCTION

Synthetically generated traffic plays an important role in high-
fidelity virtual urban environments. Simulated vehicles controlled
by autonomous behaviors create a backdrop of ambient activity that
enlivens the environment and gives a sense of dynamic realism.
(See Figure 1.) Programming the behaviors of simulated vehicles
with the competence to navigate complex, traffic filled roadway net-
works remains an enormous challenge.

Driving activities are intimately tied to the structure and geom-
etry of roadways. Roads are contoured to provide good visibility
and are designed with smooth curves appropriate to the speed limit.
They are divided into lanes that channel traffic into parallel streams.
These lanes provide a critical frame of reference for guidance and
for determining the spatial relationships with nearby objects. Traf-
fic control signals regulate safe access to shared space at intersec-
tions where roads cross.

The way in which the roadway environment is represented has
enormous impact on the ease with which driving behaviors can
be programmed. For example, while scene graph representations
containing textured polygons are handy for rendering, they are aw-
ful for tracking roadways and finding routes. Good representa-
tions simplify control by making important attributes of environ-
ment salient. For example, the frame of reference (egocentric vs.

∗e-mail: {howang,kearney,cremer}@cs.uiowa.edu
†e-mail: willemsn@cs.utah.edu

Figure 1: A child negotiating an intersection with on-coming traffic

in our virtual environment Hank.

exocentric) and the coordinate system (Cartesian vs. road-based
curvilinear) make a tremendous difference on how simple it is to
express driving actions.

In [22], we presented a representation of navigable surfaces
based on mathematical ribbons – smooth surface strips that twist
and turn in space. These ribbons are linked through surface patches
(i.e. intersections) which are themselves covered with ribbons that
guide traffic from incoming to outgoing lanes. Roads and intersec-
tions are annotated with information about the rules of the road that
govern right of way and constrain behaviors. In addition, we in-
troduced an egocentric representation called a path that melds road
and intersection segments into a single, continuous ribbon. A path
is essentially a one lane ribbon overlaid on the road network that
represents the immediate plan for movement in a natural frame of
reference.

In this paper we extend our representational framework with a
representation adapted to the needs of wayfinding called a route.
A route is a topological description of a sequence of choice points
much like the directions produced by route finding services such as
MapQuest. We describe how the interrelated ribbon, path, and route
representations are used to build multi-component behaviors that
plan routes and safely navigate through traffic filled road networks –
tracking lanes, shifting lanes to avoid congestion, anticipating lane
changes needed to make turns dictated by the route, negotiating
intersections, and respecting the rules of the road.

2 RELATED WORK

Our work draws on a broad cross-section of research in behavior
modeling for autonomous agents, control of autonomous vehicles
(both real and simulated), and studies of human driving behavior.

Reynolds’ [14] landmark work on flocking behaviors of ani-

IEEE Virtual Reality 2005
March 12-16, Bonn, Germany
0-7803-8929-8/05/$20 ©2005 IEEE

155
Proceedings of the IEEE Virtual Reality 2005 (VR’05)

1087-8270/05 $20.00 © 2005 IEEE

mated agents called boids demonstrated the power of decomposing
complex control into independent behavior modules each taking re-
sponsibility for maintaining some property of global behavior. In
later work [15], he distinguished three layers of motion control for
a general model of vehicles covering walkers, crawlers, wheeled
vehicles, and flying objects. The three layers are: action selection,
steering, locomotion. Action selection focuses on strategic plan-
ning or goal identification. Steering behaviors have responsibil-
ity for immediate path determination allowing agents to ”navigate
around their world in a life-like and improvisational manner.” The
details of how motions are generated are the focus of the locomo-
tion layer. While we don’t explicitly stratify behaviors into layers, it
is natural to categorize our vehicle behaviors as primarily responsi-
ble for planning, steering, or locomotion. In addition, the three fun-
damental representations we use (routes, paths, and ribbons) clearly
serve the needs of planning, steering, and locomotion.

A number of groups have used hierarchical schemes for orga-
nizing complex control [2, 10, 3, 7]. In [7], we presented a model
for autonomous driving behavior based on Hierarchical Concurrent
State Machines (HCSM). A most conservative rule was introduced
to resolve competing behaviors. In [8], the HCSM model is used
to generate scenarios from ambient traffic composed of microscop-
ically simulated autonomous vehicles.

Sukthankar[17] introduced methods for controlling the tactical
behavior of vehicles in highway traffic. The emphasis of this work
is on tactical situation awareness and action selection.

Pursuit point tracking is commonly used for geometric path
tracking for both real and simulated vehicles [17, 5, 24]. The pure
pursuit approach, which is believed to be the most robust and reli-
able path tracking method, geometrically determines the curvature
that will drive a vehicle to a chosen goal point. This goal point is
a point on the path that is one lookahead distance from the current
vehicle position. Our method is slightly different from Coulter’s
in that we make use of the vehicle’s orientation when formulating
constraints to construct an arc that joins the current point and the
goal point.

A substantial body of literature [1, 11, 16] on transportation re-
search has examined driving behaviors of real drivers. Some of
the concepts we use in our work such as discretionary lane chang-
ing and mandatory lane changing are motivated by this body of
research.

3 BACKGROUND

The research in this paper extends previous results[23, 22] in which
we concentrated on creating real-time databases for networks of in-
tersecting roads and walkways in urban virtual environments. The
roads in a virtual environment are represented as ribbons intercon-
nected at intersections. A ribbon defines the geometry of an ori-
ented navigable surface. The spine of the ribbon is represented as
a 3-dimensional space curve which is approximately arc-length pa-
rameterized [18, 19]. A surface normal is defined at each point on
the curve allowing the ribbon to twist about its spine. The ribbon
establishes a curvilinear coordinate system in which 3-dimensional
points are expressed in coordinates of distance along the spine, D,
offset on the ribbon surface from the spine, O, and loft (displace-
ment above or below the ribbon), L. Efficient algorithms are de-
signed to compute the mapping between local ribbon coordinates
(D,O,L) and global Cartesian coordinates (X ,Y,Z) [18, 20].

To provide transition between roads, we define corridors on in-
tersections to connect incoming lanes and outgoing lanes. Corridors
are represented as one-lane ribbons.

Although agents can rely on the ribbon structure to determine
where they are, where they are going, and what is around them, the
transitions at intersection boundaries can make it cumbersome to
extract and interpret this information. To facilitate behavior pro-

gramming, we created a data object called a path. A path is a one-
lane ribbon overlaid on the road network. It consists of a composi-
tion of lanes on roads and intersection corridors that define a single,
continuous coordinate system.

4 RIBBONS AS A BASIS FOR TRACKING

In our virtual environment software, Hank, steering behaviors con-
trol the motion of a virtual vehicle through two parameters: accel-
eration and steering angle. Because vehicles roll on wheels, they
are subject to non-holonomic constraints that restrict their allow-
able motions. Thus, vehicles with wheels that roll on fixed axles
cannot move directly sideways (as much as we might like when
parallel parking.) We model these constraints by moving a vehicle
on a circular arc tangent to both the front and back wheels.

Road tracking is accomplished by aiming at a succession of pur-
suit points on the lane center line. At each time step, the steering
angle that intercepts the pursuit point is computed by calculating the
circle that passes through the vehicle’s current position, is tangent
to vehicle’s current orientation, and intersects the pursuit point.

The vehicle’s path provides a convenient representation for de-
termining a pursuit point on the lane center line a distance ∆d ahead
of the vehicle. Let the ribbon coordinates of the vehicle on its path
be (D,O,0). This places the vehicle on the center line of a lane
or intersection corridor in contact with the surface. The path coor-
dinates of the pursuit point are computed as (D + ∆d,O + ∆O,0),
where ∆d is the look ahead distance and ∆O is the lateral distance
between the vehicle and its pursuit point on the ribbon. If the path
is not planar, then the pursuit point may not lie in the tangent plane
of the ribbon surface at the current position of the vehicle. In order
to calculate the circle trajectory that will intercept the pursuit, we
first project the pursuit point onto the tangent plane of the ribbon at
the vehicle’s position.

Let the current position of a vehicle be p1, the pursuit point be
p, and the rotation matrix of the vehicle be (pX

1 , pY
1 , pZ

1) where pX
1

is the facing direction, pY
1 points to the left side, and pZ

1 points
upward. The projection of the pursuit point is computed as

p′ = p1 +(−−→p1 p · pX
1)∗ pX

1 +(−−→p1 p · pY
1)∗ pY

1 . (1)

p1

β/2.0

p

β

(a) A circular track

computed from a pur-

suit point

p1

p2

pα

β

(b) New position and ori-

entation on the circular

track

Figure 2: Pursuit point tracking.

In each time step, a virtual vehicle is assumed to follow a planar
circular track uniquely determined by the current position, the cur-
rent orientation and the projected pursuit point of the vehicle. The
circular track is shown in figure 2(a), where p1 is the current posi-
tion and p′ is the projection of the pursuit point. The curvature κ of

156
Proceedings of the IEEE Virtual Reality 2005 (VR’05)

1087-8270/05 $20.00 © 2005 IEEE

the circular track is computed and used directly to control the mov-
ing direction of a vehicle. The arc β between the current position
p1 and the projected pursuit point p′ is computed as

β = 2∗acos(
pX

1 ·
−−→
p1 p′

|pX
1 | ∗ |

−−→
p1 p′|

). (2)

The curvature of the circular track is

κ = ±sin(
β

2.0
)/

|
−−→
p1 p′|
2.0

, (3)

where κ is positive if p′ is located on the left side of the facing
direction and negative if p′ is located on the right side of the facing
direction.

Let p2 be the new position of the vehicle on the circular track
after a time step of length ∆t. The new position p2 is shown in
figure 2(b), where p1 is the position of the vehicle at the start of a
time step of length ∆t and p′ is projection of the pursuit point on the
tangent plane of the ribbon surface at p1. With the current speed v
and the current acceleration a, we compute the new position of the
vehicle after a time step of length ∆t. The arc length between the
old position p1 and the new position p2 along the circular track is

l = v∗∆t +0.5∗a∗∆t2. (4)

The angle between p1 and p2 is

α = l ∗κ. (5)

The chord length between p1 and p2 is

c = 2∗
sin(α/2.0)

κ
. (6)

The vector −−→p1 p2 is

−−→p1 p2 = c∗ (cos(
α

2.0
),sin(

α
2.0

),0)× (pX
1 , pY

1 , pZ
1). (7)

The new position p2 is computed as p1 +−−→p1 p2. The facing direction
of the vehicle at p2 on the tangent plane of the ribbon surface at p1
is

pX
2 = (cos(α),sin(α),0)× (pX

1 , pY
1 , pZ

1). (8)

After the vehicle is moved along the circular track for a time step,
we should locate the vehicle on the ribbon. It is possible that the
new position p2 is above or below the ribbon surface if the ribbon
is not a plane. The location of the vehicle on the ribbon can be
determined by perpendicularly projecting p2 to the ribbon surface.
We map p2 from Cartesian coordinates to the ribbon coordinates
(Dp2 ,Op2 ,Lp2). The ribbon coordinates of the projected point p′2
is (Dp2 ,Op2 ,0). The Cartesian coordinates of p′2 is computed by
mapping its ribbon coordinates into Cartesian coordinates. After
p′2 is determined, we compute the rotation matrix of the vehicle
on p′2, (p′X2 , p′Y2 , p′Z2). The upward direction p′Z2 is just the ribbon
surface normal at p′2. The left direction p′Y2 is p′Z2 X pX

2 . The facing
direction p′X2 is p′Y2 X p′Z2 .

5 STEERING BEHAVIORS BASED ON THE PATH OF A VIR-
TUAL VEHICLE

Vehicle motion is controlled by a collection of independent behav-
iors each responsible for some aspect of driving and each proposing
a single value influencing one of the control parameters (steering
angle or acceleration).

One set of behaviors focuses on steering direction (i.e. on where
to go). They indirectly control steering angle by selecting a pursuit

point towards which the vehicle aims. In Section 6.1 we describe
how lane changes are accomplished by smoothly shifting the pur-
suit point from one lane to another.

Another set of behaviors focuses on controlling vehicle speed
(i.e. when to go and how fast to get there). On each iteration of
the simulation, these behaviors compute an acceleration that would
best satisfy the goal they are charged with attaining. In this section
we describe three behaviors that vie for control of acceleration. We
then describe a simple process to synthesize their independent com-
putations into a coordinated whole behavior that respects all of the
constraints on speed and produces a smooth and consistent overall
pattern of behavior.

5.1 Cruising Behavior

The basic goal of the cruising behavior is to run the vehicle at its
desired speed. We use a simple proportional controller for cruising,

ac =

min(ap,kc
p ∗ (vd − v)) if v < vd

0 if v = vd
max(an,kc

p ∗ (vd − v)) if v > vd

, (9)

where ac is the acceleration for cruising behavior, v is the current
speed, vd is the desired speed, ap is the maximum positive acceler-
ation, an is the maximum deceleration, kc

p is a proportional param-
eter. If ac is applied to vehicle control, the vehicle will slow down
if the current speed is higher than the desired speed or speed up if
the current speed is lower than the desired speed. Over time, the
cruising controller converges smoothly to the desired speed.

5.2 Following Behavior

Following behavior is responsible for controlling a vehicle to main-
tain a safe distance between it and the vehicle ahead of it on the lane
[12]. Usually, an agent looks ahead a range of distance to search for
its leader on its path. If there is no vehicle on its path within this
range of distance, the vehicle is treated as having no leader. If some
vehicles are on its path within this range of distance, the lead ve-
hicle which is closest to the vehicle is defined to be the leader of
the vehicle. If a vehicle has a leader, a proportional-derivative con-
troller [6] for following behavior computes an acceleration for the
vehicle,

a f = max(an,k
f
p ∗�s− k f

v ∗�v), (10)

where a f is the computed acceleration, �s is equal to the actual fol-
lowing distance minus the desired following distance, �v is equal
to the follower’s speed minus its leader’s speed, k f

p is a proportional

parameter, k f
v is a derivative parameter, and k f

v is equal to 2.0∗
√

k f
p

for critical damping [6]. To compute the actual following distance
of the follower vehicle, we project the leader vehicle into the ribbon
coordinate system of the path of the follower vehicle. The differ-
ence between the distance coordinates of the follower vehicle and
the leader vehicle is computed as the actual following distance.

Following prescriptions of driving manuals, the desired follow-
ing distance is set to be proportional to the vehicle speed,

sd = max(s1,v∗ kd), (11)

where sd is the desired following distance, v is the current speed,
kd is a constant, and s1 is a minimum following distance that as-
sures reasonable separation when the leader is stopped. Similarly,
the range of distance over which a vehicle looks for a leader is pro-
portional to vehicle speed to ensure that vehicles react in sufficient
time as they approach a leader,

sl = max(s0,v∗ kl), (12)

157
Proceedings of the IEEE Virtual Reality 2005 (VR’05)

1087-8270/05 $20.00 © 2005 IEEE

where sl is the range of distance, v is the current speed, kl is a
constant and s0 is the least range of distance.

The value of a f computed in formula 10 might be positive, 0,
or negative. Since the goal of the following behavior is to prevent
collisions, positive accelerations are ignored.

5.3 Intersection Behavior

Intersection behavior regulates access to intersections in confor-
mance with conventional rules of the road. It acts as a gate to the
intersection, preventing vehicles from entering the intersection un-
til it is their turn to cross. This includes adherence to traffic lights
and yielding to other vehicles in or approaching the intersection that
have right of way. If the vehicle is denied access to the intersection,
the behavior will slow the vehicle to a stop and keep it stopped until
it is safe to cross. Once the vehicle enters the intersection, it must
rely on other behaviors to navigate through the intersection.

5.3.1 To Enter or Wait?

As the vehicle approaches an intersection, the intersection behav-
ior attends to the traffic control signal regulating the vehicle’s path
through the intersection. Each corridor is regulated by a traffic con-
trol signal and labeled with right-of-way information. When the
time to arrival at the intersection is sufficiently small, the intersec-
tion behavior considers the state of the light and the rights of way
to determine whether or not it is legal and safe to enter the intersec-
tion.

If the vehicle is approaching an intersection under a red light,
the intersection behavior computes a deceleration based on a con-
trol law that will bring the vehicle to a halt at the stop line that
marks the end of the lane. If the traffic light is green, the driver
assesses traffic conditions to determine if it can safely cross the
intersection, respecting right-of-way rules. If the traffic light is yel-
low, the driver determines whether it should stop or go based on its
speed and proximity to the intersection and the state of surrounding
traffic.

The state of the traffic control signal and the movements of traf-
fic are highly dynamic. The action selection mechanism must con-
stantly reassess the changing circumstances to determine what the
appropriate response is at the moment.

In addition to respecting traffic signals, drivers must obey right-
of-way rules that apply to the path they plan to take through an
intersection. The corridors that cross an intersection are labeled
with right-of-way information that describes the priorities of traffic
crossing this corridor with respect to traffic crossing other corridors.
The intersection behavior estimates the time t1 when the vehicle
will enter the intersection and the time t2 when the vehicle will
leave the intersection based on its current position and speed. If the
time between t1 and t2 represents an interval of time during which
no vehicle having the right of way will traverse the corridor, then the
vehicle is permitted to proceed through the intersection. Otherwise,
it will stop and yield the right of way to other vehicles. For each
approaching vehicle that has right of way over the yielding vehicle,
we estimate the time t i

1 when it will enter the intersection and the
time t i

2 when it will leave the intersection. If the time window [t1, t2]
overlaps with any time window [t i

1, t
i
2], the yielding vehicle has no

gap and its decision is to stop. Otherwise, the yielding vehicle has
found a gap and its decision is to go forward.

5.3.2 Stopping the Vehicle

If the vehicle is required to stop, either because the traffic light is
red or yellow, or because it must yield right of way, the intersection
behavior will compute a deceleration that will bring the vehicle to a

stop at the stop line. To accomplish this, we calculate the constant
deceleration that will stop the vehicle at the stop line [4],

ai = −
v2

c
2∗ s

, (13)

where ai is negative acceleration, vc is the current speed and s is
the distance between the current position and the desired stopping
position. If ai is continuously applied to vehicle control, a vehicle
will just stop at the desired stopping position when its speed de-
clines linearly to 0. We define a desired range [al

i ,a
u
i] for negative

acceleration. The lower bound al
i represents the maximum braking

capacity of the vehicle. The upper bound au
i represents the mini-

mum negative acceleration the agent would like to apply for stop-
ping purpose. The value of ai tells us whether a vehicle is too close
to an intersection to be able to stop without exceeding the maximum
braking power and whether it is so distant from the intersection that
it is too early to be concerned about decelerating.

• If ai ∈ [al
i ,a

u
i], a successful stopping action can be applied to

vehicle control.

• If ai is out of the desired range [al
i ,a

u
i] in positive direction,

i.e., ai > au
i , then we believe the desired stopping position is

still far away. It is too early to respond to the traffic control
signals.

• If ai is out of the desired range in negative direction, i.e.,
ai < al

i , it means that the vehicle is too close to the desired
stopping position so that it is impossible to stop the vehicle at
the desired stopping position.

Traffic engineering standards establish guidelines for the timing
of yellow lights to allow vehicles sufficient time to cross intersec-
tions before the light turns to red. With properly timed lights, the
third condition should only occur during the yellow interval and the
vehicle should have time to pass through the intersection before it
turns to red.

If the decision of action selection is to stop and ai computed in
formula 13 is within [al

i ,a
u
i], we get an acceleration contribution

ai from intersection behavior. Otherwise, the intersection behavior
has no acceleration contribution and ai computed in formula 13 is
disregarded.

5.4 Combining Acceleration Behaviors

The cruising, following, and intersection behaviors all produce ac-
celeration as output. Employing a most conservative approach, we
choose to apply the minimum acceleration of three accelerations,

a = min(ac,a f ,ai), (14)

where ac is the acceleration contribution of cruising behavior, a f is
the acceleration contribution of following behavior, ai is the accel-
eration contribution of intersection behavior, and a is the acceler-
ation after combination of component behaviors. If the following
or intersection behaviors are inactive, we remove their terms from
formula 14.

6 ROUTE

A path provides a moment-to-moment guide for steering a virtual
vehicle. It is the short-term plan of action for the driving agent.
However, it is poorly suited for route planning to get from one place
to another on a map. As vehicles navigate through the environ-
ment they need both the local geometric information provided by a
path and more abstract topological directions about the sequence of

158
Proceedings of the IEEE Virtual Reality 2005 (VR’05)

1087-8270/05 $20.00 © 2005 IEEE

Road B

Road A

v1

v2

Road C

Road D

Road E

Figure 3: Two situations requiring Mandatory Lane Changes

roads and turns that a good navigator provides. For this purpose we
introduce a new representation called a route.

A route is defined as a connected sequence of roads and intersec-
tions that an agent has traversed, is traversing, or will traverse in the
future. A route encodes traveler directions similar to what is gener-
ated by route finding services such as MapQuest. In the route of an
agent, we designate roads and intersections but not lanes on roads
or corridors on intersections. Thus, a virtual vehicle can drive on
different lanes on the same road or different corridors on the same
intersection while it follows the route.

We see the route of a virtual vehicle as a strategic goal of the
driving agent. Tactical behaviors make use of the path of the virtual
vehicle to achieve the strategic goal of the driving agent. The route
of a virtual vehicle is extended in advance of the path of the vehicle.
The path is selected to conform to the requirements of the route.

6.1 Lane Changing Behavior

On multi-lane roads, drivers have a choice of lane. Drivers are often
free to choose which lane suits them best based on preference for
speed, density, and/or visibility. Sometimes, this choice is restricted
by transit requirements, for example, because the current lane soon
terminates. When a lane change is motivated by preference, for
example, because a driver wants to increase its speed, we call it a
discretionary lane change (DLC). When a lane change is motivated
by transit requirements, for example, to position the vehicle to turn
at the next intersection, we call it a mandatory lane change (MLC)
[1].

A driving agent makes a decision to consider a DLC when it is
not satisfied with the driving conditions on the current lane. The
desire for a DLC is to seek better driving conditions on another
reachable lane. The driving agent compares the driving conditions
on the current lane and the other lanes. A goal lane must have better
driving conditions than the current lane. The route of the driving
agent forms a constraint on the choice of the goal lane. A candidate
lane should not be a goal lane if the driving agent is not able to
reach the next road in its route from this lane.

A driving agent makes a decision to consider an MLC when it
must leave the current lane in order to follow its route. Vehicle v1 on
road E and vehicle v2 on road B in figure 3 show two representative
cases of MLC. In the first case, vehicle v1 has to leave the current
lane because the current lane will soon terminate. In the second

case, where the route of vehicle v2 includes road B, the intersection,
and road A, vehicle v2 has to leave the current lane to position itself
for a turn at the upcoming intersection so that the vehicle is able
to enter road A after leaving the intersection. In both cases, the
vehicle must leave the current lane before it runs to the end of the
lane. The goal lane for an MLC is determined by the route of the
virtual vehicle.

A driving agent may choose to cross 1 or more lanes to get to
the goal lane. However, a vehicle is presumed to change one lane
at a time. After the vehicle changes one lane toward the goal lane,
the lane changing decision and the goal lane are reevaluated. The
adjacent lane to which the vehicle changes is called the target lane.
The target lane should be on the same side with and is uniquely
determined by the goal lane. Therefore, we have a long-term goal
and a short-term target. In this way the control of lane changing
becomes easier because the control is based on a shorter process.
This allows the driving agents to continuously adapt to the changing
dynamics of the surrounding traffic.

After the target lane is determined, the next step is to wait for an
acceptable gap on the target lane so that the vehicle can move into
the target lane safely. If the required gap is available, the vehicle
starts a lane changing action. Although a lane change can be can-
celed before a lane changing action is started, it must be completed
once the lane changing action is started.

6.1.1 Lane Changing Decision Making

The first step of lane changing is making the decision to change
lanes. Driving agents continuously assess road conditions to deter-
mine whether or not it is desired or needed to change lane.

Let’s consider DLC decisions first. In our behavior model, a
driving agent uses the speed of the traffic on the current lane to
evaluate the driving condition on the current lane. Traffic speed on
a lane is limited by the slowest moving vehicles. To determine the
speed of the traffic on the current lane, a driving agent looks ahead
a range of distance and checks the speed of all the vehicles on the
current lane within this range. The range of distance is given by,

sr = max(s2,v∗ kr), (15)

where kr is a constant, v is the current speed of the vehicle, and s2
is the minimum range of distance. The speed of the traffic on the
current lane is defined to be the speed of the vehicle which runs
slowest among the vehicles within this range of distance. If the
speed of the traffic on the current lane is slower than the desired
speed of a driving agent, the driving agent is motivated to seek a
DLC. Otherwise, the driving agent seeks no DLC.

The MLC decisions of our driving agents are motivated by the
desire of driving agents to follow their routes. To determine if an
MLC is necessary, a driving agent checks to see if the vehicle must
leave the current lane before the current lane ends (see the cases
in figure 3). If it must leave the current lane, the driving agent
estimates the length of time �t that it will take for the vehicle to
travel from the current position to the end of the lane,

�t =
�s
v

,

where �s is the distance between the current position of the vehicle
and the lane end and v is the current speed of the vehicle. The
driving agent then estimates the time needed to successfully execute
the n lane changes needed to move from the current lane to the goal
lane,

�t > n∗ t0, (16)

where t0 is a liberal estimate of the time needed to successfully
change from one lane to an adjacent lane and the current lane is n
lanes apart from the goal lane. If the condition in formula 16 is true,

159
Proceedings of the IEEE Virtual Reality 2005 (VR’05)

1087-8270/05 $20.00 © 2005 IEEE

the vehicle has more than enough time to transfer from the current
lane to the goal lane. Therefore, it is not necessary to start an MLC
yet. If the condition in formula 16 is not true, the driving agent
starts an MLC.

An MLC decision and a DLC decision may conflict. For exam-
ple, the target lane for an MLC decision may be the left lane while
the target lane for a DLC decision may be the right lane. To resolve
this conflict, we fuse the DLC and MLC decisions together into a
single lane changing decision. We define a decision to change lane
has preemptive priority over a decision to not change lane, and an
MLC has a preemptive priority over a DLC. With this two rules, we
arrive at the below result,

no MLC, no DLC => no Lane changing
MLC, no DLC => MLC
MLC, DLC => MLC

. (17)

What should the result be when the vehicle wants to make a DLC
and has no need to make a MLC? At first glance, it appears to be
a DLC. However, this conclusion is problematic if we look a step
deeper. Let’s consider the below situation,

(n+2)∗ t0 > �t > n∗ t0, (18)

where the variables n, t0, and �t have the same meaning as in for-
mula 16. The condition 18 satisfies the condition 16, therefore an
MLC is still not necessary. Consider what happens if the driving
agent decides to perform a DLC that takes it one lane further away
from the goal lane of the MLC. We need time t0 to complete one
DLC plus time (n + 1)∗ t0 to complete (n + 1) MLCs. In total, we
need time (n+2)∗ t0. The DLC leaves the vehicle short of time to
perform the required (n+1) lane changes needed to reach the goal
lane of the MLC. Therefore, the fusion of no MLC and a DLC is
divided into two cases,

no MLC, DLC =>

{
DLC if �t ≥ (n+2∗m)∗ t0
m-limited DLC if �t < (n+2∗m)∗ t0

.

(19)
By an m-limited DLC, we mean that the DLC can increase the dis-
tance to the goal lane of the MLC by at most m. Therefore, the ve-
hicle will still have sufficient time to complete the required (n+m)
MLCs after it has completed the m-limited DLC. Combining for-
mula 17 and formula 19, the lane changing decision can be one of
four possibilities: an MLC, an m-limited DLC, a DLC, or no lane
change.

6.1.2 From Lane Changing Decision to Lane Changing Action

After a decision of changing lane is made, the goal lane must be
determined before lane changing action is started. For a DLC, the
goal lane can be chosen from all the lanes on which the traffic flow
is in the same direction as that on the current lane. The speed of the
traffic on the goal lane should be higher than that on the current lane
and highest among all the other candidate lanes. For an MLC, the
driving agent picks a candidate lane which satisfies route require-
ments. Often, there is only one choice. It is the nearest lane to the
current lane that satisfies the vehicle’s route requirements. For an
m-limited DLC, the choice of the goal lane combines information
about the lane structure of the current road, the route, and the road
traffic. The candidate lanes are all the reachable lanes that are at
most m + n lanes away from the goal lane of the MLC. From the
candidate lanes, we select the lane for which the speed of the traffic
is higher than that on the current lane and highest among all the
candidate lanes as the goal lane for an m-limited DLC.

Once the goal lane for a lane change is determined, the target
lane is also determined. For an MLC, the vehicle must get to the
target lane before the current lane ends in order to follow its route.

However, it is possible that the vehicle cannot complete the MLC
and get to the target lane in the current speed before the current
lane ends, for example, because the target lane continuously has
heavy traffic. If the vehicle cannot stop on the road to wait for
the traffic on the target lane to pass by (for example, vehicle v2 in
figure 3), the agent has to give up its current route and generates a
new route. Otherwise, the vehicle must slow down and finally stop
to wait for the traffic on the target lane to pass by before it starts
a lane changing action. This is achieved by intersection behavior.
For example, intersection behavior will control vehicle v1 in figure
3 to slow down and stop before the zero-area intersection between
road A and road E until the traffic on the target lane has cleared.

A lane changing vehicle needs a free space ahead of the vehicle
and a free space behind the vehicle on the target lane so that the
lane changing vehicle can move to the target lane safely. The space
between the vehicle and the lead vehicle on the target lane is called
a lead gap. The space between the vehicle and the lag vehicle on the
target lane is called a lag gap. After the target lane is determined,
the driving agent waits for an acceptable lead gap and an acceptable
lag gap [1] on the target lane before it starts a lane changing action.
It is reasonable to estimate the minimum acceptable lead and lag
gaps with the speed of the vehicle multiplied by a time constant,{

glead = v∗ klead
glag = v∗ klag

, (20)

where glead is the length of the minimum acceptable lead gap, glag
is the length of the minimum acceptable lag gap, v is the current
speed of the vehicle, klead and klag are time constants. If the lead
and lag gaps are larger than the minimum acceptable lead and lag
gaps respectively, the vehicle starts to move over to the target lane
gradually.

6.1.3 The Action of Lane Changing

When a vehicle is tracking its current lane on road, the pursuit point
is located on the centerline of its path. If we gradually shift the
pursuit point off the centerline of its path and control it to gradually
approach the centerline of the target lane, a vehicle will deviate
from the centerline of the current lane and approach the centerline
of the target lane [17].

We use the path as a frame of reference to control the trajectory
of the vehicle during the lane changing process. The pursuit point is
computed in ribbon coordinates on its path. Before the lane chang-
ing action starts, the offset coordinate of the pursuit point is set to
be 0 so that the vehicle will track the centerline of the current lane.
After the lane changing action ends, the pursuit point is moved to
the centerline of the target lane. We use a proportional-derivative
controller to control the lateral motion of the pursuit point. In each
time step, we compute an acceleration o

′′
for moving the pursuit

point in the lateral direction,

o
′′

= kLC
p ∗ (ot −o)− kLC

v ∗o
′

, (21)

where kLC
p is a proportional parameter, kLC

v is a derivative parameter,
ot is the distance between the centerlines of the original lane and the
target lane, o is the current offset coordinate of the pursuit point, and
o
′

is the current speed of the pursuit point in the lateral direction.
The pursuit point has no lateral motion before the lane changing
action starts. Therefore o

′
starts from 0. For critical damping, we

have kLC
v = 2.0 ∗

√
kLC

p . The offset coordinate of the pursuit point
will change to

o = o+
∫ t1

t0
o
′

dt, (22)

at the end of the current time step, where t0 and t1 are the start
and the end of the current time step respectively. The speed of the

160
Proceedings of the IEEE Virtual Reality 2005 (VR’05)

1087-8270/05 $20.00 © 2005 IEEE

pursuit point in the lateral direction is increased to

o
′

= o
′

+
∫ t1

t0
o
′′

dt, (23)

at the end of the current time step.
In figure 4 we show an example of the trajectory of a vehicle

during a lane change and the trajectory of the pursuit point of the
vehicle. The offset coordinate of the pursuit point changes from 0
to the target offset under control of a PD controller. We can see the
vehicle follows the pursuit point gracefully in an ”s” curve from the
centerline of the current lane to the centerline of the target changing
lane. This is consistent with the result reported by Salvucci[16]
from driving simulator data generated with real drivers.

0 20 40 60 80 100 120 140 160

0

0.5

1

1.5

2

2.5

3

3.5

4

x

y

track of pursuit point
track of a vehicle

Figure 4: The trajectories of a virtual vehicle and its pursuit point

during a lane change on a straight road

6.2 Combining Orientation Behaviors

In the section 5.4, we describe how the three behaviors that control
acceleration are combined by selecting the minimum acceleration
produced by the active behaviors. This conservative strategy works
because the underlying constraints can be treated as inequality con-
straints (i.e. vehicles should drive less than the speed limit, follow
no closer than the following distance, and stop before the intersec-
tion). By selecting the minimum acceleration we simultaneously
satisfy all of the implicit inequality constraints.

The choice of steering direction cannot be framed in the same
way. The driver must make an unequivocal commitment to either
track the current lane or steer to an adjacent lane. Thus, we need
a decision rule to select one action or another. The preemption
rules in 17 and 19 give the basis for deciding whether or not to
change lanes. Once this decision is made and the action is initiated,
lane tracking is disabled and the lane change controller is engaged.
When the vehicle has completed the lane change and is prepared to
track it’s new path, control reverts back to lane tracking.

6.3 Interactions Among Steering Behaviors

During initial testing of the lane changing behavior we discovered
unanticipated interactions between the lane changing and follow-
ing behaviors. Further analysis revealed two sources of trouble.
The first problem was that the following behavior unnecessarily in-
hibited acceleration once a lane change action had been initiated.
The problem was most apparent when a vehicle approached a slow
moving or stopped vehicle and had been unable to change lanes be-
cause of the density of traffic in adjacent lanes. Once a follower has
reached its desired following distance and had matched the speed of
the leader, the following controller in formula 10 prohibited accel-
eration. As a consequence, when the opportunity to pass did present
itself, the follower could not overtake the leader until it had moved

out of the leader’s lane. This led to sluggish lane changing behavior
that looked unnatural. Human drivers appear to avoid this trap by
either leaving additional space between themselves and slow mov-
ing drivers so that they have more maneuvering room or by relax-
ing the following distance and approaching the leader as they turn
into the adjacent lane. We’ve implemented the second approach by
creating a link between the lane change and following behaviors.
When a lane change is initiated, the desired following distance is
reduced permitting the vehicle accelerate and overtake the follower
as it turns into the adjacent lane. In addition, we disable the follow-
ing behavior when the follower has a clear trajectory to the adjacent
lane. In [18], we present a method to compute the visibility of the
leader. As the follower steers around the leader, we compute obsta-
cles in a beam representing the forward trajectory of the follower’s
vehicle. When the leader is no longer in this beam, we suspend the
following behavior for the duration of the lane change action.

An undesirable side effect of reducing the following distance is
that there is an increased potential for a collision should the leader
abruptly decelerate. To address this danger, we also heighten the
responsiveness of the controller by increasing k f

p in formula 10.
This stiffens the controller and leads to quicker responses should
the leader unexpectedly decelerate.

The second way in which the lane changing and following be-
haviors interacted was related to the switch in leaders as the fol-
lower departed one lane and entered another. In our initial imple-
mentation, the lane changing vehicle was assigned to a single lane
based on the position of its center of mass. This meant that at any
instant, it had a single leader. The consequence for lane changing
was that there was a sudden change in leader as the vehicle crossed
the threshold between the lanes. This sometimes resulted in abrupt
deceleration when the following behavior discovered an unveiled
threat in the new lane. To address dual constraints of leaders in the
old and new lanes, we now activate a second following behavior in
the new lane when the lane change action is initiated. The two fol-
lowing behaviors execute in parallel until the follower has satisfied
to visibility constraint presented above.

The interaction between the lane changing and following behav-
iors is important because it demonstrates the interrelatedness of
component behaviors. For the most part, behaviors run as inde-
pendent processes. However, there are times when actions require
coordination between behaviors. Based on our experience to date,
we conjecture that these interactions are most likely to occur during
periods of transition such as in lane changing when a vehicle leaves
one stream of traffic and enters another.

7 RESULTS AND DISCUSSION

This paper presents five steering behaviors for controlling the au-
tonomous traffic on simulated roadways. Three of the behaviors
(cruising, following, and intersection) influence the acceleration of
the vehicle. The other two (tracking and lane changing) determine
the steering angle. The five behaviors run independently with no
explicit supervisory control and with just a few simple mechanisms
to coordinate the interactions among the behaviors. Steering be-
haviors rely on prior planning to make choices about which roads
to take represented in the vehicle’s route and a kinematic model to
move the vehicle consistent with the control parameters.

We’ve tested the aggregate behavior in a wide variety of traffic
conditions on simulated city and highway road networks. The code
is exceptionally robust. In hundreds of hours of tests, we’ve had no
failures or aberrant behavior. In most respects, the traffic distribu-
tions and patterns are plausible as compared to real roadways. We
comment on a few exceptions below.

We attribute much of our success in behavior modeling to having
a good underlying foundation of roadway representations. The rib-
bon structure of roads and intersection corridors provides a natural

161
Proceedings of the IEEE Virtual Reality 2005 (VR’05)

1087-8270/05 $20.00 © 2005 IEEE

frame of reference for driving behaviors. Local orientation is ex-
plicitly represented, relative distances along the road are simple to
compute, and the cross-sectional lane structure maps onto the lat-
eral offset dimension making it easy to move between lanes and to
determine relative positions of vehicles on neighboring lanes. The
ribbon network consisting of interconnected roads and intersection
corridors provides a natural basis to construct the egocentric repre-
sentation that simplifies steering behaviors by blending roads and
intersections into a single, uniform path. Map directions are eas-
ily constructed from the road network and used to guide immediate
choices of lane or corridor.

One of the challenges in representing roadways and program-
ming behaviors to drive on them is dealing with the many different
ways intersections are formed. One approach to coping with the
variety has been to create specialized representations for different
intersection types and code a separate behavior to handle each con-
figuration [9]. In contrast, we have aimed to develop generic repre-
sentations of road network and general purpose behaviors to drive
on them. To test this approach, we’ve tried our behaviors on 4-way
intersections, T-junctures, Y-split intersections, single lane merges,
and single lane exits.

Highway merges and exits presented a modeling and behavior
challenge because they share properties of both roads and intersec-
tions. From the perspective of vehicles on the through lanes, the
road continues through the merge area. However, from the perspec-
tive of the merging vehicle, the change in road is similar to an in-
tersection. Because of the change in topology of the road network,
we needed to introduce an intersection to connect road segments to-
gether. Our solution was to treat the merge area as a road (including
a merge lane) spliced into the highway. The intersections that con-
nect the merge segment to the rest of the highway are lines with no
width. These zero-area intersections provide the connective struc-
ture while preserving the road-like properties of the highway. With
this design, merging and exiting are well handled as mandatory lane
changes. We believe the flexibility to model many different kinds
of intersections is a strength of our approach.

While individual vehicles demonstrate plausible driving behav-
iors, we discovered that strict adherence to the rules of the road can
lead to unusual traffic patterns. The cautiousness of our intersection
behaviors sometimes caused turning vehicles to wait through many
light cycles for a safe gap when traffic was dense. By including
shoulder periods in the light cycle when all sides see red, we were
able to loosen gap acceptance rules so that at least one car in each
lane crossed the intersection during each green light.

One of the consistent observations made about demonstrations
of our traffic is how well-behaved our drivers are. As is often the
case with computer generated graphics, the idealized world of syn-
thetic drivers is too perfect. We believe the cluster of behaviors we
present in this behavior provide ample opportunity to create plau-
sibly diverse behaviors by varying control values (for example by
adding noise to the output of controllers) and by varying controller
parameters such as controller gains and preference values for speed,
following distance, lane change decisions, acceptable gaps, etc. In
future work, we plan to investigate techniques to exploit the many
degrees of freedom in our behaviors to generate a more natural ap-
pearance characteristic of real traffic.

8 ACKNOWLEDGEMENTS

This material is based on work supported through National Science
Foundation grants CDA-9623614, INT-9724746, EIA-0130864,
IIS-0428856, and IS-0002535 and National Center for Injury Pre-
vention and Control/Centers for Disease Control and Prevention
grant R49/CCR721682.

REFERENCES

[1] K. I. Ahmed. Modeling Driver’s Acceleration and Lane Changing
Behavior. PhD thesis, Massachusetts Institute of Technology, 1999.

[2] B. Blumberg amd T. Galyean. Multi-level direction of autonomous
creatures for real-time virtual environment. In ACM Siggraph, pages
47–54, Aug 1995.

[3] N. Badler, B. Webber, W. Becket, C. Geib, M. Moore, C. Pelachaud,
B. Reich, and M. Stone. Planning and parallel transition networks:
Animation’s new frontiers. Computer Graphics and Applications:
Proc. Pacific Graphics’95, pages 101–117, 1995.

[4] E. Boer, N. Kuge, and T. Yamamura. Affording realistic stopping be-
havior: A cardinal challenge for driving simulators. In Proceedings of
1st Human-Centered Transportation Simulation Conference, Novem-
ber 2001.

[5] R. C. Coulter. Implementation of the pure pursuit path tracking al-
gorithm. Technical report, The Robotics Institute, Carnegie Mellon
University, 1992.

[6] J. J. Craig. Introduction to Robotics: Mechanics and Control.
Addison-Wesley, 1989.

[7] J. Cremer, J. K. Kearney, and Y. Papelis. A framework for behavior
and scenario control in virtual environments. ACM Transactions on
Modeling and Computer Animation, (3), 7 1995.

[8] J. Cremer, J. K. Kearney, and P. Willemsen. Directable behavior mod-
els for virtual driving scenarios. Transactions of the society for com-
puter simulation international, (2), 6 1997.

[9] S. Donikian. Vuems: a virtual urban environment modeling system.
Computer Graphics International, pages 84–92, June 1997.

[10] S. Donikian and E. Rutten. Reactivity, concurrency, data-flow
and hierarchical preemption for behavior animation. Programming
Paradigms in Graphics’95, Eurographics Collection, 1995.

[11] X. Fang, H. Pham, and M. Kobayashi. Pd controller for car-following
models based on real data. In Proceedings of 1st Human-Centered
Transportation Simulation Conference, November 2001.

[12] M. Lemessi. An slx-based microsimulation model for a two-lane road
section. In Proceedings of the 2001 Winter Simulation Conference,
March 2000.

[13] J. M. Plumert, J. K. Kearney, and J. F. Cremer. Children’s percep-
tion of gap affordances: Bicycling across traffic-filled intersections in
an immersive virtual environment. Child Development, 75(4):1243–
1253, 2004.

[14] C. W. Reynolds. A distributed behavior model. Computer Graphics,
21:25–34, 1987.

[15] C. W. Reynolds. Steering behaviors for autonomous characters. In
proceedings of Game Developers Conference, 1999.

[16] D. D. Salvucci and A. Liu. Time course of a lane change: Driver
control and eye-movement behavior. Transportation Research, March
2002.

[17] R. Sukthankar. Situation Awareness for Tactical Driving. PhD thesis,
Robotics Institute, Carnegie Mellon University, 1997.

[18] H. Wang. Efficient Roadway Modeling and Behavior Control for Real-
time Simulation. PhD thesis, The University of Iowa, 2004.

[19] H. Wang, J. K. Kearney, and K. Atkinson. Arc-length parameterized
spline curve for real-time simulation. In Proceedings of 5th interna-
tional conference on Curves and Surfaces, pages 387–396, 2002.

[20] H. Wang, J. K. Kearney, and K. Atkinson. Robust and efficient compu-
tation of the closest point on a spline curve. In Proceedings of 5th in-
ternational conference on Curves and Surfaces, pages 397–406, 2002.

[21] H. Wang, J. K. Kearney, J. Cremer, and P. Willemsen. Steering au-
tonomous driving agents through intersections in virtual urban envi-
ronments. In Proceedings of 2004 International Conference on Mod-
eling, Simulation and Visualization Methods, pages 10–16, June 2004.

[22] P. Willemsen, J. K. Kearney, and H. Wang. Ribbon networks for mod-
eling navigable paths of autonomous agents in virtual urban environ-
ments. In Proceedings of IEEE Virtual Reality Conference, pages 79–
86, March 2003.

[23] P. J. Willemsen. Behavior and Scenario Modeling For Real-Time Vir-
tual Environment. PhD thesis, The University of Iowa, 2000.

[24] J. Wit, C. D. Crane, and D. Armstrong. Autonomous ground vehicle
path tracking. Journal of Robotic Systems, (8):439–449, July 2004.

162
Proceedings of the IEEE Virtual Reality 2005 (VR’05)

1087-8270/05 $20.00 © 2005 IEEE

