
Ribbon Networks for Modeling Navigable Paths of Autonomous Agents in
Virtual Urban Environments

Peter Willemsen
School of Computing

University of Utah
willemsn@cs.utah.edu

Joseph K. Kearney
Dept. of Computer Science

University of Iowa
kearney@cs.uiowa.edu

Hongling Wang
Dept. of Computer Science

University of Iowa
howang@cs.uiowa.edu

Abstract

This paper presents a real-time database modeling
complex networks of intersecting roads and walkways in
urban virtual environments. The database represents in-
formation about the layout of streets and sidewalks, the
rules that govern behavior on roads and walkways, and
the locations of agents with respect to road and sidewalk
structures. This information is used by programs that con-
trol the behavior of autonomous vehicles and pedestri-
ans populating the virtual urban environment. Roads and
sidewalks are modeled as ribbons in space. The ribbon
structure provides a natural coordinate frame for defining
the local geometry of navigable surfaces. This geometry
is important for way finding and also forms the geomet-
ric basis on which spatial relationships among agents are
defined. The database includes a powerful run-time in-
terface supported by robust and efficient code for locat-
ing objects on the ribbon network, for mapping between
Cartesian and ribbon coordinates, and for determining
behavioral constraints imposed by the environment.

1. Introduction

Building dynamic, active content for use in virtual
environments is a difficult and time consuming process.
Quite often, the information required for programming the
behaviors that might populate such environments, such as
vehicle or pedestrian navigation, is not easily computed
or inferred from sets of polygons into a usable form. Such
behavior codes are generally complex and require signifi-
cant spatial, logical, and socio-cultural information about
the environment. The research addressed in this paper in-
volves creating a run-time environment database to facili-
tate behavior programming in virtual environments. This

Figure 1: Virtual urban environment.

work bridges a gap between the visual, polygonal model
and the needs of autonomous agents to gain spatial aware-
ness.

In the real world, much of our way finding in urban en-
vironments occurs on ribbon-like pathways such as roads,
sidewalks, and alleys. These pathways wind through cities
meeting and crossing other pathways. They structure the
movements of travelers and provide a frame of reference
for determining local spatial relationships. Social conven-
tions for organizing interactions on roadways and walk-
ways rely on having a shared understanding of this frame
of reference. For example, in many societies we walk and
drive on the right side of a sidewalk or road. In order to
traverse pathways in a virtual environment, autonomous
agents must understand the spatial structure and local ge-
ometry of navigable routes. To travel safely, they must be
aware of nearby agents and obstacles.



This paper presents a scheme for representing networks
of ribbon-like pathways to support behavior and scenario
programming in virtual environments. The scheme en-
codes (1) geometric information about the shape of path-
ways, (2) topological information about interconnections
among pathways, (3) logical information encoding rules
governing behavior on the pathways, and (4) occupancy
information giving the locations of nearby objects on the
pathway.

Because we focus on real-time, interactive simulation,
a high premium is placed on robustness and efficiency.
A database employing the scheme has been implemented
in the Hank virtual environment software and rigorously
tested in psychological studies investigating the behavior
of children and adults riding a virtual bike on roadways
populated with simulated vehicles.

2. Related Work

Our work builds on two related bodies of research: ur-
ban modeling aimed at animating humans in virtual envi-
ronments and road modeling for driving simulation. In
the spirit of Farenc et al’s notion of informed environ-
ments, we embed information in the representation of the
roads and sidewalks to guide agent behaviors [11]. In their
scheme, behavior content is connected to the hierarchical
scene graph used for rendering. In contrast, our repre-
sentations are independent (but correlated with) the scene
graph, relatively flat, and emphasize the 3D ribbon-like
structure of pathways. This simplifies motion planning
and allows us to build very fast, robust computations for
accessing local geometry, the positions of nearby objects,
and recovering embedded content that guides agent deci-
sion making and actions.

Our research is closely tied to research in modeling ur-
ban roadway environments [2, 3, 5, 14, 19]. Civil engi-
neering guidelines specify design standards for road con-
struction based on three planar shapes: straight, arc of a
circle, and spiral [1, 10]. Modern roads are composed of a
sequence of straight and curved sections with a transition
spiral interposed between them to smoothly blend from
one curvature to another curvature. A desirable prop-
erty of roads built to this standard is that curvature varies
smoothly along the road contour. One problem with this
approach is that many real roads do not conform to the de-
sign standards (especially roads in older urban areas). The
work presented here uses a spline based representation,
but provides code to translate standard road specifications
into accurate spline approximations.

Donikian et al. developed a comprehensive system for
modeling complex urban networks of streets, sidewalks,
and tramways called the Virtual Urban Environment Mod-
eling System (VUEMS) [9, 15]. As in our work, the un-
derlying geometry of pathways in VUEMS is based with
interconnected ribbon-like surface segments. Our work
extends this approach from 2D to 3D, addresses computa-
tional difficulties in the parameterization and coordinate
transforms, and introduces overlay ribbons to simplify
steering and collision avoidance behaviors.

3. Representing Ways as Ribbons in Space

Our representation of urban streets and sidewalks is
based on a network of interconnected ribbons. Each rib-
bon represents a segment of a ”way” (a roadway or walk-
way). The ribbon defines the geometry of a navigable
surface and gives a local orientation to the way. The
ribbon channels pedestrian and vehicle traffic into paral-
lel streams by defining two preferred directions of travel
(along the two opposing tangents of the central axis of
the ribbon). It is important to emphasize that the repre-
sentation places no restrictions on agent behaviors. Au-
tonomous vehicles and pedestrians can choose to move
across a ribbon, for example, to change lanes.

In addition to representing geometric information for
navigation and route planning, the ribbon provides a frame
of reference for defining spatial relations among occu-
pants of the way. Thus, an oncoming vehicle heading
straight at us in an adjacent lane on a curved road poses no
threat because we expect it to remain in its lane and pass
by us.

We represent a ribbon by an annotated 3-dimensional
space curve. This curve acts as a central axis or spine
for the way. A surface normal is defined at each point
on the curve allowing the ribbon to twist about its spine.
The ribbon establishes a curvilinear coordinate system in
which 3-dimensional points are expressed in coordinates
of distance along the spine, D, offset on the ribbon surface
from the spine, O, and loft (displacement above or below
the ribbon), L. Figure 2 illustrates the ribbon based frame
of reference.

Some simulation computations are most naturally ex-
pressed in Cartesian coordinates. For example, the dy-
namics code that computes object motions from control
parameters set by object behaviors is most simply com-
puted in Cartesian coordinates. Other computations, such
as behavior code that tracks roads and avoids obstacles,
require that object locations be expressed in ribbon co-



ordinates. Because these computations are performed at a
very high frequency, it is essential to have efficient and ro-
bust code to map from ribbon coordinates to global Carte-
sian coordinates and to compute the inverse mapping from
global Cartesian coordinates to local ribbon coordinates.

To avoid self-intersections, the width of a way is re-
stricted to be less than the radius of curvature of the spine.
As a consequence, there is a single nearest point on the
spine for all points on the surface of a way. Thus, the
mapping from Cartesian coordinates to way coordinates
is unique.

3.1. The Guts of Ribbon Computations

The choice of a mathematical representation for the
ribbon axis is critical to the efficiency and effectiveness of
database computations. Parametric cubic splines are com-
monly used to represent space curves in computer graph-
ics. They are flexible, smooth, differentiable, and simple
to evaluate. In addition to these properties, it is important
that the ribbon axis be parameterized by arc-length so that
distances can be easily computed from ribbon coordinates.

Parametric spline curves are not, in general, parame-
terized by arc length. Most approaches to compute arc
length or to reparameterize a curve by arc length are too
inefficient to be used in real-time applications. In [16]
we present a simple and efficient technique to generate
approximately arc-length parametrized spline curves that
closely match the shapes characteristic of road and side-
walk contours. A desirable byproduct of the approach
is that the component cubic segments of the spline have
equal arc length. This makes indexing of segments very
efficient.

Following notation conventions used in robotics [6],
we identify the coordinate system in which a point is
expressed with a preceding superscript. Thus, Cp =
(Xp, Yp, Zp) represents the point p in Cartesian coordi-
nates and Rp = (Dp, Op, Lp) represents the point p in
ribbon coordinates.

The mapping from ribbon coordinates to Cartesian co-
ordinates is computed by a simple three step process.
Given ribbon coordinates for a point Rp = (Dp, Op, Lp):

1. Compute a point, Cp1 = (Xp1
, Yp1

, Zp1
), on the

ribbon axis, Q(s), at distance Dp by evaluating the
spline curve at Q(Dp).

2. Compute a point, Cp2 = (Xp2
, Yp2

, Zp2
), displaced

from p1 in a direction perpendicular to both the rib-
bon axis and the ribbon normal at p1 by offset Op.

p

Op p
1

p
2

L

p

Dp

O

L
D

Figure 2: Curvilinear coordinate system based on a
ribbon structure.

3. Compute a point, Cp = (Xp, Yp, Zp), displaced from
p2 in the direction of the ribbon normal at p2.

The point Cp is the Cartesian representation of the point
Rp = (Dp, Op, Lp) in ribbon coordinates.

The inverse mapping (from Cartesian to ribbon coor-
dinates) is usually a serious computational bottleneck in
driving simulators. The steps to compute the inverse map-
ping mirror those for the forward mapping. Given Carte-
sian coordinates Cp = (Xp, Xp, Zp):

1. Compute the closest point on the ribbon axis,
Q(Dp1

) = Cp1 = (Xp1
, Yp1

, Zp1
). This point has

ribbon coordinates: Rp1 = (Dp1
, 0, 0). Note that

Dp1
= Dp.

2. Project the Cartesian point, Cp, onto a line perpen-
dicular to both the ribbon axis and the ribbon normal
at Q(Dp) to get the nearest point on the ribbon sur-
face, Cp2 = (Xp2

, Yp2
, Zp2

). The distance between
Cp1 and Cp2 gives the offset Op.

3. Compute the distance from Cp to the point Cp2 on the
ribbon surface. This gives the loft Lp.

The key component in this mapping is the computa-
tion of the closest point on the central axis of the rib-
bon from Cartesian coordinates (step 1 above). Conven-
tional optimization techniques such as Newton’s method
or quadratic minimization work well most of the time.
However, we found that the standard techniques consis-
tently fail (converge very slowly or diverge) at a small
number of points on many ordinary ribbons. Because of
the frequency with which the mappings are performed (i.e.



thousands of times a second for a modestly complex sim-
ulation) even these rare problematic instances are likely to
occur with regularity. This leads to unacceptable compu-
tational delays and can halt a simulation if the optimiza-
tion procedure is not terminated.

To address weaknesses with standard optimization
techniques, we developed a two stage technique that com-
bines quadratic minimization and Newton’s method. This
method finds the closest point on the spine of the rib-
bon with very high reliability in a small number of iter-
ations [17].

To facilitate modeling of roads from standard engi-
neering specifications, we provide interfaces to construct
spline segments from straight, arc of circle, and spi-
ral parameters. Adjacent segments can be concatenated
together to form multi-piece ribbons. Database man-
agement software allows these composite ribbons to be
treated as a single, uniform ribbon.

3.2. Coping with Cracks

Small numeric errors in modeling can cause cracks and
overlaps to appear along the borders where ribbons con-
nect to other ribbons or intersections. A point very near
the boundaries of two logically connected ribbons may
map onto one, both, or neither ribbons. Numeric error
by itself is not a significant problem; for the most part,
virtual environments do not demand that object positions
be known with very high precision. (The exception is high
fidelity dynamics computations used to drive haptics de-
vices and motion platforms.) Cracks pose the greatest
challenge. If a Cartesian point maps onto neither of the
adjoining ribbons it disappears from the logical pathway
network. When the point represents the location of an
agent, this disappearing act can disrupt the behavior of
this agent as well as other nearby agents.

We solve this problem by giving an object an imper-
ceptible nudge whenever it lands in a crack. The nudge is
sufficiently minute that it creates no difficulties with con-
trollers and is not noticeable to viewers. This simple ad-
justment eliminates a thorny problem.

3.3. Ribbon Structure and Attributes

The ribbon structure provides a framework in which to
embed logical information about the properties of ways.
This information is important to inform behaviors about
the characteristics of the pathways they traverse.

The cross-section of a ribbon is decomposed into lanes
that serve to channel traffic flow. Lanes carry attributes
that indicate their width and typical function, e.g. vehi-
cle lane, parking lane, sidewalk, or boulevard. In the cur-
rent implementation, ways have a constant cross-sectional
profile. The model can be extended to permit varying lane
widths by adding supplemental functions to compute lane
widths and offsets at a distance Dp along the way.

Longitudinal attributes encode markings and features
that govern the rules of the roads. This includes speed
limits, passing zones, stop lines, and the location of traffic
control objects such as flag men. Wayside features are
parameterized by ribbon coordinates and provide ribbon-
relative information to behavior programs. Tying the data
to the ribbon structure affords agents convenient access to
the attributes regulating appropriate behavior on a road or
walkway.

4. Intersections

Ways connect to other ways through intersections. In
contrast to roadways and walkways, an intersection has
no central axis and hence imposes no local orientation.
An intersection defines a surface area with a well-defined
boundary along which incident ways connect to it.

The ribbons that bundle road and sidewalk lanes
together terminate at the boundary of an intersection.
Agents entering the intersection must choose an appropri-
ate lane to exit the intersection and then plot a path across
the intersection from the point of entry to the point of de-
parture. To guide agents across an intersection, we overlay
the intersection with corridors (essentially invisible one-
lane roads) that splice together the lanes of incoming and
outgoing ways. Agents track corridors through intersec-
tions to reach outgoing ways.

Intersections provide queries to determine how incom-
ing and outgoing lanes interconnect. Agents use this in-
formation to plan routes through the way network.

Intersections pose a difficult challenge for agents
[4]. Because corridors cross and merge with one an-
other, agents must be alert for potential collisions with
other agents traversing the intersection. Formal right-
of-way rules and informal social conventions are critical
to the safe and orderly flow of traffic through intersec-
tions. Right-of-way rules prioritize movement of vehicles
through intersections on the basis of arrival time, incom-
ing and outgoing lanes, signage, and the state of signals
that regulate traffic flow. Generally accepted social con-
ventions help to avoid problems where the formal rules



are ambiguous or incomplete.
To assist agents in determining priorities, we annotate

corridors with right-of-way information. This includes in-
formation about signs and traffic control devices that reg-
ulate passage on corridors and information about the re-
lationships between corridors. Traffic control devices and
signage define constraints on corridor traversal. For exam-
ple, a stop sign indicates that approaching vehicles should
stop at the entrance to the corridor and yield to traffic on
unrestricted corridors that cross or merge with the corridor
to be taken.

The traffic control state tells agents what rule currently
applies to a corridor (stop, yield, go, protected go, etc.),
The internal structure of an intersection sets a context for
interpreting what a rule means. For example, in a four-
way stop example, the agent must know what corridors
cross or merge with the corridor to be taken. The stopped
agent must wait until there are gaps on all these corridors
sufficiently large to permit the agent to safely transit its
corridor. To compute corridor gaps, the agent must inspect
the corridors and the incident lanes that feed the intersec-
tion corridor. To assist agents in applying right-of-way
rules, corridors are annotated with information about de-
pendency relations between corridors. An agent waiting
at a stop sign examines the dependency relations on the
corridor to be taken to find the crossing and merging cor-
ridors that have right of way. Object behaviors are respon-
sible for selecting actions that respect traffic control state
consistent with the relationships encoded in the corridor.

4.1. Connecting Ways to Intersections

Ways connect to intersections at attachment points on
the boundaries of intersections. The beginning or end-
ing point of the ribbon axis (either end will do) must be
coincident with a fixed connection point on the edge of
the intersection. Surrounding the fixed point of attach-
ment on the intersection boundary are floating ”junctures”
to which lanes of the incident ribbon connect. The num-
ber and type of junctures on an edge is predetermined in
the intersection definition. Only roads with profiles that
match the junctures in number and type can be connected
to the intersection at this attachment point. By saying that
the junctures are floating, we mean that the order of the
junctures is set, but the junctures can slide along the edge
to match roads with different lane widths.

Corridors start and end at junctures. By fixing the num-
ber and order of junctures along the boundary of the in-
tersection, we can specify the interconnection topology

Bicycle Corridors
Vehicle Corridors

Pedestrian Corridors

Figure 3: Example hierarchical intersection.

(how junctures are linked by corridors) and dependency
relations among corridors without knowing what specific
roads will be connected to the intersection. This greatly
simplifies modeling because many intersections come in
standard configurations. These can be duplicated, trans-
formed, and easily modified to adapt to new configura-
tions. For many intersections, we can compute corridor
geometry automatically using Hermite cubic spline curves
constructed from the attachment points and tangent di-
rections of the connecting ribbons. This curve is then
sampled and converted into an arc-length parameterized
spline. Complicated corridors must be explicitly modeled
by specifying a series of interpolation points in the inter-
section through which the corridor must pass.

In addition to modeling road crossings, we use inter-
sections to add or delete lanes on a continuous stretch of
pavement and to close a loop by connecting two ends of a
road together. To add or delete a lane, we join two separate
roads with n and n+1 lanes. We’ve found it convenient to
build the intersection so that the endpoints of connecting
lanes are coincident. Thus, the intersection becomes a line
with lanes attached to junctures on both sides and, conse-
quently, there are no corridors or dependency relations.
The n + 1st lane terminates on the intersection boundary.
If the lane is deleted, vehicles must change from the ter-
minating lane to an adjacent lane before reaching the in-
tersection. Vehicles can choose to change to an added lane
after they cross the intersection. Zero-length intersections
provide a convenient means to specify the topological re-
lationship between connecting roads with differing num-
bers of lanes while maintaining a simple and consistent
interface to the database.

Intersections are hierarchically structured. Thus, an in-
tersection can contain other intersections. The corridors
of the parent intersection link to attachment points on the
sub-intersection. We’ve found the hierarchical structure



Figure 4: Path structure overlayed onto the ribbon
network.

most useful in modeling sidewalk structures. Figure 3 il-
lustrates intersection topology.

5. Paths – Overlay Ribbons

Agents rely on the ribbon structure of a way to de-
termine where they are, where they’re going, and what’s
around them. The transitions at intersection boundaries
can make it cumbersome to extract and interpret this in-
formation. The change in coordinate systems that happens
as attention shifts from a way to an intersection (on enter-
ing an intersection) and from an intersection to a way (on
exiting the intersection) causes behavior code to be clut-
tered with bookkeeping chores. For example, to cross an
intersection, a vehicle must track a multi-segment contour
composed of a lane of a way, an intersection corridor to
which it connects, and an outgoing lane of another way.
In addition, collision avoidance behaviors must monitor
other objects following the same route ahead of the vehi-
cle. Adding additional complication, the coordinate sys-
tems of the connected ribbons may be oriented in oppos-
ing directions (i.e. linked head to head or tail to tail) mak-
ing distance computations tricky and error prone.

From the egocentric view of an object traversing the
road network, queries such as ”Where am I?”, ”Where am
I going?”, ”What’s around me?”, and ”What rules apply
to me?” are most naturally understood with respect to the
near-term route the object plans to take. From the object’s
point of view, this route forms a natural frame of reference
for navigation and sets a context for interpreting spatial
relations and right of way rules.

To facilitate behavior programming, we created a data
object called a path that represents the short-term, in-

tended route of an object. A path is a one-lane ribbon
overlayed on the road network. Paths consist of a com-
position of lanes on ways and intersection corridors that
define a single, continuous coordinate system. As an ex-
ample, in Figure 4, the path for a vehicle making a left
turn is shown with shading.

A path provides a local, egocentric coordinate sys-
tem for database queries. Steering behaviors control mo-
tion trajectories by aiming for a succession of look-ahead
points located on the path some distance ahead of the ob-
ject’s current location. By formulating the look-ahead
queries with respect to the composite path, we avoid awk-
ward bookkeeping to handle transitions from road to in-
tersections and intersections to roads. The database maps
path queries into the corresponding way or intersection
queries and returns the results. As a consequence, the
steering code is enormously simplified.

Similarly, path-based occupancy queries return infor-
mation about relative positions of other objects on the
path. One commonly used query determines the next ob-
ject in front of the reference object (called the leader of the
object.) As with geometric queries, the path-based occu-
pancy queries eliminate the need to cope with road and in-
tersection boundaries throughout the behavior code. The
path provides a smooth, continuous frame of reference.

In contrast to the permanence of roads and intersec-
tions, paths are temporary constructions. They are fre-
quently modified as an agent moves through the environ-
ment and reformulates its plans based on traffic condi-
tions, impulses, and instructions from directors that or-
chestrate scenarios [8]. The database provides operations
to assist in path construction and modification.

5.1. Occupancy

An important advantage of the ribbon framework is
that it naturally defines spatial relationships among occu-
pants. This is essential for the virtual environment since
dynamic objects must know where they are and where
other nearby objects are located. For example, the ob-
ject in immediately ahead of another object on a path is
important for following behavior.

There are two general forms of occupancy queries. The
first form returns the first object on a way between point
a and point b. The second form returns an ordered list of
all objects on a way between point a and b. The way can
be a road, an intersection corridor, or a path. The queries
are oriented from point a to point b and can be reversed by
swapping the order of points a and b. Moreover, queries



Figure 5: An adult riding through virtual “Biketown”.

can be restricted to a single lane of a multi-lane road.
Queries are made efficient by exploiting the spatial

structure of ways. As objects enter the virtual environ-
ment, they are added to an occupancy list for a way. On
each iteration of the simulation, occupancy for each way
is updated based on new object positions.

6. A Modeling Language for Way Networks

A language that describes way networks is imple-
mented and is used with the Hank virtual environment
system. The language preserves the structure of way net-
works and includes the ability to create intersections and
road forms which can be instanced and transformed so
that they fit together. The language attempts to mimic tra-
ditional instancing and templating so that ways, intersec-
tions, and lane definitions can be reused within the model
space. Complete syntactic and semantic details for the
language are presented in [18].

7. Results

The ribbon network presented in the preceding sec-
tions forms the basis of the urban environment model in
our real-time simulation software, Hank. In addition to
database modeling of city streets and sidewalks, Hank in-
cludes modules for real-time process scheduling, for sim-
ulating the dynamics of scene entities, for rendering im-
ages on large projection screens, and a substrate for mod-
eling reactive and intentional behaviors through Hierar-
chical Concurrent State Machines (HCSM) [7]. The Hank
software drives our immersive virtual bicycle riding envi-
ronment shown in Figure 5.

Our research broadly focuses on the use of virtual en-
vironments as laboratories for the study of human behav-

ior. We are currently using the bicycle simulator to con-
duct experiments investigating the ability of children and
adults to negotiate traffic-filled roadways.

Synthetic traffic is generated by populating the roads
with vehicles controlled by independent, autonomous
driving behaviors. Vehicle behaviors query the database
to plan paths through the road network, to steer along
roads and corridors, to obey speed limits, to detect ve-
hicles ahead on their path and follow at a safe distance, to
observe the state of traffic lights and stop accordingly, and
to yield right of way as they cross intersections. Intersec-
tion crossing behaviors use corridor dependency relations
to determine priorities. When intersection navigation re-
quires crossing or merging with a higher priority corridor,
vehicles wait for gaps in the traffic sufficient to permit safe
traversal.

In other work, we are examining methods to control
the behavior of autonomous walkers traveling alone or in
small groups on networks of ribbon walkways [12, 13].

In addition to behavior programming, the database is
also important in configuring scenarios to meet the needs
of experimenters. In order to compare results across sub-
jects, it is important that the essential aspects of the simu-
lation be replicated from trial to trial. Autonomous vehi-
cles are dynamically created and removed from the envi-
ronment during the simulation by director objects. These
disembodied agents are responsible for making sure the
right things happen at the right place and time. The ribbon
structure provides a natural way to specify experimental
requirements for object placement and the sites for criti-
cal actions.

The database software has undergone rigorous testing
under the stringent demands of psychological studies. In
six months of running an average of about 20 hours a week
we have had no failures in database computations. The
most costly computations are the functions that map from
Cartesian to ribbon coordinates. We’ve found our imple-
mentation sufficiently fast to run dozens of vehicles in real
time with very high accuracy.

While performance is very important, the most critical
test of the approach is the ease of use in coding complex
behaviors. Our experience has been enormously positive.
Ribbon based coordinate frames provide a simple and nat-
ural means to situate objects in their environment.

8. Conclusion

Engaging virtual urban environments need street life –
cars that drive and pedestrians that stroll. Creating an-



imated, autonomous agents that realistically locomote on
foot or on wheel and that plausibly interact with each other
and with human participants remains an enormously dif-
ficult challenge. A good conceptual model of the urban
landscape forms a key building block on which to develop
behavioral ”street sense”.

To adeptly maneuver through cities, autonomous
agents need to understand their whereabouts. To gain
this situational awareness, agents must be able to ascer-
tain: ”What routes are accessible to me?”, ”Where other
objects are in relationship to my intended route?”, and
”What constraints does the environment impose on my in-
teractions with other objects?”.

We believe interconnected ribbon coordinate systems
provide a natural and efficient means to situate objects
in their environment. They provide a convenient way to
represent the spatial layout of navigable pathways. Our
implementation provides a robust and efficient means to
access information about the surroundings in natural co-
ordinate frames. By embedding logical constraints in the
environment model, we provide ready access to the rules
of the road that govern object interactions.

9. Acknowledgments

The authors wish to thank Ken Atkinson for his help
on the numerical methods employed in ribbon computa-
tions and Jim Cremer for his significant contributions to
the Hank simulator and many valuable insights on behav-
ior and scenario control. We also wish to thank Joan Sev-
erson, Shayne Gelo, and Kate Kearney for creating our vi-
sual databases. This material is based on work supported
through National Science Foundation Grants CDA-96-
23614, INT-9724746, EIA-0130864, and IIS-0002535.

References

[1] B.E. Artz. An analytical road segment terrain database
for driving simulation. In Driving Simulation Confer-
ence, pages 274–284, Sophia Antipolis, France, September
1995.

[2] A.C. Bailey, A.H. Jamson, Parkes A.M., and Wright S. Re-
cent and future development of the Leeds driving simula-
tor. In Driving Simulation Conference, July 1999.

[3] S. Bayarri, M. Fernandez, and M. Perez. Virtual real-
ity for driving simulation. Communications of the ACM,
39(5):72–76, May 1996.

[4] E. Bonakdarian. Generation and Management of Ambient
Traffic in Real-Time Driving Simulation. PhD thesis, Uni-
versity of Iowa, May 2001.

[5] O. Carles and S. Espie. Database generation system
for road applications. In Driving Simulation Conference,
pages 87–103, 1999.

[6] J. J. Craig. Introduction to Robotics: Mechanics and Con-
trol. Addison-Wesley, 1989.

[7] J. Cremer, J. Kearney, and Y. Papelis. HCSM: A frame-
work for behavior and scenario control in virtual environ-
ments. ACM Transactions on Modeling and Computer
Simulation, 5(3):242–267, July 1995.

[8] J. Cremer, J.K. Kearney, and P. Willemsen. Directable be-
havior models for virtual driving scenarios. Transactions
of the Society for Computer Simulation, 14(2), 1997. Spe-
cial Issue on Multiagent Systems.

[9] S. Donikian. VUEMS: a virtual urban environment model-
ing system. Computer Graphics International, pages 84–
92, June 1997.

[10] D.F. Evans. Ground vehicle database modeling. In Real
Time Systems ’94, Paris, France, 1994.

[11] N. Farenc, R. Boulic, and D. Thalman. An informed en-
vironment dedicated to the simulation of virtual humans in
urban context. EUROPGRAPHICS, 18(3), 1999.

[12] T.R. Hostetler. Controlling Steering Behavior for Small
Groups of Pedestrians in Virtual Urban Environments.
PhD thesis, University of Iowa, August 2002.

[13] T.R. Hostetler and J.K. Kearney. Strolling down the av-
enue with a few close friends. In Third Irish Workshop on
Computer Graphics, pages 7–14, Dublin, Ireland, March
2002.

[14] G. Reymond, O. Munier, and A. Kemeny. A road descrip-
tion using reference points. In Proceedings of the first sem-
inar on traffic generation, pages 15–21, 1994.

[15] G. Thomas and S. Donikian. Modelling virtual cities
dedicated to behavioural animation. EUROPGRAPHICS,
19(3), 2000.

[16] H. Wang, J. Kearney, and K. Atkinson. Arc-length param-
eterized spline curves for real-time simulation. 5th Inter-
national Conference on Curves and Surfaces, June 2002.

[17] H. Wang, J. Kearney, and K. Atkinson. Distance calcula-
tion between space points and cubic curves. 5th Interna-
tional Conference on Curves and Surfaces, June 2002.

[18] P. Willemsen. Behavior and Scenario Modeling for Real-
Time Virtual Environments. PhD thesis, University of Iowa,
May 2000.

[19] Papelis Y. and S. Bahauddin. Logical modeling of road-
way environment to support real-time simulation of au-
tonomous traffic. In SIVE95: The First Workshop on Sim-
ulation and Interaction in Virtual Environments, pages 62–
71, Iowa City, IA, March 1995.


