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Bayes’ Theorem

For two events A and B, if we know the conditional probability

P (B|A) and the probability P (A), then the Bayes’ theorem tells that

we can compute the conditional probability P (A|B) as follows:

P (A|B) =
P (B|A)P (A)

P (B)
.

In statistics, the Bayes’ theorem is often used in the following way:

P (Unknown|Data) =
P (Data|Unknown)P (Unknown)

P (Data)
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Example: Accuracy of X-rays (continued)

Table 1: X-ray reading data

Persons without TB Persons with TB Total

+ X-ray 51 22 73

− X-ray 1739 8 1747

Total 1790 30 1820

D1: tuberculosis

D2: no tuberculosis

T +: positive X-ray

T−: negative X-ray

It is useful to find P (D1|T
+), the probability that an individual has

the disease given that he tests positive. This probability is also called

the predictive value of a positive test.

Remark: Here because of the problem of sampling bias, it is not

correct to simply estimate P (D1|T
+) based on the observed data,

i.e., the numbers given in the table. This incorrect estimate gives

22/73, which has a large upward bias and over estimates P (D1|T
+).
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We use the Bayes theorem to find P (D1|T
+). The Bayes theorem

says:

P (D1|T
+) =

P (T +|D1)P (D1)

P (T +)
.

There are two importants things here:

1. Prior probability: P (D1): the probability of TB before

having the data. This is called prior probability. Usually, a

judgement call has to be made as to what prior probability to

use. For the present problem, it seems reasonable to use the

population prevalence as the prior probability. In 1987, there were

9.3 TB cases per 100,000 population. Therefore, we specify:

P (D1) =
9.3

100, 000
= 0.000093.

2. Probability of the data given the model (the

likelihood): P (T +|D1): the probability of test positive given

the disease. This summarizes the information in the data, i.e., the

test results in our problem. Here

P (T +|D1) =
22

30
= 0.7333333

Then operationally, the Bayesian method is to make inference

based on the posterior probability, calculated from the prior

probability and the probability of the data given the model

(likelihood) using the Bayes theorem.
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We can calculate P (T +) as follows:

P (T +) = P (T + ∪ D1) + P (T + ∪ D1)

= P (T +|D1)P (D1) + P (T +|D1)P (D1).

Plug in the numbers, we get

P (T +) =
22

30
× 0.000093 +

51

1790
× (1 − 0.000093) = 0.02855717.

Therefore,

P (D1|T
+) =

0.7333333 × 0.000093

0.02855717
≈ 0.00239.

We note that

P (D1|T
+)

P (D1)
=

0.00239

0.000093
= 25.7.

So the probability that an individual with a positive X-ray has TB is

about 26 times greater than the probability for an individual randomly

chosen from the population.
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The relative risk and the odds ratio

Relative risk

RR =
P (disease|exposed)

P (disease|unexposed)
.

Here the exposure can be either environmental or genetic (or both).

P (death over 35 due to lung cancer|male smoker) = 0.002679

P (death over 35 due to lung cancer|male nonsmoker) = 0.000154

RR =
0.002679

0.000154
= 17.4.
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In genetic epidemiology, the genotypic relative risk (GRR) is an

important quantity to measure the genetic contribution to a disease.

The GRR also gives indication on how difficult it is to identify the

chromosomal regions that may harbor the disease-predisposing genes.

Suppose the genotypes at a disease-predisposing locus are AA, Aa

and aa, where the allele A increases the risk of disease. Then

GRR1 =
P (disease|Aa)

P (disease|aa)

GRR2 =
P (disease|AA)

P (disease|aa)

For the Mendelian diseases (e.g., Cystic Fibrosis, Huntington’s

disease), the GGR is very high. However, for many common diseases,

although there usually is a strong genetic component that contributes

to elevating the risk of the disease, the GRR is often relatively low.

This makes it difficult to map the genes that predispose the disease

(e.g. alcoholism, autism, bipolar).
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Odds ratio

Odds

Let

p1 = P (disease|exposed).

So p1 is the probability that an individual has the disease given that

he/she is exposed to a certain risk factor. The odds of having the

disease given exposure to the risk factor is

odds.disease(exposed) =
p1

1 − p1
.

Likewise, let p2 be the probability that an individual has the disease

given that he/she is not exposed to a certain risk factor. The odds of

having the disease given no exposure to the risk factor is

odds.disease(unexposed) =
p2

1 − p2
.
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Odds ratio

OR =
odds.disease(exposed)

odds.disease(unexposed)

=
P (disease|exposed)/[1 − P (disease|exposed)]

P (disease|unexposed)/[1 − P (disease|unexposed)]
.

The OR can also be defined as the ratio of the odds of exposure among

diseased individuals and the odds of exposure among nondiseased

individuals.

OR =
P (exposure|diseased)/[1 − P (exposure)|diseased)]

P (exposure|nondiseased)/[1 − P (exposure|nondiseased)]
.

The above two definitions are mathematically equivalent. The second

definition is useful in case-control studies.
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Proof of the equivalence of the two expressions for OR

Let D = {diseased}, D̄ = {nondiseased}

and E = {exposed}, Ē = {unexposed}.

Because

1 − P (disease|exposed) = 1 − P (D|E) = P (D̄|E)

1 − P (disease|unexposed) = 1 − P (D|Ē) = P (D̄|Ē)

1 − P (exposure)|diseased) = 1 − P (E|D) = P (Ē|D)

1 − P (exposure|nondiseased) = 1 − P (E|D̄) = P (Ē|D̄),

what we need to prove is

P (D|E)/P (D̄|E)

P (D|Ē)/P (D|Ē)
=

P (E|D)/P (Ē|D)

P (E|D̄)/P (Ē|D̄)
.

By the Bayes’ theorem, the left-hand side equals

P (D|E)/P (D̄|E)

P (D|Ē)/P (D|Ē)
=

P (E|D)P (D)
P (E) /P (E|D̄)P (D̄)

P (E)

P (Ē|D)P (D)
P (Ē)

/P (Ē|D)P (D)
P (Ē)

=
P (E|D)/P (E|D̄)

P (Ē|D)/P (Ē|D̄)

=
P (E|D)/P (Ē|D)

P (E|D̄)/P (Ē|D̄)
= Right-hand side.

This proves that the two expressions for OR are equal.
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Example: In a case control study, investigators start by identifying

individuals with the disease (the cases) and without the disease (the

controls). They then go back in time to determine whether the

exposure is question was present or absent for each individual. In

a study that examines the effects of the use of oral contraceptives

on the breast cancer, among the 989 women who had breast cancer,

273 had previously used oral contraceptives and 716 had not. Of

the 9901 women who did not have breast cancer, 2641 had used oral

contraceptives and 7269 had not.

In such a study, the proportions of individuals with and without the

disease are chosen by the investigator, therefore, the probability of

disease in the exposed and unexposed groups cannot be estimated.

However, we can estimate the probability of exposure for both cases

and controls. Thus by the second form of the OR, we can calculate

the OR of the disease of exposed verses unexposed.
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Table 2: Breast cancer example

Breast cancer

Oral contraceptive Yes No Total

Yes 273 2641 2914

No 716 7260 7976

Total 989 9901 10890

OR =
(273/989)/(1 − 273/989)

(2641/9901)/(1 − 2641/9901)

=
(273/989)/(716/989)

(2641/9901)/(7260/9901)

=
273/716

2641/7260

=
273 × 7260

716 × 2641
= 1.05.
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Relationship between OR and RR

If P (disease|exposed) ≈ 0 and P (disease|unexposed) ≈ 0, then

OR =
odds.disease(exposed)

odds.disease(unexposed)

≈
P (disease|exposed)

P (disease|unexposed)
= RR.
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Receive Operator Characteristic (ROC) Curves

• Sensitivity: the probability of a positive test given that ‘it’ is

present

• Specificity: the probability of a negative test given that ‘it’ is not

present

The purpose of the ROC analysis is to find the trade-off (usually a

threshold value) so that the levels of sensitivity and specificity are

acceptable.
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Table 3: Sensitivity and specificity of serum creatinine level for predicting

transplant rejection

Serum Creatinine (mg %) Sensitivity Specificity

1.2 0.939 0.13

1.3 0.939 0.203

1.4 0.909 0.281

1.5 0.818 0.380

1.6 0.758 0.461

1.7 0.727 0.535

1.8 0.636 0.649

1.9 0.636 0.711

2.0 0.545 0.766

2.1 0.485 0.773

2.2 0.485 0.803

2.3 0.394 0.811

2.4 0.394 0.843

2.5 0.363 0.870

2.6 0.333 0.891

2.7 0.333 0.894

2.8 0.333 0.896

2.9 0.303 0.909
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ROC curve for serum creatinine level as 
predictor of transplant rejection


