
12

Abstracting Extensible Data Types

Or, Rows by Any Other Name

J. GARRETT MORRIS, The University of Kansas, USA

JAMES MCKINNA, The University of Edinburgh, UK

We present a novel typed language for extensible data types, generalizing and abstracting existing systems

of row types and row polymorphism. Extensible data types are a powerful addition to traditional functional

programming languages, capturing ideas from OOP-like record extension and polymorphism to modular

compositional interpreters. We introduce row theories, a monoidal generalization of row types, giving a

general account of record concatenation and projection (dually, variant injection and branching). We realize

them via qualified types, abstracting the interpretation of records and variants over different row theories. Our

approach naturally types terms untypable in other systems of extensible data types, while maintaining strong

metatheoretic properties, such as coherence and principal types. Evidence for type qualifiers has computational

content, determining the implementation of record and variant operations; we demonstrate this in giving a

modular translation from our calculus, instantiated with various row theories, to polymorphic λ-calculus.

CCS Concepts: ·Theory of computation→Type theory; · Software and its engineering→Data types

and structures;

Additional Key Words and Phrases: Extensible data types, row types, row polymorphism, qualified types

ACM Reference Format:

J. Garrett Morris and James McKinna. 2019. Abstracting Extensible Data Types: Or, Rows by Any Other Name.

Proc. ACM Program. Lang. 3, POPL, Article 12 (January 2019), 28 pages. https://doi.org/10.1145/3290325

1 INTRODUCTION

The goal of extensible data types is type-safe modular software development. We want to be able
to define large software systems in terms of independent components. For example, in a compiler
for a rich source language, we might want to define individual desugaring passes independently
of the remainder of the syntax tree. However, the typing of these components should guarantee
the typing of their composition: inconsistent assumptions about the underlying AST should be
reflected as type errors, not run-time failures.

Row types provide one approach to typing extensible data types. Originally introduced to model
inheritance [Wand 1987], row types combine structural typing for records and variants with
parametric polymorphism. They achieve similar expressiveness to structural subtyping, while
maintaining a purely parametric approach to typing (and correspondingly simplifying type infer-
ence). Row types have been the subject of much theoretical effort, and have been used to provide
polymorphic variants, and types for objects, in the programming language OCaml [Garrigue 1998].
More recently, they have been applied to provide extensibility in effect type systems [Lindley and

Authors’ addresses: J. Garrett Morris, Information and Telecommunication Technology Center, The University of Kansas,

2335 Irving Hill Rd, Lawrence, KS, USA, garrett@ittc.ku.edu; James McKinna, Laboratory for Foundations of Computer

Science, The University of Edinburgh, 10 Crichton Street, Edinburgh, UK, James.McKinna@ed.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/1-ART12

https://doi.org/10.1145/3290325

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 12. Publication date: January 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3290325
https://doi.org/10.1145/3290325

12:2 J. Garrett Morris and James McKinna

Cheney 2012], to capture algebraic effects and handlers [Hillerström and Lindley 2016; Leijen 2014,
2017], and to express extensible choice and branching in session types [Lindley and Morris 2017].

Despite these successes, there are still several open problems in row types. First, there are several
differing notions of rows, particularly in the conditions on row extension (i.e., adding individual new
entries to rows). This impedes adoption of row types in other languages, as different applications
apparently require different notions of rows. Second, while there are several competing approaches
to extension, most existing systems do not support concatenation (i.e., combining multiple records)
at all. There are several reasons to desire record concatenation. It naturally captures multiple
inheritance-like patterns, in which the final behavior of a system arises from combining multiple
independent components; the dual pattern arises in modular interpreters [Liang et al. 1995] (i.e. the
expression problem [Wadler 1998]). Existing approaches to typing record concatenation depend
on expressive type systems, such as intersection types [Wand 1991] or dependent types [Chlipala
2010], and require programmer-specified annotations not required in other row typed systems.
We propose a new approach to row types for extensible data types, based on two key ideas.

The first is a monoidal account of rows and row extension. This supports record concatenation
(and, dually, branching on variants) naturally and directly in our type system. The second is
using qualified types to connect record and variant types to rows and row operations. This avoids
expressiveness limitations in purely syntactic accounts of row types, while abstracting the meaning
of records and variants over different monoidal row theories. We instantiate our approach in a
simple functional language with Hindley-Milner polymorphism, which we call Rose. As an example
of Rose, and of our approach in general, consider the following term (originally proposed byWand):

λmn.(m⋆ n).x

This term defines a function on two records, which concatenates those records and projects the x
field from the concatenation. The problem in typing this term is that we need to require that there
be a x field in at least one of the input records (otherwise, the projection must fail), but requiring
that it appear in either m or n individually overconstrains the use of the term (and overdetermines
its meaning). The type for this term in Rose is

∀t z1z2.(x ◃ t) 4 (z1 ⊙ z2) ⇒ Πz1 → Πz2 → t.

We interpret this type as follows: a function taking a record with fields given by z1 (i.e., Πz1) and a
record with fields given by z2 to a value of type t, such that the concatenation of z1 and z2 (i.e.,
z1 ⊙ z2) contains an entry for field xwith type t. Rosemaintains the strong metatheoretic properties
of other Hindley-Milner languages, including principal types and decidable type inference.
One consequence of our use of qualified types is that, subject to some basic constraints, our

type and row system can evolve independently. This means that we can use Rose with any of
the different notions of rows in the literature (we demonstrate this for two systems, the simple
rows of Wand [1987] and Rémy [1989] and the scoped rows of Berthomieu and le Moniès de
Sagazan [1995] and Leijen [2005]), or even with multiple models of rows simultaneously (such as
to support both extensible data types and algebraic effects). Alternatively, we could extend Rose to
incorporate other language features, such as extensible effects or session-typed communication,
without needing to alter our interpretation of rows.

In summary, this paper contributes:

• The design of the Rose language, highlighting the role of our predicate system in supporting
expressive record concatenation and variant branching (ğ2);

• The introduction of row theories, an abstract characterization of row systems based on partial
monoids, relating the syntax of rows to their interpretations and generalizing Rose across a
variety of systems of records and variants (ğ3); and,

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 12. Publication date: January 2019.

Abstracting Extensible Data Types 12:3

• A formalization of the Rose type system, and notions of translation both among row theories
in Rose and from Rose to the polymorphic λ-calculus, giving computational content to
proofs of Rose predicates in terms of the implementations of ground record and variant
operations (ğ4).

We conclude by discussing related work (ğ5) and two areas of future work, focusing on the
connections between our approach and those of prisms and lenses (ğ6) and extensible effects
and effect handlers (ğ7).

2 PROGRAMMING IN ROSE

This section gives an intuitive overview of programming with extensible data types in Rose. Later
in the paper, we will give a formal account of our type system and semantics (ğ4), and put our work
in the context of other systems of row types and extensible data types (ğ5).

2.1 Extensible Records

We begin with a simple question: what do we mean by the field x? The answer, of course, depends
upon context. If we are discussing points on a plane, then we use x to denote the first component
of pairs of floating-point values. If we are instead considering points in space, x denotes the first
component of triples of floating-point values. If we consider pixels on a screen, then x is likely to
denote an integer value rather than a floating-point value, and the source object might contain color
information as well as coordinates. In each of these cases, we have a well-defined (but differing)
view of what it means to select the x field from a value. Now suppose that we abstract over selecting
the x field (using a term such as λr . r .x). What type should we give this term? Clearly, we do not
want to limit ourselves to only one kind of input value, or to only one kind of result type. Instead,
we expect the type of this function to accept the variety of possible objects that have a field x, and
to produce a result appropriate to the type of its input.

In Rose, we use row types to capture this kind of variance in types. (Row types, initially introduced
by Wand [1987], have been the subject of significant research attention. We give a brief account
of their history later in the paper.) We can think of a row ζ as a type-level association of field
names ℓ to types τÐalthough we will generalize this idea shortly (ğ3)Ðand think of records (Πζ)
and variants (Σζ) as being types constructed from rows. For example, the type of two-dimensional
points would be expressed Π(x ◃ Double, y ◃ Double); (x ◃ Double, y ◃ Double) is a row, while Π is
a type constructor which, when applied to row, denotes records with those fields. Similarly, pixels
would be described by the type Π(x ◃ Int, y ◃ Int, r ◃ Byte, g ◃ Byte, b ◃ Byte).

We identify two key relations on rows, containment and combination. Intuitively, the containment
relation ζ1 4 ζ2 holds if the fields of row ζ1 are a subset of the fields of row ζ2; for example, we
would expect that (x ◃ Double)4 (x ◃ Double, y ◃ Double), but not that (x ◃ Double)4 (x ◃ Int, y ◃
Int, r ◃ Byte, g ◃ Byte, b ◃ Byte). We can use the containment relation to express the type of
selection abstractly: the term λr . r .x has type

∀t z.(x ◃ t) 4 z ⇒ Πz → t.

The containment relation here qualifies the polymorphism in the type; we read this type as łfor
all t and z such that the row (x ◃ t) is contained in z, a function from a z-record to a tž. Following
the meaning of the containment relation, λr . r .x would project a floating-point value from a point,
but would project an integer from a pixel. In Rose, we will both instantiate type variables and
discharge the corresponding predicates automatically, using an extended version of Hindley-Milner
type inference.

The combination relation is used to describe the construction of rows; intuitively, ζ1 ⊙ ζ2 denotes
a row that contains all the fields in ζ1 and ζ2. We use combination to generalize record construction.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 12. Publication date: January 2019.

12:4 J. Garrett Morris and James McKinna

P | Γ ⊢ M : Πζ1 P ⇒ ζ2 4 ζ1

P | Γ ⊢ prjM : Πζ2

P | Γ ⊢ M : Πζ1 P | Γ ⊢ N : Πζ2 P ⇒ ζ1 ⊙ ζ2 ∼ ζ3

P | Γ ⊢ M ⋆N : Πζ3

{ℓ1 ◃ τ1, . . . , ℓm ◃ τm} ⊆ {ℓ′
1
◃ τ ′1, . . . , ℓ

′
n
◃ τ ′n}

P ⇒ (ℓ1 ◃ τ2, . . . , ℓm ◃ τm) 4 (ℓ′
1
◃ τ ′1, . . . , ℓ

′
n
◃ τ ′n)

{ℓ1 ◃ τ1, . . . , ℓk ◃ τk} ⊎ {ℓk+1 ◃ τk+1, . . . , ℓm ◃ τm} = {ℓ′
1
◃ τ ′1, . . . , ℓ

′
m
◃ τ ′m}

P ⇒ (ℓ1 ◃ τ1, . . . , ℓk ◃ τk) ⊙ (ℓk+1 ◃ τk+1, . . . , ℓm ◃ τm) ∼ (ℓ′
1
◃ τ ′1, . . . , ℓ

′
m
◃ τ ′m)

Fig. 1. Excerpted typing and entailment rules for record and row operations in Rose; context Γ tracks typing

assumptions for term variables while context P tracks predicate assumptions on type variables.

For example, the term λvr .(x = v | r) extends record r by adding field x with value v; it has type

∀t z.t → Πz → Π((x ◃ t) ⊙ z).

That is to say, it consumes a record of type Πz, whatever row z happens to be, and produces a
record containing all of z and an x-labeled field of type t. There is a significant additional source of
complexity to record extension, however. Suppose that record r already contains an x-labeled field.
In that case, should we treat extension with a new x field as a type error, as overwriting the existing
field, or attempt to preserve both fields? Each of these solutions appears in existing systems of
extensible records. Regardless of which approach we pick, how should it be reflected in the typing
of λvr .(x = v | r)?

We capture these possibilities by treating combination as a three-place predicate rather than as a
binary type constructor. The relation ζ1 ⊙ ζ2 ∼ ζ3 holds if ζ3 is a row capturing the combination of
rows ζ1 and ζ2. The type ∀t z.t → Πz → Π((x ◃ t) ⊙ z) is shorthand for the qualified type

∀t z1z2.(x ◃ t) ⊙ z1 ∼ z2 ⇒ t → Πz1 → Πz2;

that is, given a type t and two rows z1 and z2 such that the combination of (x ◃ t) and z1 is z2, the
term consumes a t value and a Πz1 record and produces a Πz2 record. (While for any given z1
there may be multiple z2 such that this predicate is satisfiable, we insist that they be equivalent up
to permutation of the fields, and so indistinguishable in the language. This assures that there is
no ambiguity resulting from the choice of z2.) Now consider our three distinct interpretations of
record extension.

• If we interpret extension as overwriting existing fields, then the constraint (x ◃ t) ⊙ z1 ∼ z2 is
always satisfiable, but some of the fields in z1 (i.e., fields with label x) may not appear in z2.

• If we interpret extension as only being valid for new field labels, then we would consider
predicates like (x ◃ Int) ⊙ (x ◃ Double, y ◃ Double) ∼ ζ unsatisfiable for any choice of ζ .

• Finally, if we interpret combination as preserving both the original and new fields, then
predicate (x ◃ t) ⊙ z1 ∼ z2 is again always satisfiable, but where z2 now maintains the contents
of both of its arguments (i.e., both old and new mappings for field x).

For the remainder of this section, we will assume that attempting to replace existing fields is a type
errorÐan approach we term łsimple rowsžÐand return to other possibilities in the next section.
The primitives and predicates introduced so far are summarized in Figure 1.

Having both the combination and containment predicates may seem superfluous: surely ζ1 4 ζ3
holds in exactly those cases where there is a ζ2 such that ζ1 ⊙ ζ2 ∼ ζ3. While this characterizes the
satisfiability of ζ1 4 ζ3, having distinct predicates more closely parallels the term structure, and so,

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 12. Publication date: January 2019.

Abstracting Extensible Data Types 12:5

as we will see when we discuss the semantics of Rose (ğ4), captures the translation of Rose into
languages without row types.

2.2 Records by Concatenation

So far, we have only discussed record operations one field at a timeÐselecting individual fields
from records, or extending records with individual fields. We can generalize these ideas to operate
on (sub-)records instead of individual fields. First, we introduce a general projection operator, prj,
which computes an arbitrary substructure of its (record) argument. For example, suppose that r is
a pixelÐthat is, it has type Π(x ◃ Int, y ◃ Int, r ◃ Byte, g ◃ Byte, b ◃ Byte). Depending on context,
prj r could denote either the coordinates of r , of type Π(x ◃ Int, y ◃ Int), or the color of r , of type
Π(r◃Byte, b◃Byte, g◃Byte), or indeed any of the individual fields of r . The prj operation captures
the full expressiveness of the containment relation: λr .prj r has type

∀z1z2.z2 4 z1 ⇒ Πz1 → Πz2.

The behavior of this term (indeed of any use of prj) is determined by the evidence for z2 4 z1. That
evidence, in turn, is determined by the instantiations of type variables z1 and z2. The behavior of
prj is thus determined by the (types in) the context in which it is used; this is what allows us to use
such an apparently general operator without introducing ambiguity in the meaning of programs.

Similarly, we generalize record extension to record concatenation: if M1 and M2 are two records,
then M1 ⋆M2 denotes the concatenation of those two records. This term captures the full expres-
siveness of the concatenation relation: λmn.m⋆ n has type

∀z1z2z3.z1 ⊙ z2 ∼ z3 ⇒ Πz1 → Πz2 → Πz3.

As in the single-field case, we capture the limitations on the structure of rows by expressing
combination as a relation: we can only instantiate z1 and z2 to rows that have a well-defined
combination. (In the remainder of the paper, we will generally write combination as if it were an
infix type constructor:

∀z1z2.Πz1 → Πz2 → Π(z1 ⊙ z2).

This should always be interpreted in terms of the _⊙_∼_ relation, and the partiality that it provides;
it may not be the case that z1 ⊙ z2 is well-defined for arbitrary choices of z1 and z2.

We introduce syntax for singleton records: for any label ℓ and term M of type τ , the term ℓ ◃M
has type Π(ℓ ◃ τ); similarly, for any term N of type Π(ℓ ◃ τ), the term N/ℓ has type τ . Now, we can
define the field-at-a-time operations from the last section in terms of our more general operations.
Abstraction over field selection, λr . r .x, is implemented by λr .prj r/x. For prj r/x to be well-typed,
we must have that prj r has type Π(x◃τ) for some type τ ; in turn, from the type of prj, we must have
that r has some record type Πζ such that the constraint (x ◃ τ)4 ζ is satisfiable. (This demonstrates
how the behavior of prj is determined by context: the context −/x forces the result of prj to be the
Π(x ◃ τ) singleton record.) Generalizing, we get

∀t z.(x ◃ t) 4 z ⇒ Πz → t,

which is the type we expected for x-selection. The record extension term λvr .(x = v | r) is expressed
as λvr .(x ◃ v) ⋆ r . Its typing is more straightforward: if v is of type τ , and r is of type Πζ , then
(x ◃ v)⋆ r is of type Π((x ◃ τ) ⊙ ζ); generalizing, we get

∀t z.t → Πz → Π((x ◃ t) ⊙ z).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 12. Publication date: January 2019.

12:6 J. Garrett Morris and James McKinna

Update and extension. Requiring that ζ1 ⊙ ζ2 is defined only when ζ1 and ζ2 have disjoint label
sets simplifies reasoning about the resulting type system. For example, it allows us to assume
that ⊙ is commutative (and so that < corresponds to subset) without worrying about whether
(x ◃ Int) ⊙ (x ◃ Double) should be (x ◃ Int) or (x ◃ Double). However, it can make defining record
update (as opposed to extension) more complicated. Some existing systems [Gaster and Jones 1996;
Leijen 2005] introduce a separate primitive, restriction, that remove fields from records. Update can
then be defined as the composition of restriction and extension. Rémy [1989] introduces presence
flags, denoting the presence or absence of fields, and types polymorphic in presence flags. This
allows him to define a single operation that can serve as either extension or update. We can express
the combined extension and update operation in our system using only the primitives already
introduced, without needing to introduce presence flags or new forms of polymorphism. To do so,
instead of our earlier interpretation, we implement the term λvr .(x = v | r) by

λvr .(x ◃ v)⋆ prj r

(where the change is the application of projection to r). As before, if v has type τ and prj r has type
Πζ2, then the result will be of type Π((x ◃ τ) ⊙ ζ2). Now, however, rather than Πζ2 being the type of
the input record, it only needs to be contained in the full type of input record Πζ1; generalizing
over τ , ζ1, and ζ2, we get

∀t z1z2.z2 4 z1 ⇒ t → Πz1 → Π((x ◃ t) ⊙ z2).

This raises two questions. First, is the term general enough? That is, does it express both record
extension and record update? Second, does the use of the projection operator (in a generic context)
leave the behavior of the term too unconstrained?

To answer the first question, we consider both possibilities. Suppose that the input value is type
τ , the input record is of type Πζ1, and x does not appear in ζ1. Then, we can pick z2 to also be ζ1;
the constraint ζ1 4 ζ1 is trivially satisfiable, and so we get the expected extension operator of type
τ → Πζ1 → Π((x ◃ t) ⊙ ζ1) (where, by assumption, the result of ⊙ is defined). Alternatively, suppose
that x does appear in ζ1; then, there must exist a row ζ2 and type τ2 such that (x ◃ τ2) ⊙ ζ2 ∼ ζ1.
In this case, we can pick z2 to be ζ2; then, we get the expected record update operator, of type
τ → Π((x ◃ τ2) ⊙ ζ2) → Π((x ◃ τ) ⊙ ζ2). To answer the second question, observe that, even though
the result of the projection is used inside the extension function, it is still determined by a type
parameter z2 determined by the caller (or the calling context). So, there is no possibility for the
projection operator to discard fields that might be required by the surrounding code.

Nevertheless, we can give a more precise type to the record update function, further constraining
its possible behaviors:

∀tu z1z2.z2 4 (x ◃ u) ⇒ t → Π(z2 ⊙ z1) → Π((x ◃ t) ⊙ z1)

Again, we consider the two use cases, assuming in each that the input value is of type τ and input
record is of type Πζ . If the input record, of type Π(z2 ⊙ z1), does not contain an x-labeled field, then
z2 must be the empty row. (Otherwise, since z2 4 (x ◃ u), there would have to be an x-labeled field
in the input record.) So, z1 must be ζ , and we get the expected extension function, with type

τ → Πζ → Π((x ◃ τ) ⊙ ζ).

Type variable u can be freely instantiated: while it is not constrained by the remainder of the type, it
also plays no role in the behavior of the term. Alternatively, suppose the input record does contain
an x-labeled field x ◃υ. Then z2 must be instantiated to the row (x ◃υ), and so u must be instantiated
to υ. (If not, then z1 must contain x ◃ υ, and so (x ◃ τ) ⊙ z1 is not defined.) This gives the expected

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 12. Publication date: January 2019.

Abstracting Extensible Data Types 12:7

update function, with type

τ → Π((x ◃ υ) ⊙ ζ) → Π((x ◃ τ) ⊙ ζ).

Note that all we have done is to constrain the use of the extension function; the two possibilities
allowed by the more elaborate type were also included in the simpler type. Therefore, while the
more precise type is a useful demonstration of the expressiveness of the Rose type system, we
prefer the simpler (and more general) alternative.

Default values. We can make a similar use of concatenation and projection to implement default
values for fields. For example, suppose that we wanted pixels to be black by default, but not to
have any default position information. We can define a function to add these default values to an
existing record: λr .r⋆prj (r ◃ 0, g ◃ 0, b ◃ 0). Letting ζC = (r ◃ Byte, g ◃ Byte, b ◃ Byte), this function
has type

∀z1z2.z2 4 ζC ⇒ Πz1 → Π(z1 ⊙ z2).

The projection ensures that, if r contains any color values, then those values are not replaced by
the corresponding defaults. However, it does not guarantee that the result is a pixel. This could be
either because the input record does not contain x and y fields, or because the projection operation
removed colors from the defaults that are also not present in r . Either happening would be a
consequence of the context (i.e., the instantiation of type variables z1 and z2), not of some capricious
choice of the default value function. Nevertheless, we can give a more precise type that guarantees
the result is a pixel. Letting ζP = (x ◃ Int, y ◃ Int, r ◃ Byte, g ◃ Byte, b ◃ Byte), we can give the
same term the following type:

∀z1z2z3.(z2 4 ζC, z1 ⊙ z2 ∼ z3, ζP 4 z3) ⇒ Πz1 → Πz3

Here we guarantee not only that the added fields are a subset of the color fields, but also that the
resulting record includes at least all the pixel fields. (Of course, because our goal is extensibility, we
do not want to overconstrain the result to contain only the pixel fields.) Thus, for example, if the
input record does not contain an r field, the projection operator must preserve the r field in the
default values. Observe the central role played by the predicates: in the result type, z3 is constrained
both to be the combination of z1 and z2 and by the requirement that it contain the pixel fields ζP .

Wand’s problem. Record concatenation introduces typing challenges not present in systems that
include only single-field record extension. Wand [1991] illustrates these difficulties with the term
λmn.(m ⋆ n).x. This function concatenates two records m and n, and projects field x from the
result. (Wand’s motivation for considering this term was multiple inheritance: records m and n

represent the method implementations arising from two superclasses, while the result of the term
is the implementation of method x for their subclass.) For this term to be well-typed, we should
require that either m or n contain the x field, but we should not restrict x to necessarily appearing
in either argument. This type in inexpressible in most existing type systems for extensible records.
(The notable exceptions are Wand’s [1991] system with intersection types, and Chlipala’s [2010]
dependently typed record calculus. We will contrast our approach with theirs later in the paper.)
On the other hand, its principal type is quite naturally expressed in Rose:

∀t z1z2.(x ◃ t) 4 (z1 ⊙ z2) ⇒ Πz1 → Πz2 → t.

That is: for any type t and rows z1 and z2 such that x ◃ t appears in the combination of z1 and z2, a
function from Πz1 and Πz2 records to a t value. The use of constraints is essential to expressing
this type: the combination z1 ⊙ z2 does not appear in either the argument types or the result type
of the function, but is central to understanding the typing of the function as a whole.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 12. Publication date: January 2019.

12:8 J. Garrett Morris and James McKinna

P | Γ ⊢ M : Σζ1 P ⇒ ζ1 4 ζ2

P | Γ ⊢ injM : Σζ2

P | Γ ⊢ M : Σζ1 → τ P | Γ ⊢ N : Σζ2 → τ P ⇒ ζ1 ⊙ ζ2 ∼ ζ3

P | Γ ⊢ M ▽ N : Σζ3 → τ

Fig. 2. Excerpted typing rules for variant operations in Rose; entailment is given by the rules in Figure 1.

2.3 Extensible Variants

We turn to the dual of extensible records, extensible variants. Here, our motivating question might
be what we mean by a data constructor And: if we are describing formulae in either classical
or substructural logic, then we mean logical conjunction (albeit built out of different sorts of
formulae); if we are describing ML definitions, then we may mean the combiner of mutually
recursive definitions. In each case, we expect the And construct to operate on different argument
types: formulae in classical or substructural logic, or (lists of) ML definitions, respectively. Now,
suppose we want to abstract over data construction (using a term such as λxy.And x y). What type
do we give this term?

Our approach here is exactly dual to our approach to describing extensible products. We introduce
a type constructor Σwhich, applied to a row, denotes a variant with those constructors. For example,
following the initial algebra approach to defining recursive data types, we might describe Boolean
formulae by taking the fixed point of the functor1

F(t) = Σ(And ◃ t × t, Or ◃ t × t, Not ◃ t, Atom ◃ String).

As in the case for records, the operations on variants correspond to the containment and combination
predicates. The prj operation provided record elimination, projecting substructures from records.
The dual operation, inj, provides variant introduction, injecting values from smaller variants into
larger variants. The⋆ operation provided record introduction, building larger records out of smaller
records. Its dual, ▽, provides variant elimination, building eliminators for larger variants out of
eliminators for smaller variants. The typing rules for these constructs are given in Figure 2.
The rule for ▽ is more complex than the corresponding rule for ⋆, as it operates on functions

Σζ → τ instead of directly on values Σζ . By defining ▽ on functions, we avoid needing new terms
and types for first-class case-branches. We also get an appealing similarity to the categorical account
of variants, given by (colimiting cones defining) coproducts, with premises of the elimination rule
describing a cone over ζ1 ⊙ ζ2. To emphasize the connection to the category theoretic account, we
define the corresponding operation for records: f △ g is defined to be λx .f x ⋆ g x.

We reuse the syntax for singleton records to describe singleton variants: for any label ℓ and term
M of type τ , the term ℓ ◃M has type Σ(ℓ ◃ τ), while if N has type Σ(ℓ ◃ τ) then N/ℓ has type τ . (That
is, we identify singleton products and sums with the underlying type; we will return to this point
in the next section.) Now, we can recover the expected primitive operations on variants in terms of
our primitives. For example, the generic constructor term λxy.And x y would be implemented by
λxy.inj (And ◃ (x, y)); its type,

∀t1t2 z.(And ◃ t1 × t2) 4 z ⇒ t1 → t2 → Σz,

1To avoid cluttering our presentation, we will not formalize the extension of Rose with recursive types. Any of the

several approaches to encoding iso-recursive types, such as two-level types [Sheard and Pasalic 2004] or conjugate

hylomorphisms [Hinze et al. 2015], could be combined with the Rose type system. Adding equi-recursive types could raise

interesting usability challenges, particularly in reporting error messages. We will explore these issues further in future

work, particularly the extent to which they can be addressed by a combination of programmer-specified type annotation

and top-down/bi-directional type inference.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 12. Publication date: January 2019.

Abstracting Extensible Data Types 12:9

captures that its result can be a member of any variant type so long as that type contains at least the
constructor And. Expressing elimination is more verbose, but no more complicated. For example,
we could represent Haskell’s Maybe type as the type Σ(Just ◃ t, Nothing ◃ 1). Then, we would
express a defaulting operation (i.e., Haskell’s fromMaybe) with the following term:

λd.(λy.y/Just) ▽ (λy.let () = y/Nothing in d)

The left-hand side of ▽ strips a Just label from its argument; it has type Σ(Just ◃ τ) → τ . The
right-hand side strips a Nothing label from its argument and then returns d; if d has type τ , then
this term has type Σ(Nothing ◃ 1) → τ . Generalizing over τ , the function as a whole has type

∀t.t → Σ(Just ◃ t, Nothing ◃ 1) → t.

We can generalize this term in several ways. For example, we could write a defaulting operation
that works on any variant containing a Just label, regardless of the other labels in the variant:

λd.(λy.y/Just) ▽ (λy.d).

This term has type

∀t z.t → Σ((Just ◃ t) ⊙ z) → t;

that is, it eliminates any variant type that contains at least the Just label, returning the default
value for any input not of the form Just ◃M .

The ▽ operator requires that its arguments eliminate disjoint sets of constructors. Following the
pattern we used for default values in records, we can define an operator that selectively replaces
the handling of individual branches. The term λfg.f ▽ (g ◦ inj) allows f to override the behavior of
g. Its type is ∀t z1z2z3.z2 4 z3 ⇒ (Σz1 → t) → (Σz3 → t) → (Σ(z1 ⊙ z2) → t), capturing that the
resulting term handles all the cases handled by its first argument (z1), and a subset (z2) of those
cases handled by its second argument (z3) such that the combination of z1 and z2 is well-defined. As
in the similar examples for extensible records, the subset z2 of z3 is picked by the caller, not by the
term itself, and so cannot capriciously eliminate behavior needed in the remainder of the program.

3 GENERALIZING EXTENSIBILITY

Our examples so far have all assumed one model of rows: that rows uniquely associate labels to
types, and that the uniqueness of labels is required by the combination relation. However, this is not
the only model of rows: others include models in which labels need not be unique [Berthomieu and
le Moniès de Sagazan 1995; Leijen 2005], or in which row fields are unlabeled [Bahr 2014; Morris
2015]. In this section, we show that Rose can capture such systems as well, by considering non-
commutative interpretations of the combination relation _⊙_∼_, and corresponding refinements
of the containment predicate, as well as the projection, and injection, operators, to reflect such
extensions. We then generalize our approach to give both an abstract characterization of rows,
called row theories, and a connection between the syntax of rows and their interpretations.

3.1 Scoped Records

We begin by considering scoped records [Berthomieu and le Moniès de Sagazan 1995; Leijen 2005],
as used in the programming languages Koka and LCS. The key difference between scoped and
simple records is in the handling of extension. With scoped records, record extension does not
require that labels be unique, but also does not overwrite existing fields. Instead, new fields łshadowž
existing fields; field selection returns the value most recently associated with a given label, but the
earlier values can be recovered by dropping the newer fields from the record.
For an example, suppose that we were to extend the empty record with two different x-labeled

values: (x = 4 | (x = True | ())). Following the approach discussed in the prior section, this

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 12. Publication date: January 2019.

12:10 J. Garrett Morris and James McKinna

ζ ∼ ζ

ζ1 ∼ ζ2 ζ2 ∼ ζ3

ζ1 ∼ ζ3

ζ1 ∼ ζ2

(ℓ ◃ τ , ζ1) ∼ (ℓ ◃ τ , ζ2)

ℓ , ℓ′ ζ1 ∼ ζ2

(ℓ ◃ τ , ℓ′ ◃ τ ′, ζ1) ∼ (ℓ′ ◃ τ ′, ℓ ◃ τ , ζ2)

ζ ∼ (ℓ1 ◃ τ1, . . . , ℓn ◃ τn)

(ℓ1 ◃ τ1, . . . , ℓi ◃ τi) ⊙ (ℓi+1 ◃ τi+1, . . . , ℓn ◃ τn) ∼ ζ

ζ1 ⊙ ζ2 ∼ ζ3

ζ1 4L ζ3

ζ1 ⊙ ζ2 ∼ ζ3

ζ2 4R ζ3

P | Γ ⊢ M : Πζ1 P ⇒ ζ2 4d ζ1
(d ∈ {L,R})

P | Γ ⊢ prjd M : Πζ2

P | Γ ⊢ M : Σζ1 P ⇒ ζ1 4d ζ2
(d ∈ {L,R})

P | Γ ⊢ prjd M : Σζ2

Fig. 3. Typing and entailment rules for scoped rows, with projection operators for potentially non-commutative

combination.

would either be a type error (interpreting extension strictly as ⋆) or would have type Π(x ◃ Int)
(interpreting extension as incorporating update). With scoped records, this term is instead given
the type Π(x ◃ Int, x ◃ Bool); viewing the row as a list, we have that x ◃ Int is the newest entry in
the row, while the older entry, x ◃ Bool, is shadowed by it. Call our example record r . If we select
the x field from r , r .x, we get 4, the most recently added x-labeled value. On the other hand, if we
drop an x-labeled value before selecting x, (r − x).x, then we get True, the older x-labeled value.
To incorporate scoped records into our framework, we have to answer two central questions.

First, how are the containment and combination relations defined for scoped rows? Second, how
can we derive the primitives operations on scoped records from the Rose primitives? A particular
challenge here arises from the distinction between selection r .x and restriction r − x. For simple
rows, these can both be viewed uniformly as special cases of projection. Now, that seems less likely:
there is a crucial distinction in their handling of the initial x-labeled field.
We begin by observing that we need some way to capture the ordering of fields. We do so by

making row combination non-commutative: the constraints

(x ◃ Int) ⊙ (x ◃ Bool) ∼ (x ◃ Int, x ◃ Bool)

(x ◃ Bool) ⊙ (x ◃ Int) ∼ (x ◃ Bool, x ◃ Int)

are both satisfiable, but neither of

(x ◃ Int) ⊙ (x ◃ Bool) ∼ (x ◃ Bool, x ◃ Int)

(x ◃ Bool) ⊙ (x ◃ Int) ∼ (x ◃ Int, x ◃ Bool)

are satisfiable. We do not, however, impose a strict ordering on the result of combination: both of

(x ◃ Int) ⊙ (y ◃ Bool) ∼ (x ◃ Int, y ◃ Bool)

(x ◃ Int) ⊙ (y ◃ Bool) ∼ (y ◃ Bool, x ◃ Int)

are satisfiable. We also now have two different forms of containment: given rows ζ1 and ζ3, it can
either be the case that ζ1 ⊙ ζ2 ∼ ζ3 or the case that ζ2 ⊙ ζ1 ∼ ζ3; unlike in the previous section, these
are not equivalent. We write the first case as ζ1 4L ζ3 and the second as ζ1 4R ζ3. Correspondingly,
we will require distinct left and right projection and injection operators. These rules are summarized
in Figure 3. This is a straightforward generalization of the operators for simple rows: since ⊙ is
commutative for simple rows, we have prjL = prjR, injL = injR, and ζ1 4L ζ2 iff ζ1 4R ζ2.
Next, we have to define the basic operations on scoped records (extension, selection, and re-

striction) in terms of the Rose primitives (prjd and ⋆). As we would expect, extension is defined
in terms of ⋆: the term (x = v | r) is implemented by (x ◃ v)⋆ r . The typing of extension is also

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 12. Publication date: January 2019.

Abstracting Extensible Data Types 12:11

unchanged from the previous section: λvr .(x ◃ v)⋆ r still has type ∀t z.t → Πz → Π((x ◃ t) ⊙ z).
However, unlike in the previous section, the combination constraint imposes no restriction on the
fields already present in z; for any row ζ1, there is a row ζ2 such that (x ◃ t) ⊙ ζ1 ∼ ζ2. We define new
operations for field selection and restriction in terms of prjd , constraining their types to guarantee
the desired behavior:

takeℓ : ∀t z.(ℓ ◃ t) 4L z ⇒ Πz → t

takeℓ r = prjL r/ℓ
dropℓ : ∀t z.Π((ℓ ◃ t) ⊙ z) → Πz

dropℓ r = prjR r

Selection r .x is interpreted as takexr and restriction r − x is interpreted as drop
x
r . An update

operation can be defined in terms of restriction and extension: λvr .(x = v | r − x). However, note
that it is not meaningful to define a combined extension/update operation for scoped rows as it
was for simple rows: extension is still defined even if there is already an x field in the record.

We might hope to generalize these operations to arbitrary rows, not just single fields. For record
extension and selection, this is natural. The same is not true of restriction, however; there, because
the eliminated label ℓ does not appear in the result of the term, the ℓ annotation is essential to
determining its behavior. This also explains why the definition of dropℓ required a more complicated
type signature than take.

3.2 Rows Abstracted

We have seen two different notions of rows (simple and scoped rows), how they give rise to two
different notions of record and variants, and how both notions can be expressed in Rose by adjusting
the interpretation of the containment and combination predicates. These are far from the only
formulations of rows, or their only applications: other formulations of rows include unlabeled rows
(both unique and overwriting) captured by various encodings of extensible data types [Bahr 2014;
Kiselyov et al. 2004; Morris 2015; Oliveira et al. 2015], while other applications include the use of
rows to describe choice in session types [Lindley and Morris 2017] and in effect types [Hillerström
and Lindley 2016; Leijen 2014; Lindley and Cheney 2012]. This raises several questions:

• Could these other notions of rows also be expressed using containment and combination?
• Could Rose’s approach to record and variants be extended to incorporate other applications
of row types?

• Most importantly, is there a general methodology to expressing row types that avoids repeat-
edly redeveloping the interpretation of the containment and combination predicates?

We address the final question by separating the syntactic presentation of rows and row types (which
we will call a row theory) from the underlying model (or algebra) of rows. Simple and scoped rows
can both be expressed as theories of rows, with intuitive algebras building on the idea of mappings
from labels to types. In turn, the Rose type system is parametric over a row theory, guaranteeing
its generality. Finally, in giving a semantics for Rose, we will show how mappings between row
theories can be uniquely extended to mappings between terms of Rose.

We begin by defining the syntactic presentations of rows.

Definition 1. A row theory is a 3-tuple ⟨R,∼,⇒⟩, as follows.

• R is a set of syntactic rows (that is, of well-formed ground row type expressions). We impose
no further restriction on R at this level of abstraction: it may or may not require labels, may
or may not impose uniqueness restrictions on those labels, and so forth. We let ζ range over
elements of R.

• Relation ∼ is an equivalence relation on R; it accounts for the identification of syntactically
distinct rows in most row type systems.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 12. Publication date: January 2019.

12:12 J. Garrett Morris and James McKinna

• Relation ⇒ is an entailment relation on row predicates (ζ1 4d ζ2 and ζ1 ⊙ ζ2 ∼ ζ3), invariant
with respect to ∼, satisfying monotonicity (P ⇒ ψ if ψ ∈ P) and transitivity P,Q ⇒ ϕ if
P ⇒ ψ and Q,ψ ⇒ ϕ).

Of course, in a practical language based on Rose, the entailment relation may also be used to
express other constraints, such as type classes. Our intention here is to give a minimal specification
sufficient to capture row typing. Each of the notions of rows presented so far is a row theory. We
define the simple row theory by ⟨Rsimp,∼simp,⇒simp⟩, where Rsimp is the set of uniquely-labeled
sequences of types, ∼simp identifies sequences up to permutation, and⇒simp is as given in Figure 1.
The theory of scoped rows is given by ⟨Rscop,∼scop,⇒scop⟩, where Rscop is the set of arbitrarily-
labeled sequences of types, and ∼scop and⇒scop are as given in Figure 3. We will see other theories
of rows in the remainder of the paper.

To capture the intuitive meaning of a row theory, we introduce algebraic structures corresponding
to rows, and their modeling relationship to row theories.

Definition 2. A row algebra is any partial monoid ⟨M, ·, ϵ⟩; that is, · is a partial binary function
M ×M ⇀ M such that: m · ϵ = m = ϵ · m; and, if m1 · (m2 · m3) is defined, then it is equal to
(m1 · m2) · m3. Let f : R → M; we write f |= ζ1 ⊙ ζ2 ∼ ζ3 if f (ζ1) · f (ζ2) = f (ζ3), extended to
f |= ζ1 4d ζ2 and f |= P in the obvious way. We say that such an f is a model of ⟨R,∼,⇒⟩ in
⟨M, ·, ϵ⟩ iff:

• For ζ1, ζ2 ∈ R, if ζ1 ∼ ζ2, then f (ζ1) = f (ζ2);
• If P ⇒ ψ , then for each ground substitution θ on fv(P,ψ), f |= θ P implies f |= θ ψ ; and,
• There is some ζ0 ∈ R such that f (ζ0) = ϵ .

We say that ⟨M, ·, ϵ⟩ is an algebra for (or model of) ⟨R,∼,⇒⟩ if there is such a function f : R → M.

Obviously, any row theory gives rise to a term algebra in an unsurprising way. Other models of
row theories are more informative.

Example 3 (Simple rows). Consider partial functions f , g from labels (drawn from L) to types.
We define a partial union f ⊔ g by

(f ⊔ g)(ℓ) =

{

f (ℓ) if ℓ ∈ dom(f)

g(ℓ) if ℓ ∈ dom(g)

if dom(f) and dom(g) are disjoint, and let f ⊔ g be undefined otherwise. Now, we have that
⟨L ⇀ T ,⊔, ∅⟩ is an algebra for the simple row theory ⟨Rsimp,∼simp,⇒simp⟩. This is also the
algebra of rows implemented by a number of existing row type systems, including those of Rémy
[1989], Harper and Pierce [1991], Gaster and Jones [1996], and Chlipala [2010].2

Example 4 (Scoped rows). We write T⋆ for sequences of types and vaw for the concatenation of
sequences v and w. We define a pointwise concatenation operator ⊕ on functions f , g ∈ L → T⋆

by (f ⊕ g)(ℓ) = f (ℓ)ag(ℓ), and write f0 for the function that maps all labels to the empty sequence.
Now, we have that ⟨L → T⋆, ⊕, f0⟩ is an algebra for ⟨Rscop,∼scop,⇒scop⟩. This algebra clarifies the
intention of scoped rows: each scoped row should be viewed as a map from all labels to sequences
of types; the syntax leaves out those labels mapped to empty sequences. We have⇒scop ζ1 ⊙ ζ2 ∼ ζ3
exactly when ζ1 contains (possibly empty) pointwise initial sequences of ζ3, and ζ2 contains the
corresponding pointwise final sequences.

2A formal, if lengthy, demonstration of this point would require building similar maps from the syntax of rows present in

each language, and their representations of row operations, to this algebra.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 12. Publication date: January 2019.

Abstracting Extensible Data Types 12:13

Example 5 (Unlabeled rows). Bahr [2014] and Morris [2015] give encodings of unlabeled row
theories, focusing on their use in defining extensible variants. Each provides equivalents to our inj
and ▽ operators, but require some amount of additional type annotation as a consequence of their
respective encoding techniques. Each has ⟨P(T),⊎, ∅⟩ as an algebra, where the partial disjoint
union operator ⊎ is defined by T ⊎ U = T ∪ U if T and U are disjoint, and is undefined otherwise.

3.3 Row Homomorphisms

Having an abstract characterization of row theories, we can now consider their relative expressive-
ness. A natural idea is to consider structure-preserving maps between row theories. Such maps
capture the expressiveness of row theories themselves: if one theory can be mapped into another,
then programs in the first theory can be mapped to programs in the second in an entirely uniform
manner, changing types but never terms. We formalize this intuition as follows.

Definition 6. A function h : R1 → R2, extended to predicates in the obvious fashion, is a row
theory homomorphism (or simply: homomorphism) from ⟨R,∼,⇒⟩ to ⟨R ′,∼′,⇒′⟩ if ζ1 ∼ ζ2 implies
that h(ζ1) ∼

′ h(ζ2) and P ⇒ ψ implies that h(P) ⇒′ h(ψ).

Row algebras are related by partial monoid homomorphisms. Homomorphisms of row theories and
partial monoids are related in an intuitive way. Given that f is a model of ⟨R,∼,⇒⟩ in ⟨M, ·, ϵ⟩,
and g is a model of ⟨R ′,∼′,⇒′⟩ in ⟨M ′, ·′, ϵ ′⟩, if there is a row theory homomorphism from R to
R ′, then there is a corresponding partial monoid homomorphism from M to M ′. Under the same
assumptions, if there is a partial monoid homomorphism j from M to M ′, and for every ζ ∈ R,
there is a ζ ′ ∈ R ′ such that j(f (ζ)) = g(ζ ′), there is a row theory homomorphism from R to R ′.

We can use row homomorphisms to capture the relationships among the row theories we have
discussed so far. Intuitively, the scoped row theory encompasses the simple row theory, and so
we expect that there is a homomorphism from simple to scoped rows. The homomorphism from
Rsimp to Rscop is given by the inclusion map, and the preservation of ∼simp and⇒simp is immediate.
The corresponding homomorphism from ⟨L ⇀ T ,⊎, ∅⟩ to ⟨L → T⋆,⊔, f0⟩ is given by mapping
defined cases to singleton sequences and undefined cases to the empty sequence (i.e., the standard
mapping from Maybe to List). Similarly, we can see that there are row theory homomorphisms
from the simple to unlabeled row theories and, assuming some suitable way to invent labels from
types, a row theory homomorphism from unlabeled to simple rows. This captures our intuition
that the labels in rows, while central to the pragmatics of records and variants, are not essential to
their semantics.

The row theories that we have considered so far all provide some additional abstraction compared
to simple products and coproducts. To describe the implementation of these theories in our formal
development, it will be useful to capture products and coproducts themselves as a row theory.

Example 7 (Trivial rows). The trivial theory of rows is given by ⟨T⋆,=,⇒triv⟩, where the atomic

axioms of ⇒triv are of the form ⊢ ζ1 ⊙ ζ2 ∼ ζ1
aζ2.

We will use its term algebra as our model of the trivial row theory. This theory identifies products
and coproducts up to associativity, but not commutativity; each indexed projection is obtained by
the composition prjL ◦ prjR (or vice versa), for a suitable choice of the intermediate result type, and
similarly for injection.
It is easy to see that there is a row theory homomorphism from trivial to scoped rows: simply

give the same label to each entry in the trivial row. It is more interesting, however, to consider
homomorphisms between simple or scoped rows into trivial rows. Any such homomorphism would
give uniform implementations of records and variants in terms of products and coproducts. Unfor-
tunately, no such homomorphism can exist. We can see that there cannot be a row homomorphism

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 12. Publication date: January 2019.

12:14 J. Garrett Morris and James McKinna

Variables x, v ∈ V Directions d ::= L | R

Rows ζ , ξ ∈ R Labels ℓ ∈ L

Predicates ψ ,ϕ ::= ζ 4d ζ | ζ ⊙ ζ ∼ ζ Qualified types ρ ::= τ | ψ ⇒ ρ

Types τ ::= t | τ → τ | Πζ | Σζ | ℓ ◃ τ Schemes σ ::= ρ | ∀t.σ | ∀z.σ

Terms M,N ::= x | λx .M | M N | let x :: σ = M in N

| ℓ ◃M | M/ℓ | prjd M | M ⋆N | injd M | M ▽ N

Environments Γ ::= ε | Γ, x : σ Contexts P ::= ε | P, v : ψ

Fig. 4. Syntax of Rose(R,∼,⇒)

from simple to trivial rows. Consider these results for simple rows:

⇒simp (x ◃ Int) 4L (x ◃ Int, y ◃ Bool) ⇒simp (y ◃ Bool) 4L (x ◃ Int, y ◃ Bool)

It is easy to show that, if ⇒triv ζ1 4L ζ2, ⇒triv ζ
′
1 4L ζ2, and ζ1 and ζ

′
1 are of the same length, then

ζ1 = ζ
′
1 . Consequently, we cannot hope to have a uniform mapping of simple to trivial rows that

preserves⇒simp; since scoped rows are more expressive, we similarly cannot have a homomorphism
from scoped to trivial rows. Neither can we find a homomorphism from trivial rows to simple rows.
If we could, it would have to provide a mapping from each trivial row to a simple row, preserving
combination of trivial rows. Consider the following entailments:

⇒triv (Int) ⊙ (Bool) ∼ (Int, Bool) ⇒triv (Bool) ⊙ (Int) ∼ (Bool, Int)

⇒triv (Int) 4L (Int, Bool) ⇏triv (Int) 4L (Bool, Int)

The crux of the problem is attempting to encode the non-commutative ⊙ of scoped rows in terms
of the commutative ⊙ of simple rows. While we can imagine encodings of scoped rows that capture
the order of labels, we cannot do so in a uniform way. In the examples, we must somehow be able
to translate the row (x ◃ Bool) differently depending on the combinations in which it later occurs.
However, all is not lost. In the following section (ğ4.6), we will show how we can give (local)

translations from terms of Rose with simple rows to terms of Rose with trivial rows. This shows
that, even for row theories that are incomparable directly, Rose gives us a framework to compare
their expressiveness and relate their implementations.

4 THE ROSE TYPE SYSTEM

This section gives a formal specification of the type system and semantics of Rose. The syntax
and typing of Rose are parameterized by a row theory ⟨R,∼,⇒⟩, giving the interpretation of
the predicates. We give Rose’s semantics by giving a (typing-directed) translation from Rose,
instantiated with the trivial row theory, to a small extension of System F. We show some simple
formal results on Rose, including the coherence of our interpretations. Finally, we show how other
row theories can be translated to the trivial row theory; by composition, we thus obtain semantics
for Rose instantiated with simple or scoped rows. Our goal in giving this translation is to make the
abstract aspects of Rose concrete, particularly the roles played by the containment and combination
predicates, and to show that Rose does not require any foundational extension to our understanding
of computation in functional languages; we leave questions of efficiency to future work.

4.1 Rose Syntax

Wewrite Rose(R,∼,⇒) to denote the core Rose system instantiated with the row theory ⟨R,∼,⇒⟩;
we will omit the instantiating row theory when it is apparent from context. Figure 4 gives the syntax

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 12. Publication date: January 2019.

Abstracting Extensible Data Types 12:15

Types A, B ::= a | A → B | ∀a.A | ⊗ {Ai} | ⊕ {Ai}
Terms E, F ::= x | λx : A.E | F E | Λa.E | E[A]

| (E1, . . . , En) | πi E | ιi E | case E {F1, . . . , Fn}

Fig. 5. F⊗⊕ term and type syntax.

of Rose(R,∼,⇒); it should mostly be familiar from our earlier examples. In addition to the standard
terms for abstraction, application, and polymorphic definition, we have terms for record projection
(prjd M) and concatenation (M ⋆N) and variant injection (injd M) and branching (M ▽ N). We also
include terms to label (ℓ ◃M) and unlabel (M/ℓ) terms; these capture introduction and elimination
of singleton records and variants. As is standard for Hindley-Milner style polymorphism, the type
language is stratified into types (or monotypes) τ and type schemes (or polytypes) σ , with the latter
extended by row polymorphic variables z. Types include type variables, functions, records, variants,
and labeled types. Records and variants are built out of rows. The syntax of rows themselves we
leave as a parameter of the system; in practice, syntactic formation rules for rows could be captured
with kinds. The predicates are exactly the containment and combination predicates discussed so
far. We do not assume any other uses of qualified types, such as to support type classes; however,
nothing in Rose would prevent its combination with other uses of predicates. Finally, the formation
of qualified types and type schemes is standard.

4.2 Target Language

The syntax for the target language of our semantics is given in Figure 5. It is a version of System F,
extended with arbitrary width product and sum types. (While we could encode these types in
unextended System F, doing so would only serve to complicate the presentation.) Types include
functions, polymorphism, products (⊗{Ai}) and coproducts (⊕{Ai}). In addition to the usual
terms, we include terms for product introduction (E1, . . . , En) and elimination (πi E) and coproduct
introduction (ιi E) and elimination (case E {F1, . . . , Fn}). In each of these forms, i and n refer to
concrete natural numbers; we do not assume any form of quantification over or dynamic use of
indices. The typing rules are for F⊗⊕ are given in Figure 6. Environment ∆ tracks type variables in
scope, and the judgment ∆ ⊢ A type assures that all free type variables mentioned in A are included
in ∆. We do not assume terms or types specific to encoding extensible data types, such as generic
extension or projection operations, or labels appearing in types or terms.

4.3 Interpreting Terms and Types

Figure 7 gives the type system for Rose(R,∼,⇒), and the translation from Rose to F⊗⊕ . The figure
has two parts. First we give the typing rules for Rose, and a generic translation from Rose typings
into F⊗⊕ terms. This translation is parametric over two aspects of the translation. We assume a
translation (−)• from Rose types to F⊗⊕ types; the mechanics of this translation will depend, of
course, upon the particular structure of rows and their interpretation in F⊗⊕ . We also rely on an
augmented entailment judgment P ⇒ F : ψ , denoting that F is a F⊗⊕ term giving evidence for the
predicateψ . Second, we extend the equivalence relation ζ1 ∼ ζ2 on rows to an equivalence ⊢ τ1 ≈ τ2
on types. The remainder of this section discusses the translation in detail; the following sections
discuss the translation of types and interpretation of entailment for different row theories.

Functional terms and types. Following Jones [1993; 1994], our typing derivations take the form
P | Γ ⊢ M { E : σ , where P is the predicate environment, Γ is the type environment, M is the
Rose term with type σ , and E is its F⊗⊕ translation. The predicate environment P maps evidence

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 12. Publication date: January 2019.

12:16 J. Garrett Morris and James McKinna

a ∈ ∆

∆ ⊢ a type

∆ ⊢ A type ∆ ⊢ B type

∆ ⊢ A → B type

∆, a ⊢ A type

∆ ⊢ ∀a.A type

{∆ ⊢ Ai type}i
(⊛ ∈ {⊕, ⊗})

∆ ⊢ ⊛{Ai} type

(x : A) ∈ Γ
(var)

∆; Γ ⊢ x : A

∆, a; Γ ⊢ E : A
(∀I) (a < ∆)

∆; Γ ⊢ Λa.E : ∀a.A

∆; Γ ⊢ E : ∀a.A ∆ ⊢ B type
(∀E)

∆; Γ ⊢ E[B] : A{B/a}

∆ ⊢ A type ∆; Γ, x : A ⊢ E : B
(→I)

∆; Γ ⊢ λx : A.E : A → B

∆; Γ ⊢ F : A → B ∆; Γ ⊢ E : A
(→E)

∆; Γ ⊢ F E : B

{∆; Γ ⊢ Ei : Ai}i
(⊗ I)

∆; Γ ⊢ (E1, . . . , En) : ⊗{Ai}

∆; Γ ⊢ E : ⊗{Aj}
(⊗E) (i ∈ {j})

∆; Γ ⊢ πi E : Ai

∆; Γ ⊢ E : Ai
(⊕ I) (i ∈ {j})

∆; Γ ⊢ ιi E : ⊕{Aj}

∆; Γ ⊢ E : ⊕{Ai} {∆; Γ ⊢ Fi : Ai → B}i
(⊕E)

∆; Γ ⊢ case E {F1, . . . , Fn} : B

Fig. 6. F⊗⊕ typing rules.

(x : σ) ∈ Γ
(var)

P | Γ ⊢ x { x : σ

P | Γ ⊢ M { E : σ P | Γ, x : σ ⊢ N { F : τ
(let)

P | Γ ⊢ let x :: σ = M in N { (λx : (σ)•.F) E : τ

P | Γ, x : τ ⊢ M { E : υ
(→I)

P | Γ ⊢ λx .M { λx : (τ)•.E : τ → υ

P | Γ ⊢ M { F : τ → υ P | Γ ⊢ N { E : τ
(→E)

P | Γ ⊢ M N { F E : υ

P, v : ψ | Γ ⊢ M { E : ρ
(⇒I)

P | Γ ⊢ M { λv : (ψ)•.E : ψ ⇒ ρ

P | Γ ⊢ M { F : ψ ⇒ ρ P ⇒ E : ψ
(⇒E)

P | Γ ⊢ M { F E : ρ

P | Γ ⊢ M { E : σ
(∀I) (t < fv(P, Γ))

P | Γ ⊢ M { Λt.E : ∀t.σ

P | Γ ⊢ M { E : ∀t.σ
(∀E)

P | Γ ⊢ M { E[(τ)•] : σ {τ/t}

P | Γ ⊢ M { E : τ
(◃ I)

P | Γ ⊢ ℓ ◃M { E : ℓ ◃ τ

P | Γ ⊢ M { E : ℓ ◃ τ
(◃E)

P | Γ ⊢ M/ℓ { E : τ

P | Γ ⊢ M { E : τ ⊢ τ ≈ υ
(sim)

P | Γ ⊢ M { E : υ

P | Γ ⊢ M1 { E1 : Πζ1 P | Γ ⊢ M2 { E2 : Πζ2 P ⇒ F : ζ1 ⊙ ζ2 ∼ ζ3
(Π I)

P | Γ ⊢ M1 ⋆M2 { F⋆ E1 E2 : Πζ3

P | Γ ⊢ M { E : Πζ2 P ⇒ F : ζ1 4d ζ2
(ΠEd)

P | Γ ⊢ prjd M { Fprjd E : Πζ1

P | Γ ⊢ M { E : Σζ1 P ⇒ F : ζ1 4d ζ2
(Σ Id)

P | Γ ⊢ injd M { Finjd E : Σζ2

P | Γ ⊢ M1 { E1 : Σζ1 → τ P | Γ ⊢ M2 { E2 : Σζ2 → τ P ⇒ F : ζ1 ⊙ ζ2 ∼ ζ3
(ΣE)

P | Γ ⊢ M1 ▽M2 { F▽ [(τ)•] E1 E2 : Σζ3 → τ

⊢ Π(τ) ≈ τ ⊢ Σ(τ) ≈ τ

ζ1 ∼ ζ2
(Ξ ∈ {Π, Σ})

⊢ Ξζ1 ≈ Ξζ2 ⊢ τ ≈ τ

⊢ τ1 ≈ τ2

⊢ τ2 ≈ τ1

⊢ τ1 ≈ τ2 ⊢ τ2 ≈ τ3

⊢ τ1 ≈ τ3

Fig. 7. Rose typing rules and translation to F⊗⊕ .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 12. Publication date: January 2019.

Abstracting Extensible Data Types 12:17

variables v to predicatesψ ; it should be viewed as constraining all the type variables appearing in
the remainder of the judgment. (Although we distinguish evidence variables v from term variables
x for clarity, they do not constitute different syntactic classes in the translation.) The translation of
variables (var), quantification (∀I), and instantiation (∀E) are all unsurprising. Rose distinguishes
between polymorphic (let) and monomorphic (→I) binding; as a corresponding distinction does
not exist in F⊗⊕ , the images of their translations are identical. Qualified type introduction (⇒ I)

corresponds to abstraction over evidence, while their elimination (⇒E) requires the provision of
that evidence. This is one of the points of interface between the type system and the predicate
system. The entailment judgment P ⇒ E : ψ denotes that, if the predicates in P hold (with evidence
assigned to the corresponding evidence variables), then E is evidence that ψ holds as well. The
rules for this judgment determine the interpretation of the predicates, and so are left abstract.

Labels and equality. As the meaning of labels is captured solely by the predicates, labeled types
and terms are translated identically to their unlabeled equivalents (◃ I , ◃ E). There are two sources
of type equality in Rose. One arises from equivalence of rows; for example, we expect that the types
Π(x◃Int, y◃Bool) and Π(y◃Bool, x◃Int) are equivalent. The other arises from our interpretation
of singleton records and variants as equivalent to their underlying type. These are captured in the
equivalence relationship ⊢ τ1 ≈ τ2. Equivalence is defined only for types; it can be generalized to
qualified types and type schemes using pairs of the corresponding introduction and elimination
rules. We require that equivalence be preserved in the interpretation (sim): if E is the translation of
a term of type τ1, and ⊢ τ1 ≈ τ2, then E must also be the translation of that term at type τ2.

Predicates and evidence. The meaning of record and variant terms is determined by the interpre-
tation of the predicates. We specify the form that we expect this interpretation to take. Each of our
predicates appears in two contexts: once in the treatment of records, and once in the treatment
of variants. Correspondingly, the evidence for each of these predicates must support two opera-
tions: the evidence for containment supports record projection and variant injection, while the
evidence for combination supports record concatenation and variant branching. We capture these
requirements as follows:

If F : ζ1 4d ζ2 : If F : ζ1 ⊙ ζ2 ∼ ζ3 :

Fprj
d
: (Πζ2)

• → (Πζ1)
• F⋆ : (Πζ1)

• → (Πζ2)
• → (Πζ3)

•

Finjd : (Σζ1)
• → (Σζ2)

• F▽ : ∀a.((Σζ1)
• → a) → ((Σζ2)

• → a) → (Σζ3)
• → a

The interpretation of combination for variants is complicated by the need to refer to the result
type, but otherwise these should be unsurprising. We place no other restrictions on the structure
or implementation of evidence.

Records and variants. Finally, we have the rules for product introduction (Π I) and elimination
(ΠE) and variant introduction (ΣI) and elimination (ΣE). These should be largely unsurprisingÐeach
operation is interpreted in terms of the relevant evidence. The rule for variant elimination is slightly
complicated by having to refer to the result type. Given that this type appears in the types of
M and M ′, however, this introduces no potential for ambiguity in the typing or translation. One
observation at this point is that we could have treated the record and variant operations purely as
constants, rather than with distinct typing rules; following that approach, evidence would only
have been computed in (⇒E), and the interpretation of that evidence would have been determined
by the constants. In our view, while that approach would have required fewer typing rules, it would
have camouflaged the central contribution of the type system.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 12. Publication date: January 2019.

12:18 J. Garrett Morris and James McKinna

(t)• = t (τ → υ)• = (τ)• → (υ)• (ψ ⇒ ρ)• = (ψ)• → (ρ)• (∀t.σ)• = ∀t.(σ)•

(ℓ ◃ τ)• = (τ)• (Π(τ1, . . . , τn))
•
= ⊗{(τi)

• : 1 ≤ i ≤ n} (Σ(τ1, . . . , τn))
•
= ⊕{(τi)

• : 1 ≤ i ≤ n}

(ζ1 4 ζ1)
•
= ⊗

{

(Πζ2)
• → (Πζ1)

•

(Σζ1)
• → (Σζ2)

•

}

(ζ1 ⊙ ζ2 ∼ ζ3)
•
= ⊗

{

(Πζ1)
• → (Πζ2)

• → (Πζ3)
•,∀a.((Σζ1)

• → a) → ((Σζ2)
• → a) → (Σζ3)

• → a

(ζ1 4 ζ3)
•, (ζ2 4 ζ3)

•

}

πi:j E =

{

E if j = 1

πi E otherwise
ιi:j E =

{

E if j = 1

ιi E otherwise

Let ζ1 = (τ1, . . . , τj), and ζ2 = (τ ′1, . . . , τ
′
k
).

prj
ζ1,ζ2
L

= λx : (Πζ2)
•
.π1:k x, if j = 1; λx : (Πζ2)

•
.(πi:k x)1≤i≤j , otherwise.

prj
ζ1,ζ2
R

= λx : (Πζ2)
•
.πk:k x, if j = 1; λx : (Πζ2)

•
.(πi:k x)k−j≤i≤k , otherwise.

inj
ζ1,ζ2
L

= λx : (Σζ1)
•
.ι1:k x, if j = 1; λx : (Σζ1)

•
.case x {λy : (τi)

•
.ιi:k y}1≤i≤j , otherwise.

inj
ζ1,ζ2
R

= λx : (Σζ1)
•
.ιk:k x, if j = 1; λx : (Σζ1)

•
.case x {λy : (τi)

•
.ιi:k y}k−j≤i≤k , otherwise.

concatζ1,ζ2 = λx : (Πζ1)
•
.λy : (Πζ2)

•
.(π1:j x, . . . , πj:j x, π1:k y, . . . , πk:k y)

branchζ1,ζ2 = Λa.λf : (Σζ1)
• → a.λg : (Σζ2)

• → a.λz : (Σ(ζ1
aζ2))

•
.

case z

{

λx : (τi)
•.f (ιi:j x) if i ≤ j

λy : (τ ′i−j)
•.g (ιi−j:k y) otherwise

}

1≤i≤j+k

v : ψ ∈ P

P ⇒ v : ψ

P ⇒ F : ζ1 ⊙ ζ2 ∼ ζ3

P ⇒ π3 F : ζ1 4L ζ2

P ⇒ F : ζ1 ⊙ ζ2 ∼ ζ3

P ⇒ π4 F : ζ2 4R ζ3

ζ1
aζ2 = ζ3

P ⇒ (concatζ1,ζ2 , branchζ1,ζ2 , (prj
ζ1,ζ3
L
, inj

ζ1,ζ3
L

), (prj
ζ2,ζ3
R
, inj

ζ2,ζ3
R

)) : ζ1 ⊙ ζ2 ∼ ζ3

F⋆ = π1 F F▽ = π2 F Fprj
d
= π1 F Finjd = π2 F

Fig. 8. Interpretation of trivial rows in F⊗⊕

4.4 Entailment and Evidence for Trivial Rows

Figure 8 shows the entailment relation and evidence for the trivial row theory. The top of the figure
gives the translation on types; in the center we give metatheoretic definitions of the terms used to
construct evidence in the entailment relation, and at the bottom we give the entailment relation
and define the projections from evidence to implementations of the record and variant operations.

Types. The translation on types (−)• broadly interprets each Rose type as the parallel F⊗⊕

construct: functions are interpreted as functions, polymorphism as polymorphism, records and
variants as products and coproducts respectively. There are, however, several subtleties. First,
we interpret qualified types ψ ⇒ ρ as functions from the evidence for ψ to ρ. This means our
translation on types depends on a interpretation of predicates. In our translation, we interpret
predicates by the interpretations of the corresponding record and variant operations; with a more
expressive target language, we could give more concise descriptions of evidence. Second, we have

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 12. Publication date: January 2019.

Abstracting Extensible Data Types 12:19

no representation of labels in the target language, so labeled types ℓ ◃ τ are interpreted identically
to their unlabeled versions. This emphasizes that the interpretation of the labels will be captured
entirely through the interpretation of predicates.

Evidence. The trivial row theory is a close match for the n-ary products and coproducts in F⊗⊕ .
The only complexities in the construction of evidence arise from the identification of singleton
products and variants with their underlying types. The projection and injection operators πi:j and

ιi:j abstract much of this handling. The constructions prj
ζ1,ζ2
d

, inj
ζ1,ζ2
d

, concatζ1,ζ2 , and branchζ1,ζ2

each denote families of F⊗⊕ terms, one for each ground instantiation of ζ1 and ζ2. The terms prj
ζ1,ζ2
L

and prj
ζ1,ζ2
R

extract initial and final subsequences of their argument. Dually, the terms inj
ζ1,ζ2
L

and

inj
ζ1,ζ2
R

inject values from sub-coproducts into larger coproducts. In each case, the only complexity

arises from the possibility that the ζi may be singleton rows. The term concatζ1,ζ2 concatenates

two products. The term branchζ1,ζ2 combines eliminators for coproducts; other than the need to
abstract over the result type, this term is straightforward.

Entailment. The entailment relation is pleasingly direct. The containment relations 4L and 4R

are proved in terms of the corresponding combination predicate; while we could have given the
containment relations directly, this approach limits the need to specify semantically unnecessary
containment predicates in types. The evidence for the combination predicate contains both the
implementations of the operations corresponding to combination (record concatenation and variant
branching), but also contains the (tuples of) evidence arising from both corresponding containment
relations. The evidence for the containment relations can then be projected directly from the
evidence for the combination. Finally, we interpret the operations by projecting the implementations
from the evidence.

Lemma 8. Suppose that P ⇒ F : ψ , and let ∆ = fv(P,ψ). Let (P)• be the F⊗⊕ typing environment

{v : (ψ)• | (v : ψ) ∈ P}. Then:

(1) ∆; (P)• ⊢ F : (ψ)•;
(2) If ψ = ζ1 4d ζ2, then ∆; (P)• ⊢ Fprjd : (Πζ2)

• → (Πζ1)
• and ∆; (P)• ⊢ Finjd : (Σζ1)

• → (Σζ2)
•;

and,

(3) If ψ = ζ1 ⊙ ζ2 ∼ ζ3, then ∆; (P)• ⊢ F⋆ : (Πζ1)
• → (Πζ2)

• → (Π(ζ1
aζ2))

• and ∆; (P)• ⊢ F▽ :

∀a.((Σζ1)
• → a) → ((Σζ1)

• → a) → (Σ(ζ1
aζ2))

• → a.

Each is shown by a combination of induction on the structure of the entailment derivation and
routine type checking for the evidence constructions.

4.5 Properties of Typing and Translation

We establish several formal properties validating our type system and semantics. We begin a
preliminary definition. In a typing judgment P | Γ ⊢ M { E : σ , type variables in σ are constrained
both by the predicates in P and by any predicates in σ . We reflect this using constrained type
schemes.

Definition 9. A constrained type scheme (P | σ) pairs a type scheme σ with a set of predicates P
constraining its free type variables. We can interpret constrained type schemes in F⊗⊕ : if P = v1 :

ψ1, . . . , vn : ψn, then (P | σ)• = (ψ1)
• → · · · → (ψn)

• → (σ)•.

We then introduce a generality relation C : σ1 ⊒ σ2 on type schemes, shown in Figure 9.3

Intuitively, we have σ1 ⊒ σ2 if every ground instance of σ2 is also a ground instance of σ1. If that

3Mitchell and Jones call this relation łcontainmentž; we have chosen different terminology to avoid confusion with the

relation on rows.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 12. Publication date: January 2019.

12:20 J. Garrett Morris and James McKinna

⊢ τ1 ≈ τ2

id : σ ⊒ σ

C1 : σ1 ⊒ σ2 C2 : σ2 ⊒ σ3

C2 ◦ C1 : σ1 ⊒ σ3

C : σ1[τ/t] ⊒ σ2

λx : ∀a.(σ1)
•.C (x[(τ)•]) : ∀t.σ1 ⊒ σ2

C : σ1[b/a] ⊒ σ2 b < fv(σ1)

λx : ∀a.(σ1)
•.Λb.C (x[b]) : ∀a.σ1 ⊒ ∀b.σ2

C : σ1 ⊒ σ2

λx : ∀a.∀b.(σ1)
•.Λb.Λa.C (x[a][b]) : ∀a.∀b.σ1 ⊒ ∀b.∀a.σ2

{⊢ v1 : ϕ1, . . . , vm : ϕm ⇒ Ei : ψi}i C : ρ1 ⊒ ρ2

λx .λv1 : (ϕ1)
•.λvm : (ϕm)

•.C (x E1 . . . En) : (ψ1 ⇒ · · · ⇒ ψn ⇒ ρ1) ⊒ (ϕ1 ⇒ · · · ⇒ ϕm ⇒ ρ2)

Fig. 9. Ordering type schemes.

is the case, it should also be the case that we can transform an F⊗⊕ term in the interpretation of
σ1 into one in the interpretation of σ2. The term C provides this transformation. This judgment is
extended to constrained type schemes C : (P1 | σ1) ⊒ (P2 | σ2) in the obvious manner, following the
rule for qualified types. The following is lemma is proved by a simple induction on ⊒ derivations.

Lemma 10. If C : (P1 | σ1) ⊒ (P2 | σ2), then ⊢ C : (σ1)
• → (σ2)

•.

We now turn to the main results of this section.

Theorem 11 (Principality). If P | Γ ⊢ M { E : σ , then there is some (P0 | σ0) such that

P0 | Γ ⊢ M { E : σ0 and for all (P | σ) such that P | Γ ⊢ M { E : σ , (P0 | σ0) ⊒ (P | σ).

We are able to draw almost entirely on existing work on principality for qualified types sys-
tems [Jones 1994].We construct a syntax-directed variant of the type system, adapt AlgorithmM [Lee
and Yi 1998] to our type system, and then show soundness and completeness relationships between
each. The only complexities arise from the use of (sim) to wrap and unwrap singleton products and
sums; however, we can push these to the elimination rules in the syntax-directed type system, and
incorporate them into unification for type inference.

Theorem 12 (Soundness). If P | Γ ⊢ M { E : σ , then ∆; (Γ)• ⊢ E : (σ)•, where ∆ = fv(P, Γ,σ).

The proof is by induction on typing derivations inRose. BecauseRose terms are implicitly quantified,
we build the F⊗⊕ type variable environment ∆ from the free type variables in the Rose typing
derivation, in an entirely standard way. The only interesting cases of the induction are those
that manipulate evidence. The soundness of those cases follows from the entailment judgment
producing well-typed evidence (Lemma 8).
Rose terms may have multiple typing derivations, and so have translations to differing F⊗⊕

terms; this is typical for qualified type systems, and is known as the coherence problem. We show
that, assuming a syntactically verifiable condition on source terms, the interpretations of these
type derivations are all interconvertible, and so the meaning of terms is well-defined. Our approach
follows that of Jones [1993; 1994], in turn built on the work of Mitchell [1988], adapted to the
specifics of the Rose type system.
Unfortunately, it is simply not the case that all Rose terms, in all row theories, have coherent

meanings. For example, consider the term prjL ◦ prjR in either the trivial or scoped row theory.
Depending on the type assigned to the invocation of prjR, this term can select any subset of its
input record. This ambiguity is reflected in the term’s principal type.

⊢ prjL ◦ prjR : ∀z1z2z3.(z3 4L z2, z2 4R z1) ⇒ Πz1 → Πz3

The type variable z2 appears in the qualifiers, but nowhere in the type of the term, so its instanti-
ation can be chosen arbitrarily when constructing typings of this term; differing choices for its

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 12. Publication date: January 2019.

Abstracting Extensible Data Types 12:21

instantiation give rise to different interpretations of the term. However, it is not the case that any
term whose typing includes type variables that do not appear in the type gives rise to incoherence.
Recall the (fully-desugared) type we gave to Wand’s example (ğ2.2):

λmn.(prj (m⋆ n))/ℓ : ∀t z1z2z3.(z1 ⊙ z2 ∼ z3, (ℓ ◃ t) 4 z3) ⇒ Πz1 → Πz2 → t

Type variable z3 appears in the qualifiers, but not in the type itself. However, this does not introduce
incoherence: z3 is determined (up to ∼) by z1 and z2, which do appear in the type. To capture this
notion, we introduce the idea of the closure of a set of type variables T over a set of predicates Ψ.

Definition 13. We define T+
Ψ
as the smallest set U such that

• T ⊆ U ; and,
• if ζ1 ⊙ ζ2 ∼ ζ3 ∈ Ψ, and fv(ζ1, ζ2) ⊆ U , then fv(ζ3) ⊆ U .

This approach was originally introduced by Jones [2000] to account for functional dependencies in
type class predicates. We can then define notions of coherent type schemes and coherent terms.

Definition 14. A type scheme ∀T .Ψ ⇒ τ is coherent if T ⊆ fv(τ)+
Ψ
. A term M is coherent if its

principal type scheme is coherent.

Finally, we can state our coherence result for the translation.

Theorem 15 (Coherence). If M is coherent, P1 | Γ ⊢ M { E1 : σ1, P2 | Γ ⊢ M { E2 : σ2 and

C : (P1 | σ1) ⊒ (P2 | σ2), then C E1 =βη E2.

The proof is routine, following standard approaches to showing coherence for qualified type
systems [Jones 1993; Morris 2014].

4.6 Translations Between Row Theories

We have both a generic account of the interpretation of Rose(R,∼,⇒) and a specific account of
the interpretation of the trivial theory ⟨Rtriv,∼triv,⇒triv⟩ in F⊗⊕ . Now, we extend our approach to
give an account of the simple and scoped theories of rows, in a modular and reusable fashion.

4.6.1 Translations, generally. We might hope that row theory homomorphisms, the intuitive
structure-preserving maps for row theories, would be sufficient to extend our semantics from trivial
to simple or scoped rows. Unfortunately, the trivial row theory is not expressive enough to capture
the other row theories (ğ3.3); this means that a translation from simple or scoped rows to trivial
rows must induce some transformation on terms, not only on types. The problem is that there are
equivalent rows in the source theory (such as (x ◃ Int, y ◃ Bool)) that cannot be translated to a
single row in the target theory (neither of the trivial rows (Int, Bool) nor (Bool, Int) satisfies all
the predicates on the original simple row). However, there are families of rows in the target theory
that do satisfy all of the predicates, and are all interconvertible! For example, if we are allowed to
switch between the trivial rows (Int, Bool) and (Bool, Int) (in this case, how to do so is clear),
then we can model all of the predicates on the original simple row.

Definition 16. Let ⟨R,∼,⇒⟩ and ⟨R ′,∼′,⇒′⟩ be two theories of rows. Let η : R → R ′, and
extend η homomorphically from rows to predicates, types, and contexts. We say η is a row theory

translation (or simply: translation) from ⟨R,∼,⇒⟩ to ⟨R ′,∼′,⇒′⟩ if:

(1) If ζ1 ∼ ζ2, then there are Rose(R ′,∼′,⇒′) terms T1, T2 such that T1 : Πη(ζ1) → Πη(ζ2) and
T2 : Ση(ζ1) → Ση(ζ2).

(2) If P ⇒ ζ1 ⊙ ζ2 ∼ ζ3, then there is some ζ ′3 ∼ ζ3 such that η(P) ⇒′ η(ζ1) ⊙ η(ζ2) ∼ η(ζ ′3).

Such a translation on row theories gives rise to a corresponding translation on terms of Rose
instantiated by those theories.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 12. Publication date: January 2019.

12:22 J. Garrett Morris and James McKinna

⟨id, id⟩ : ζ ∼ ζ

⟨f1, g1⟩ : ζ1 ∼ ζ2 ⟨f2, g2⟩ : ζ2 ∼ ζ3

⟨f2 ◦ f1, g2 ◦ g1⟩ : ζ1 ∼ ζ3

⟨f , g⟩ : ζ1 ∼ ζ2

⟨prjL △ f ◦ prjR, injL ▽ injR ◦ g⟩ : ℓ ◃ τ , ζ1 ∼ ℓ ◃ τ , ζ2

⟨f , g⟩ : ζ1 ∼ ζ2 ℓ , ℓ′

⟨(prjR △ prjL) ◦ prjL △ f ◦ prjR, injL ◦ (injR ▽ injL) ▽ injR ◦ g⟩ : ℓ ◃ τ , ℓ′ ◃ τ ′ζ1 ∼ ℓ
′ ◃ τ ′, ℓ ◃ τ , ζ2

Fig. 10. Equivalence of simple and scoped rows, with witnessing terms in the trivial row theory. The shaded

condition holds trivially for simple rows.

Theorem 17. If η is a row theory translation from ⟨R,∼,⇒⟩ to ⟨R ′,∼′,⇒′⟩, then it extends to a

translation η• from terms of Rose(R,∼,⇒) to terms of Rose(R ′,∼′,⇒′) such that if P | Γ ⊢ M : σ ,
then η(P) | η(Γ) ⊢ η•(M) : η(σ).

The proof is by induction on the derivation of P | Γ ⊢ M : σ . The translation introduces mediat-
ing terms, as are guaranteed by Definition 16 condition 1, at record and variant operations and
applications of (sim), and is otherwise homomorphic.

4.6.2 Translations, specifically. To use Theorem 17 to give semantics for simple or scoped rows, we
need to exhibit row theory translations from these theories to the trivial theory. We can do so in an
entirely regular fashion. We map rows in the source theory to syntactically identical rows in the
target theory; since the trivial theory is less expressive than either simple or scoped rows, however,
we have some work to do to show we can preserve the operations from the source theories.

Proposition 18. Let ⟨R,∼,⇒⟩ be the simple (resp. scoped) theory of rows. Then ηI : R → Rtriv;ηI :
(ℓi ◃ τi)i 7→ (ℓi ◃ τi)i is a translation from the simple (resp. scoped) row theory to the trivial row theory.

The key step is showing that equivalences in the source theories can be witnessed in the trivial
theory. Figure 10 reiterates the equivalence relation for both simple and scoped rows, extending it
with witness information (recall that △ is the dual operator to ▽). The side condition that ℓ , ℓ′

holds trivially for simple rows, as simple rows prohibit repetitions of labels within a row.

Lemma 19. If ⟨f , g⟩ : ζ1 ∼ ζ2 (in either the simple or scoped row theory), then ⊢ f : ΠηI(ζ1) →
ΠηI(ζ2) and ⊢ g : ΣηI(ζ1) → ΣηI(ζ2).

Finally, we have to show that satisfiable predicates from the source theory can be mapped to
satisfiable predicates in the trivial theory. This amounts to observing that, for any non-trivial

derivation P ⇒ ζ1 ⊙ ζ2 ∼ ζ3, we have that ζ3 ∼ ζ1
aζ2. This is a simple induction on the length of ζ3.

4.6.3 Fusion and efficiency. The translations in the previous section demonstrate the utility of
the row theory abstraction, while showing that, for the row theories we have considered, Rose
programs can still be interpreted in System F. The resulting implementations may not be particularly
efficient; in particular, the translations to the trivial row theory introduce regular, and apparently
unnecessary, reshuffling of product and sum values. We observe that most of these reshuffling
steps, however, could be combined by a simple analysis of the final F⊗⊕ terms. There are still
significant questions, both about how to best represent extensible records and variants, and how to
take advantage of contextual information (perhaps captured in typing) to optimize representation
choices. We hope to return to these questions in future work.

5 RELATED WORK

There is a significant literature on extensible data types in general, and on row type systems in
particular. Here we highlight that work which is closest to ours.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 12. Publication date: January 2019.

Abstracting Extensible Data Types 12:23

Establishing row types. Wand [1987] originally introduced row types, motivated by modeling
inheritance in object-oriented languages. He initially proposed treating rows as arbitrary partial
functions from labels to types; updates were always allowed, and overwrote fields if they were
present. Wand also observed that the dual of his record calculus gave a system of extensible variants.
Unfortunately, unification for this system proved problematic. Rémy [1989] introduced an alternate
approach to row typing, in which rows mapped labels to fields, rather than types. Fields could
either indicate that a label was present, at a given type, or that a field was absent. In this system,
unlike Wand’s, record extension was limited to cases in which fields were not already present.
Rémy introduced a restriction operator, which łforgetsž fields already present in a record, making it
possible to define record update in terms of restriction followed by extension. However, he further
proposed polymorphism in fields; by making record extension polymorphic in the new label’s field,
it could serve as both extension and update.

Modern row types. Pottier and Rémy [2005] give an updated presention of Rémy’s original row
system. Among the innovations of their presentation is that they lift arbitrary type operators
to row operators; for example, if ζ1 and ζ2 are rows, then they also support the row ζ1 → ζ2,
in which each label ℓ is mapped to ζ1(ℓ) → ζ2(ℓ). This allows them to express some programs
inexpressible in our system, such as one that applies a record of functions to a record of arguments.
Unlike the other systems we have discussed, they restrict record and variant types to complete

rows, in which all labels are mapped to some type. They still, however, limit record extension to
avoid overwriting fields, and so support incomplete rows in the building of complete rows. Blume
et al. [2006] describe a calculus that supports extensible records and first-class cases. Unlike other
approaches to extensible variants, they distinguish case-branch functions from arbitrary functions,
and restrict their branching operator to combining case-branch function. This allows them to give
a more efficient implementation of extensible variants, by translating case blocks into (extensible)
records of functions.

Rows and qualified types. The systems of Rémy [1989] and Pottier and Rémy [2005] use kinds to
track the labels present in (or absent from) a given record, to assure that record types themselves
are well formed. Gaster and Jones [1996] proposed using qualified types instead. They introduce
a predicate ζ \ ℓ, pronounced łζ lacks ℓž, which is only satisfied if row ζ does not include label
ℓ. Otherwise, their operations are similar to other systems of extensible data types: they include
record extension (limited to cases where the new field is not already present), restriction, and
the dual operations for variants. The use of łlacksž constraints also guides the implementation of
records: the presence of a constraint ζ \ ℓ indicates that at some point, ζ will be extended with label
ℓ. The evidence for such a constraint is the offset into a Πζ record at which field ℓ should be stored.

Rows and concatenation. There are several existing accounts of rows and record concatenation.
Wand [1991] first discussed the typing problems that arise with record concatenation. He described
an approach to typing concatenation that used row types as in Rémy [1989], but concluded multiple
typing derivations for each possible term. (These are essentially intersection types, although he
did not express them as intersections.) While expressive, we believe that this approach introduces
obstacles to understanding types and the corresponding terms. Harper and Pierce [1991] give an
extension of System F with record concatenation, in which record concatenation does not replace

fields. They assure this by introducing a form of constrained type abstraction ∀a#®ζ .A, which

requires that instantiations of type variable a be with record types disjoint from any of those in ®ζ .
Otherwise, they support the standard record selection, restriction, and construction operations. (In
particular, while their concatenation operation behaves identically to ours, their primitives project
only single fields, not subrecords.) However, their system cannot express Wand’s problem: while it

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 12. Publication date: January 2019.

12:24 J. Garrett Morris and James McKinna

can express the concatenation, it lacks a mechanism to require that a field is in the result of the
concatenation without specifying in which record it originates.
Featherweight Ur [Chlipala 2010] incorporates record concatenation and row typing in a

dependently-typed programming language; in addition to standard row types, Featherweight
Ur includes types witnessing disjointness of rows and type-level maps on rows. Wand’s problem
can be expressed in Featherweight Ur (in contrast to our approach, the programmer must provide
an explicit witness of row disjointness, although they can do so in an entirely routine fashion). We
do not claim that Rose provides more expressive row types than Featherweight Ur. Rather, we view
our work as demonstrating that expressive record concatenation can be expressed in type systems
with only a fraction of the overall expressiveness (and corresponding complexity) of systems like
Ur.

Encoding extensible data types. There have been a number of systems encoding extensible data
types using other type system features, notably type classes and type families in Haskell. Kiselyov
et al. [2004] demonstrate how to encode extensible records in Haskell; their approach initially
corresponds to one with unlabeled rows, in which projection is based solely on the types of record
fields, but they also give an encoding of labeled fields. Predictably, they rely on a number of
extensions to the Haskell class system, most prominently functional dependencies. Swierstra [2008]
develops an encoding of extensible variants in Haskell, using two-level types to capture extensible
recursive types. While his injection functions are similar to ours, he does not provide a general
approach to branching, instead expressing each branching with its own type class. Bahr [2014] and
Morris [2015] give independent encodings of extensible variants, with similar but subtly different
expressions of branching. Both systems are essentially equivalent to unlabeled simple rows (Morris
also presented a system like scoped rows, but, apparently unaware of the work on scoped rows,
discarded it as undesirable). Oliveira et al. [2015] give an encoding of extensible data types using
type-level lists of types, an approach quite close to rows. However, in doing so, they lose precision
in their typing of case blocks.

Other applications of rows. We have considered rows solely in the context of extensible data
types. Row types have been used to capture similar ideas of extensibility in several other contexts.
Lindley and Cheney [2012] use row types to provide effect polymorphism, while Hillerström and
Lindley [2016]; Leijen [2014]; Lindley et al. [2017] use row types to provide accounts of algebraic
effects and handlers. Lindley and Cheney [2012] use a row type system based on that of Rémy;
Hillerström and Lindley [2016] extend this approach to also encompass handlers for algebraic
effects. Leijen uses scoped rows to account for algebraic effects and handlers; the use of scoping in
the rows corresponds to the nesting of handlers in source code, where there may be, for example,
multiple nested catch blocks all handling (different levels or types of) exceptions. Lindley andMorris
[2017] use row types to account for extensible choice in session types, a type-based abstraction of
communication protocols.
Makholm and Wells [2005] introduce a row-based approach to typing mixin modules and their

composition, calledMartini. In this approach, modules are typed by pairs of rows, one that captures
the definitions they provide and another that captures their dependencies on their environment.
Composition of modules is only allowed when the two modules have disjoint output sets, and
the modules may (mutually) satisfy each other’s dependencies. Martini can be captured by Rose,
by observing that its module types (that is, its pairs of rows) themselves form a partial monoid.
Following this characterization,Martini’s various module projection and restriction operations,
and their types, can be encoded using the record operations of Rose. This application also highlights
Rose’s unique benefit of capturing multiple row systems within a single language: a practical

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 12. Publication date: January 2019.

Abstracting Extensible Data Types 12:25

instantiation of Rose might use simple rows to capture extensible data types, while using Martini

like rows to capture module structure.

Subsumption and intersection types. Records and variants, in general, have some similarities to
intersection and union types, particularly in light of type systems that allow arbitrary or almost-
arbitrary intersections [Dunfield 2012; Oliveira et al. 2016]. There are two important differences
between our approach and those based on intersections. First, we consider a view parametric over
the interpretation of rows, and thus the meaning of records and variants; in contrast, work on
intersections and unions focuses on a particular interpretation of intersections and unions. Second,
and more importantly, our approach to projection (and injection) is not equivalent to subtyping.
This is demonstrated in our discussion of default values (ğ2.2), where the presence of projection
only on the right of the concatenation is essential to the meaning of the term.

6 FUTURE WORK: LENSES

Not for nothing have we presented ⋆ and ▽ for Π-rows (records, ğ2.2) and Σ-rows (variants,
ğ2.3) as offering an abstract presentation of product and coproduct types, subject to the ability to
project/inject at will along a chosen coordinate axis given by a field label/constructor, or more
generally along any (sub-)row type. Elsewhere, the rich literature on (asymmetric, state-based)
lenses [Foster et al. 2007, for example], has similarly given a łcoordinate-freež account, at least
for product types. An (asymmetric) lens (get, put) from source type S to view type V consists of
(partial) functions get : S → V , constructing a view from a given source value, and put : V × S → S,
responsible for updating a source value with changes made to the view. Without further belaboring
the details, a very-well-behaved asymmetric lens from S to V exhibits an isomorphism between S

and V × C, for some type C, called the łconstant complementž, which stores the information in S

not visible in the view V [Hofmann et al. 2011]. In this light, we can see that the record operations
in Rose exactly define a set of very-well-behaved lenses. For any rows ζ1 ⊙ ζ2 ∼ ζ3, we have that
(λz.prj z, λ(x, z).x ⋆prj z) is a lens from Πζ3 to Πζ1, with constant complement Πζ2 (or, by different
instantiations of the type variables, from Πζ3 to Πζ2 with constant complement Πζ1). This is true
regardless of the theory of rows in which the predicates are interpreted.

Dual to lenses are prisms [Kmett 2018]: a prism from S to V consists of functions (match, build)
where match : S → MaybeV performs a case match, returning Nothing if the S value does not
match the pattern captured by the prism, and build : V → S constructs an S value matching the
prism from V . As with lenses, we see that the variant operations in Rose define prisms. For any
rows ζ1 ⊙ ζ2 ∼ ζ3, we have that ((λy.y/Just) ▽ (λy.Nothing), λy.inj y) is a prism from Σζ3 to Σζ1.
However, prisms discard a crucial piece of information captured in Rose: in the case that match

returns Nothing, we have lost any knowledge of the remaining cases. That is to say, the idea of the
constant complement, essential to characterizing the behavior of very-well-behaved lenses, which
is captured implicitly by Rose constraints and used to check branching, is missing from prisms.
Just as McKinna [2016] draws attention to the logical meaning of lens complement, we exploit

Curry-Howard to give computational content to logical constraints on rows. In future work, we hope
to further explore the connections between lenses and prisms and our type-theoretic, monoidal
view of extensible data types. In particular, we plan to compare our work to the profunctor-based
generalization of lenses and prisms given by Pickering et al. [2017] and Boisseau and Gibbons
[2018].

7 FUTURE WORK: EFFECTS AND EFFECT HANDLERS

We have considered applications of row types to extensible records and variants. Row types have
also recently been applied to type systems for (algebraic) effects and effect handlers [Hillerström

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 12. Publication date: January 2019.

12:26 J. Garrett Morris and James McKinna

and Lindley 2016; Leijen 2014; Lindley et al. 2017]. As future work, we plan to study how our view
of rows and row theories can be applied to effect typing. Our goal is to leverage the expressiveness
of higher-order functional programming to express effects and handlers in terms of the existing
primitives (records and variants), rather than endlessly extending our language with new primitive
types and new primitive operations. Different views of effects and handlers imply different accounts
of recursive data types, and so take advantage of Rose’s ability to capture multiple row systems in
the same language.
To do so, we expect to develop several features not present in Rose. Our approach exposes the

duality between records and variants in the type system but does not reflect it directly in terms.
A general account of effectful computations (essentially, variants over the possible operations)
and effect handlers (essentially, records of implementations of operations) will require terms that
witness the duality between record construction and variant branching. (A similar approach is
used by Blume et al. [2006], but in their implementation of variants rather than being materialized
in the language.) Many existing accounts of extensible effects also depend on transformations on
the effect labels in a term, such as the row-level maps introduced by Pottier and Rémy [2005] and
Chlipala [2010]. We intend a fuller study of first-class labels and of how label transformations
and their properties can be characterized, consistent with our separation of labeling from the core
record and variant operations

ACKNOWLEDGEMENTS

We are grateful to the reviewers for their help and encouragement in improving the presentation of
this work. The second author gratefully acknowledges the support of LFCS, University of Edinburgh,
and the U.S. Air Force Office of Scientific Research, Air Force Materiel Command, USAF, under grant
number FA8655-13-1-3006 (PI: James Cheney). The U.S. Government, the University of Edinburgh,
and the University of Kansas are authorised to reproduce and distribute reprints for their purposes
notwithstanding any copyright notation thereon.

REFERENCES

P. Bahr. Composing and decomposing data types: a closed type families implementation of data types à la carte. In J. P.

Magalhães and T. Rompf, editors, Proceedings of the 10th ACM SIGPLAN workshop on Generic programming, WGP 2014,

Gothenburg, Sweden, August 31, 2014, pages 71ś82. ACM, 2014.

B. Berthomieu and C. le Moniès de Sagazan. A calculus of tagged types, with applications to process languages. InWorkshop

on types for program analysis, Aarhus, 1995.

M. Blume, U. A. Acar, and W. Chae. Extensible programming with first-class cases. In J. H. Reppy and J. L. Lawall, editors,

Proceedings of the 11th ACM SIGPLAN International Conference on Functional Programming, ICFP 2006, Portland, Oregon,

USA, September 16-21, 2006, pages 239ś250. ACM, 2006.

G. Boisseau and J. Gibbons. What you needa know about Yoneda: profunctor optics and the Yoneda Lemma (Functional

Pearl). PACMPL, 2(ICFP):84:1ś84:27, 2018.

A. Chlipala. Ur: statically-typed metaprogramming with type-level record computation. In B. G. Zorn and A. Aiken, editors,

Proceedings of the 2010 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2010,

Toronto, Ontario, Canada, June 5-10, 2010, pages 122ś133. ACM, 2010.

J. Dunfield. Elaborating intersection and union types. In P. Thiemann and R. B. Findler, editors, ACM SIGPLAN International

Conference on Functional Programming, ICFP’12, Copenhagen, Denmark, September 9-15, 2012, pages 17ś28. ACM, 2012.

J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt. Combinators for bidirectional tree transformations:

A linguistic approach to the view-update problem. ACM Trans. Program. Lang. Syst., 29(3):17, 2007.

J. Garrigue. Programming with polymorphic variants. In ML Workshop. ACM, 1998.

B. R. Gaster and M. P. Jones. A polymorphic type system for extensible records and variants. Technical Report NOTTCS-

TR-96-3, University of Nottingham, 1996.

R. Harper and B. Pierce. A record calculus based on symmetric concatenation. In Proceedings of the 18th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL ’91, pages 131ś142. ACM, 1991.

D. Hillerström and S. Lindley. Liberating effects with rows and handlers. In TyDe@ICFP, pages 15ś27. ACM, 2016.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 12. Publication date: January 2019.

Abstracting Extensible Data Types 12:27

R. Hinze, N. Wu, and J. Gibbons. Conjugate hylomorphisms - or: The mother of all structured recursion schemes. In S. K.

Rajamani and D. Walker, editors, Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015, pages 527ś538. ACM, 2015.

M. Hofmann, B. C. Pierce, and D. Wagner. Symmetric lenses. In T. Ball and M. Sagiv, editors, Proceedings of the 38th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011,

pages 371ś384. ACM, 2011.

M. P. Jones. Coherence for qualified types. Technical Report YALEU/DCS/RR-989, Yale University, 1993.

M. P. Jones. Qualified Types: Theory and Practice. Cambridge University Press, 1994.

M. P. Jones. Type classes with functional dependencies. In G. Smolka, editor, Programming Languages and Systems, 9th

European Symposium on Programming, ESOP 2000, Held as Part of the European Joint Conferences on the Theory and

Practice of Software, ETAPS 2000, Berlin, Germany, March 25 - April 2, 2000, Proceedings, volume 1782 of Lecture Notes in

Computer Science, pages 230ś244. Springer, 2000.

O. Kiselyov, R. Lämmel, and K. Schupke. Strongly typed heterogeneous collections. In H. Nilsson, editor, Proceedings of the

ACM SIGPLAN Workshop on Haskell, Haskell 2004, Snowbird, UT, USA, September 22-22, 2004, pages 96ś107. ACM, 2004.

E. Kmett. The lens package, version 4.16, 2018.

O. Lee and K. Yi. Proofs about a folklore let-polymorphic type inference algorithm. ACM Trans. Program. Lang. Syst., 20(4):

707ś723, 1998.

D. Leijen. Extensible records with scoped labels. In Revised Selected Papers from the Sixth Symposium on Trends in Functional

Programming, TFP 2005, Tallinn, Estonia, 23-24 September 2005., pages 179ś194, 2005.

D. Leijen. Koka: Programming with row polymorphic effect types. In P. Levy and N. Krishnaswami, editors, Proceedings 5th

Workshop on Mathematically Structured Functional Programming, MSFP@ETAPS 2014, Grenoble, France, 12 April 2014.,

volume 153 of EPTCS, pages 100ś126, 2014.

D. Leijen. Type directed compilation of row-typed algebraic effects. In G. Castagna and A. D. Gordon, editors, Proceedings

of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20,

2017, pages 486ś499. ACM, 2017.

S. Liang, P. Hudak, and M. P. Jones. Monad transformers and modular interpreters. In R. K. Cytron and P. Lee, editors,

Conference Record of POPL’95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San

Francisco, California, USA, January 23-25, 1995, pages 333ś343. ACM Press, 1995.

S. Lindley and J. Cheney. Row-based effect types for database integration. In B. C. Pierce, editor, Proceedings of TLDI 2012:

The Seventh ACM SIGPLAN Workshop on Types in Languages Design and Implementation, Philadelphia, PA, USA, Saturday,

January 28, 2012, pages 91ś102. ACM, 2012.

S. Lindley and J. G. Morris. Lightweight functional session types. In S. Gay and A. Ravara, editors, Behavioural Types: from

Theory to Tools. River Publishers, 2017.

S. Lindley, C. McBride, and C. McLaughlin. Do be do be do. In G. Castagna and A. D. Gordon, editors, Proceedings of the

44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017,

pages 500ś514. ACM, 2017.

H. Makholm and J. B. Wells. Type inference, principal typings, and let-polymorphism for first-class mixin modules.

In O. Danvy and B. C. Pierce, editors, Proceedings of the 10th ACM SIGPLAN International Conference on Functional

Programming, ICFP 2005, Tallinn, Estonia, September 26-28, 2005, pages 156ś167. ACM, 2005.

J. McKinna. Complements witness consistency. In Bx@ETAPS, volume 1571 of CEUR Workshop Proceedings, pages 90ś94.

CEUR-WS.org, 2016.

J. C. Mitchell. Polymorphic type inference and containment. Inf. Comput., 76(2-3):211ś249, Feb. 1988.

J. G. Morris. A simple semantics for Haskell overloading. In W. Swierstra, editor, Proceedings of the 2014 ACM SIGPLAN

symposium on Haskell, Gothenburg, Sweden, September 4-5, 2014, pages 107ś118. ACM, 2014.

J. G. Morris. Variations on variants. In B. Lippmeier, editor, Proceedings of the 8th ACM SIGPLAN Symposium on Haskell,

Haskell ’15, pages 71ś81, Vancouver, BC, 2015. ACM.

B. Oliveira, S. Mu, and S. You. Modular reifiable matching: a list-of-functors approach to two-level types. In Haskell, pages

82ś93. ACM, 2015.

B. Oliveira, Z. Shi, and J. Alpuim. Disjoint intersection types. In J. Garrigue, G. Keller, and E. Sumii, editors, Proceedings of

the 21st ACM SIGPLAN International Conference on Functional Programming, ICFP 2016, Nara, Japan, September 18-22,

2016, pages 364ś377. ACM, 2016.

M. Pickering, J. Gibbons, and N. Wu. Profunctor Optics: Modular Data Accessors. The Art, Science, and Engineering of

Programming, 1(2), 2017. Article 7.

F. Pottier and D. Rémy. The essence of ML type inference. In B. C. Pierce, editor, Advanced Topics in Types and Programming

Languages. The MIT Press, 2005.

D. Rémy. Typechecking records and variants in a natural extension of ML. In Conference Record of the Sixteenth Annual

ACM Symposium on Principles of Programming Languages, Austin, Texas, USA, January 11-13, 1989, pages 77ś88. ACM

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 12. Publication date: January 2019.

12:28 J. Garrett Morris and James McKinna

Press, 1989.

T. Sheard and E. Pasalic. Two-level types and parameterized modules. J. Funct. Program., 14(5):547ś587, 2004.

W. Swierstra. Data types à la carte. J. Funct. Program., 18(04):423ś436, 2008.

P. Wadler. The expression problem. http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt, 1998.

M. Wand. Complete type inference for simple objects. In Proceedings of the Symposium on Logic in Computer Science (LICS

’87), Ithaca, New York, USA, June 22-25, 1987, pages 37ś44. IEEE Computer Society, 1987.

M. Wand. Type inference for record concatenation and multiple inheritance. Inf. Comput., 93(1):1ś15, 1991.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 12. Publication date: January 2019.

http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

	Abstract
	1 Introduction
	2 Programming in Rose
	2.1 Extensible Records
	2.2 Records by Concatenation
	2.3 Extensible Variants

	3 Generalizing Extensibility
	3.1 Scoped Records
	3.2 Rows Abstracted
	3.3 Row Homomorphisms

	4 The Rose Type System
	4.1 Rose Syntax
	4.2 Target Language
	4.3 Interpreting Terms and Types
	4.4 Entailment and Evidence for Trivial Rows
	4.5 Properties of Typing and Translation
	4.6 Translations Between Row Theories

	5 Related Work
	6 Future Work: Lenses
	7 Future Work: Effects and Effect Handlers
	References

