
The Best of Both Worlds
Linear Functional Programming without Compromise

J. Garrett Morris
The University of Edinburgh, UK

Garrett.Morris@ed.ac.uk

Abstract
We present a linear functional calculus with both the safety guaran-
tees expressible with linear types and the rich language of combina-
tors and composition provided by functional programming. Unlike
previous combinations of linear typing and functional program-
ming, we compromise neither the linear side (for example, our lin-
ear values are first-class citizens of the language) nor the functional
side (for example, we do not require duplicate definitions of com-
positions for linear and unrestricted functions). To do so, we must
generalize abstraction and application to encompass both linear and
unrestricted functions. We capture the typing of the generalized
constructs with a novel use of qualified types. Our system main-
tains the metatheoretic properties of the theory of qualified types,
including principal types and decidable type inference. Finally, we
give a formal basis for our claims of expressiveness, by showing
that evaluation respects linearity, and that our language is a conser-
vative extension of existing functional calculi.

Categories and Subject Descriptors D.3.2 [Language Classifica-
tions]: Applicative (functional) languages; D.3.3 [Language Con-
structs and Features]: Polymorphism

Keywords linear types; substructural types; qualified types

1. Introduction
Integers have a pleasing consistency: values do not become more
or less integers over the course of a computation. The same is
not true for file handles: we can no longer expect to read from or
write to a file handle after it has been closed. Traditional functional
type systems, like the logic they resemble, are good for integers
(i.e., unchanging propositions), but less good for file handles (i.e.,
temporary ones). If our type systems are to help in the latter case,
we need ones with a different logical character.

One approach is suggested by Girard’s linear logic [11], which
requires that each hypothesis be used exactly once in the course of a
proof. Intuitively, linear propositions are finite resources, which can
neither be duplicated nor discarded, rather than arbitrary truth val-
ues, available as often, or as rarely, as needed. Linear type systems
adopt the same approach to variables: each bound variable must
be used exactly once in the body of its binder. Such type systems

have been used to reason about resource usage and concurrency.
For example, they have been used to assure safe manipulation of
state [1, 13], regulate access to shared resources [4, 7], and type
interacting concurrent processes [5, 34, 36]. Each of these exam-
ples uses the restrictions on reuse and discard introduced by lin-
earity to assure safety invariants. Simultaneously, several general
purpose linear functional languages have been proposed, including
those of Wadler [35], Mazurak et al. [24], and Tov and Pucella [33].
However, attempts to adapt functional programming idioms and ab-
stractions to these calculi are thwarted by the interplay of linear
and intuitionistic types. This paper proposes a novel combination
of linear and qualified types that provides the safety of linear types
without losing the expressiveness of functional programming.

We identify three requirements for the integration of linear types
and functional programming. As an example, consider the K com-
binator, defined as λx.λy.x. We begin with its arguments: argument
x is used once, and so can take on values of any type. Argument y is
discarded, and so can only take on values of unrestricted type. This
illustrates the first requirement: we must distinguish between quan-
tification over arbitrary type and quantification over unrestricted
types. Next, consider the application K V , giving a new function
λy.V . Whether we can reuse this function depends on V . If V is a
Boolean or integer value, for example, there is no danger in reusing
λy.V . On the other hand, if V is a file handle or capability, then
reuse of the function would imply reuse of V , and should be pre-
vented. This illustrates the second requirement: we must distin-
guish between linear and unrestricted functions, which distinction
is determined by the environment captured by each function. In par-
ticular, there is no single static characterization of the linearity of
the subterms of K that accounts for its application to both linear
and unrestricted values. Finally, consider the composition function
◦, defined as λf .λg.λx.f (g x). We know that we must be able to
apply f and g to things, and that both are used linearly, However,
these constraints are satisfied by both linear and unrestricted func-
tions. So, the final requirement is that we must generalize the typing
of application to range over the possible types of function.

These requirements have been addressed in previous work, al-
though the interactions between them have not. Quantification over
unrestricted values can be expressed in a linear system using either
kinds (and subkinding) [24] or type classes [9]; both approaches ex-
tend naturally to account for pairs and sums. Many existing systems
use subtyping to account for application, either implicitly [9, 24] or
explicitly [10, 33]. Tov and Pucella [33] introduce a notion of rela-
tive arrow qualifiers, sufficient to express the typing of K, but at the
cost of significant complexity in their type system. The interplay
of these disparate mechanisms has not been fully explored. For ex-
ample, none the existing systems can express the desired typing of
composition, nor have they been shown to support complete type
inference.



We propose a new, uniform approach to integrating linear types
and functional programming, based on the theory of qualified
types [17]. Rather than invent new type system features, we present
a language design based on a novel combination of qualified and
linear typing, both existing, well-studied type systems. To demon-
strate our design, we return to the K combinator, to which we give
the (qualified) type (Un u, t ≥ f )⇒ t→ u

f→ t. First, we observed
that the second argument (here typed by u) must be unrestricted;
this is captured by the predicate Un u. Second, we observed that
the result of K V , λy.V , may be either an linear or unrestricted
function, depending on the linearity of V . We capture this through
the use of two predicates, one that identifies functions and another
that specifies relative linearity. The predicate Fun f is satisfied only
when f is a function type; we write t

f→ u to denote the type f t u
under the predicate Fun f . Here, we use it to range over the possible
types for λy.V; we would make a similar use of the Fun predicate
to express the argument types of the composition operator. The
predicate t ≥ f is satisfied when t supports more structural rules
(i.e., duplication and discard) than f . Thus, in the typing of the K
combinator, if t is linear, then f must be linear; alternatively, if t is
unrestricted, than f can be either linear or unrestricted.

Formally, we capture our approach in the design of a core linear
calculus, which we call a Qualified Linear Language (Quill). Quill
is a linear variant of Jones’s calculus OML, extended with Haskell-
like first-class polymorphism [19], and with entailment rules for the
Un, Fun, and ≥ predicates. We preserve the metatheoretic proper-
ties of OML, particularly principal types and decidable type infer-
ence, without requiring the programmer to provide type or linearity
annotations. We show that our system is a conservative extension of
(non-linear) OML; concretely, this means that we can view our ap-
proach as giving linear refinements of existing functional languages
and idioms, rather than replacing them entirely. Finally, we give a
natural (big-step) semantics for Quill and show that evaluation re-
spects linearity.

In summary, this paper contributes:

• The design and motivation of Quill, including examples of
Quill’s application to prototypical uses of linear types (dyadic
session types) and higher-order functional programming (mon-
ads) (§3).

• A formal account of the Quill type system and its relationship
to OML, including a sound and complete type inference algo-
rithm (§4).

• A linearity-aware semantics of Quill, and a proof that values of
linear type are neither duplicated nor discarded during evalua-
tion (§5).

• A discussion of further extensions of Quill, including its appli-
cability to other substructural type systems, such as affine or
relevant typing (§6).

We begin with an introduction to linear type systems and their
uses (§2), and conclude by discussing related (§7) and future (§8)
work.

2. Substructural Type Systems
Before describing the details of our language, we give examples
of several applications of substructural type systems and several
general-purpose substructural calculi.

2.1 Applications of Substructural Typing
Linear type systems restrict the use of weakening (i.e., discarding
variables) and contraction (i.e., reusing variables), allowing us to
reason about state and resource usage in programs. For example,
excluding weakening could prevent memory or resource leaks, by

requiring that each input to a computation be consumed during its
evaluation. Excluding contraction could be used in describing com-
ponent layouts in circuits, where a limited number of each com-
putational unit are available. Linear type systems combine these,
providing exact control over resource usage. This section describes
two uses of linear types: session types and referentially-transparent
in-place update. These demonstrate two different uses of linear
types: session types evolve over the course of a computation, cap-
turing changes in underlying state, while mutable values must be
used linearly to preserve referential transparency. In each case, we
make two points: first, the need for the restrictions introduced by
linearity, and second, the difficulties introduced in integrating the
use of linear and unrestricted types.

Mutable arrays. We begin by considering in-place update. Sup-
pose that we want to be able to read from and update arrays in a
referentially transparent way. We might expect each update to pro-
duce a new copy of the array; otherwise, updates would be visi-
ble through other references to the original array. For large arrays,
this copying will be extremely costly, both in time and space. The
copying could be avoided if we could ensure that the use of ar-
rays was single-threaded. That is, so long as no “old” copies of
arrays are ever used, updates can be performed in place. Chen and
Hudak [6] consider the connection between single-threaded usage,
potentially enforced monadically, and linearity. They introduce an
affine type system (they allow discarding but not duplication), and
show that updating linearly-typed values can safely be performed in
place. They also show how the operations on a linear data type can
be interpreted to give a monad in an intuitionistic calculus, while
preserving the safety of in-place update. However, this approach
relies on hiding the linearly typed values, making them second-
class citizens of the non-linear calculus. That is, while the monadic
computations describe transformations of an underlying array, they
give no direct access to the array itself. Consequently, while their
approach applies to linear arrays of unrestricted element types, it
could not apply to linear element types (such as other arrays), be-
cause it gives direct access to the array elements.

Session types. Next we consider session types, an instance of be-
havioral typing. Communication protocols frequently specify not
just what data can be sent, but in what order. For example, the Sim-
ple Mail Transfer Protocol specifies not just a list of commands
(identifying senders, recipients, message bodies, and so forth), but
also a particular ordering to messages (the sender’s address must
precede the recipients’ addresses, which must precede the message
body). Session types, originally proposed by Honda [16], provide
a mechanism for capturing such expectations in the types of com-
munication channels. The critical aspect of his type system is that
types evolve over the course of a computation to reflect the com-
munication that has already taken place. For example, if channel c
has session type Int ! Int ? End, we expect to send an integer along
c, then receive an integer from c. After we have sent an integer, the
type of c must change to Int?End, reflecting the remaining expected
behavior. We can implement session types in a functional setting by
giving channels linear types, and reflecting the evolution of types
in the type signatures of the communication primitives:

send :: t ⊗ (t ! s)→ s receive :: (t ? s)→ t ⊗ s

Continuing the example above, we see that the result of send (4, c)
will be of type Int ? End, as we hoped. The linearity of these chan-
nels is crucial to assuring the type correctness of communication:
reusing channel c would allow us to send arbitrarily many integers,
not just one. There are approaches to encoding session types in ex-
isting functional languages, such as that of Pucella and Tov [29],
but they result in channels being second class values. For example,



sending or receiving channels requires different primitives from
those for sending or receiving other values.

2.2 General-Purpose Linear Calculi
Wadler [35] gives a λ-calculus based on Girard’s logic of unity, a
refinement of linear logic. In his approach, the types (ranged over
by τ, υ) are precisely the propositions of linear logic, including
pairs (τ ⊗ υ), functions (τ ( υ), and the exponential modal-
ity (!τ ). His type system tracks two kinds of assumptions, linear
(x : 〈τ〉) and intuitionistic (x : [τ ]); only the latter are subject
to contraction and weakening. Wadler does not include polymor-
phism in his calculus; nevertheless, we can see that his treatment
of intuitionistic types would preclude attempts toward generality.
He gives explicit term constructors to introduce and eliminate the
exponential modality, and these constructs surround any use of un-
restricted types. If M is of type τ ( υ, and N is of type τ , then
we can construct the application M N of type υ; on the other hand,
if M is of type !(τ ( υ), then we must explicitly eliminate the !
constructor at each use of M, as let !f = M in f N. Returning to
our introductory example, we have two families of types (and cor-
responding terms) for the K combinator, !(!τ ( !(!υ ( !τ)) if the
first argument is intuitionistic, and !(τ ( !υ ( τ) otherwise.

Mazurak et al. [24] present a streamlined, polymorphic linear
λ-calculus. Their calculus, called F◦, extends the Girard-Reynolds
polymorphic λ-calculus with linearity, and introduces a kind sys-
tem which distinguishes between linear (kind ◦) and unrestricted
(kind ?) types. They then define the kinds of types such as pairs
in terms of the kinds of their components: τ ⊗ υ is of kind ? if
both τ and υ are of kind ?, and must be of kind ◦ otherwise. Fi-
nally, they introduce a subkinding relation, allowing a type of kind
? to be used any place a type of kind ◦ is expected. This reflects
the observation that an unrestricted value can be used any num-
ber of times, including once. While their approach seamlessly en-
compasses many uses of unrestricted types, it does not extend to
functions. F◦ distinguishes between linear functions λ◦x.M, of type
τ
◦→ υ, which may capture arbitrary variables in their environment,

and unrestricted functions λ?x.M, of type τ •→ υ, which can only
capture unrestricted values. Consequently, F◦ still has four distinct
types for the K combinator

∀(t : ◦).∀(u : ?).t •→ u ◦→ t ∀(t : ◦).∀(u : ?).t ◦→ u ◦→ t

∀(t : ?).∀(u : ?).t •→ u •→ t ∀(t : ?).∀(u : ?).t ◦→ u •→ t

each with distinct inhabitants. The problem is endemic to the use
of higher-order functions; for example, their system has numerous
distinct application and composition functions.

Tov and Pucella [33] present Alms, an affine calculus with a
kind system similar to F◦ but with additional flexibility in the
treatment of functions. Their treatment of functions includes not
just affine ( A→) and unrestricted ( U→) functions, but also functions
with relative qualifiers. For example, Alms has a single most-
general type for the K combinator, written

∀(t : A).∀(u : U).t U→ u t→ t.

The arrow t→ must be more restricted than the instantiation of t. If
t is instantiated to an affine type, then t→ must be A→; otherwise, it
can be U→. They include subtyping explicitly; for example, Int U→
Int is a subtype of Int A→ Int. Alms is quite expressive, but this
comes at the cost of high complexity; we believe that Quill provides
similar expressiveness in a significantly simpler setting.

3. Programming in Quill
This section gives an intuitive overview of our calculus Quill and
its primary features. We begin by describing the use of overload-

ing to capture the non-linear use of assumptions. We then consider
the particular problems arising from having both linear and unre-
stricted functions, the overloading of application and abstraction,
and introduce the corresponding predicates on types. Finally, we
consider two examples of programming in Quill: a simple presen-
tation of dyadic session types, demonstrating the use of linearity,
and a Haskell-like presentation of monads, demonstrating the inter-
action between linearity and higher-order functional programming.
For the purposes of this section, we use a Haskell-like syntax for
Quill, in which we distinguish linear functions (τ ◦→ υ) from un-
restricted functions (τ •→ υ). We give a formal account of Quill’s
syntax and semantics in the following sections.

3.1 Contraction and Weakening with Class
Our goal is a functional language in which values of some (but
not all) types must be treated linearly. The central problem is the
integration of unrestricted types, and functions on unrestricted (but
otherwise generic) types, with an otherwise linear type system. We
describe one solution, based on the theory of qualified types.

We begin by distinguishing linear from unrestricted types. We
consider a type to be unrestricted if values of that type can be
duplicated and discarded. That is, a type τ is unrestricted if we
can exhibit values of type τ •→ 1 and τ •→ τ ⊗ τ . (This approach
roughly parallels Filinski’s interpretation of intuitionistic types by
commutative comonoids in the model of a linear calculus [8].) For
example, consider a type for Booleans with the standard branching
construct and constants. We can demonstrate that Booleans are
unrestricted by giving the terms λb.if b then () else () to discard
a Boolean, and λb.if b then (True, True) else (False,False) to
copy one. This leaves the problem of how to write code generic over
such types; for instance, we would like the function λx.(x, x + 1)
to be applicable to arguments of any unrestricted numeric type.

Our approach is inspired by the use of type classes in Haskell.
Type classes were introduced to solve similar problems, such as
how to write functions generic over types that have an equality op-
erator, or that can be converted to and from text. For our purposes,
we can imagine introducing a type class Un, which identifies unre-
stricted types:

class Un t where

drop :: t
•→ 1

dup :: t
•→ t ⊗ t

The methods of Un provide the defining behavior of an unre-
stricted type. We could then imagine using these methods to im-
plement terms such as the one above, for which we could write
λx.let (x, x′) = dup x in (x, x′ + 1). In inferring a type for this
term, we would observe that its argument type has to support nu-
meric operations (and so be a member of the Num) class, and has
to support dup (and so be a member of the Un class). We would
conclude that it should have type (Num t, Un t)⇒ t •→ t ⊗ t.

One advantage of this view of unrestricted types is that it ex-
tends naturally to products, sums, and recursive types. For exam-
ple, a pair of values (V,W) can safely be copied only when both
V and W could individually be copied. We can capture this in an
instance of the Un class:

instance (Un t, Un u) ⇒ Un (t ⊗ u) where
drop (x, y) = let () = drop x in drop y
dup (x, y) = ((x', y'), (x'', y'')) where

(x', x'') = dup x
(y', y'') = dup y

The relationship between the linearity of t and u and the linearity
of t ⊗ u arises organically from the typing of the drop and dup
methods. The argument for sums is parallel, with the same results.



Of course, we do not intend programmers to use the drop
and dup methods directly, and we imagine that instances of Un
would be inferred automatically from type declarations. Instead,
Quill allows variables to be used freely, and infers Un predicates
as if any duplication or discarding of variables had been done
explicitly. Thus, λx.(x, x + 1) is a well-typed Quill term with the
type (Num t, Un t)⇒ t •→ t ⊗ t, as above.

3.2 The Problem of the Copyable Closure
We have an appealing view of how to distinguish unrestricted from
linear types, and how to account for the linearity of products and
sums. Unfortunately, this view does not extend to provide a uni-
form treatment of functions. Consider the curried pair constructor
λx.λy.(x, y). We know that the linearity of the resulting pair de-
pends only on the linearity of its components. But what about the
intermediate result? Suppose that we apply this function to some
value V giving the term λy.(V, y). Whether we can copy this term
depends upon the captured value V; intuitively, we can say it de-
pends on the function’s closure. However, this is not reflected in the
function type. (While the type of V does appear in the result type,
so does the type of y, but the linearity of the function type is solely a
consequence of V’s type.) We are thus forced to introduce distinct
types for linear and unrestricted functions. This section discusses
the resulting language design questions: how to handle application
and abstraction in a language with multiple function types, and how
to relate the type of a function to the type of its captured environ-
ment.

Application
We begin with application, the simpler of the two problems. Con-
sider the uncurried application function. In intuitionistic calculi,
this is λ(f , x).f x, of type (t → u, t) → u. In the linear settings,
things are not so simple: we must decide whether the argument f
and the function being defined are linear or unrestricted functions.
These choices are independent, giving four incomparable types:

(t ◦→ u)⊗ t ◦→ u (t ◦→ u)⊗ t •→ u

(t •→ u)⊗ t ◦→ u (t •→ u)⊗ t •→ u

We can resolve this repetition by observing that (built-in) applica-
tion is implicitly overloaded: we would like to write f x whether f
is a linear or unrestricted function. We make this overloading ex-
plicit in the types. We introduce a new predicate, Fun f , which
holds when f is a function type; intuitively, we can think of this
as corresponding to a class whose sole method is application, and
whose only members are ◦→ and •→. We can then type application
with reference to this class, rather than in terms of either of the
concrete function types. This reduces the number of application
functions from four to two: we have Fun f ⇒ f t u ⊗ t ◦→ u and
Fun f ⇒ f t u ⊗ t •→ u. We introduce syntactic sugar to make the
Fun predicate easier to read. We will write t

f→ u to indicate the
type f t u constrained by Fun f , and further write t → u to indicate
t

f→ u for some fresh type variable f . Using this sugar, we arrive at
the most general type for the application function, (t→ u)⊗t→ u.

In the previous section, we motivated the typing of contraction
and weakening using the methods of an Un class, even though
we intend their use to be implicit in practice. In the case of the
Fun predicate, the class method intuition is less helpful. Defining
primitive application as a class method is difficult (how would it be
used, except by application?), and we will rely on the Fun predicate
holding only for the built-in function types. This reinforces the
expressiveness of qualified types, even beyond their traditional
application to overloaded class methods.

Abstraction
We have accounted for the uncurried application function. Now
consider its curried equivalent, expressed in an intuitionistic setting
as λf .λx.f x of type (t → u) → t → u. The problem here is
similar to the problem with the K combinator or the curried pair
constructor. Suppose that we apply this function to some value V ,
giving λx.V x: whether this function needs to be linear depends on
the linearity of V . We thus have six incomparable types for the
curried application function:

(t ◦→ u)
◦→ t ◦→ u (t •→ u)

◦→ t ◦→ u (t •→ u)
◦→ u •→ u

(t ◦→ u)
•→ t ◦→ u (t •→ u)

•→ t ◦→ u (t •→ u)
•→ u •→ u

Our approach to overloading application allows us to give names
to individual function arrows in a type. Unfortunately, even this is
not sufficient to account for the types of the application function; it
only allows us to reduce the six types above to two:

(t
f→ u)→ t

f→ u (t •→ u)→ t ◦→ u

However, this observation suggests our actual solution. Consider
a more general type, subsuming the two above (but admitting one
erroneous case): (t

f→ u)→ t
g→ u. The first case above is where f

and g are the same type, and the second is where f is less restricted
(i.e., admits more structural rules) than g. The erroneous case is
where f is more restricted (i.e., admits fewer structural rules) than g.
We introduce a new predicate, τ ≥ υ, which holds when τ admits
more structural rules than υ. We can now give the principal type of
the application operator: f ≥ g⇒ (t

f→ u)→ t
g→ u.

Our examples have focused on function types. However, the
≥ relation is not limited to functions; for example, consider the
possible types of the curried pair constructor λx.λy.(x, y):

Un t⇒ t→ u→ t ⊗ u t→ u ◦→ t ⊗ u

As for the application operator, we see that the linearity of the
final arrow is restricted by the types appearing before it in the type
signature. Unlike in that case, however, the earlier type in question
is not a function type. We can give the curried pair constructor the
principal type t ≥ f ⇒ t→ u

f→ t ⊗ u.

3.3 Quill in Action
One of the pleasing aspects of this work has been the simplicity of
our motivating examples: the K combinator and application func-
tions are very short, but reveal the unique benefits of Quill. We
conclude this section by turning to several larger examples. First,
we consider a simple embedding of dyadic session types, a typical
application of linear typing. Doing so demonstrates that we have
not made our system too permissive. Second, we consider a pre-
sentation of Haskell’s monad class and several of its instances. This
shows that Quill supports the full generality of intuitionistic func-
tional programming abstractions, and demonstrates the additional
information captured by a linear type system.

For these examples, we will assume various language features
present in Haskell, such as new type definitions, multi-parameter
type classes with functional dependencies, and do notation for
monads. We believe these are representative of realistic settings for
linear functional programming. However, these ideas are not fun-
damental to our approach, and our formalization in the following
sections will consider a core calculus that does not assume such
language features or syntactic sugar.

Dyadic Session Types
Session types, introduced by Honda [16], provide a typing disci-
pline for communication protocols among asynchronous processes.
There is a significant body of work exploring the combination of



session-typed and functional programming. Much of this work has
focused on defining new linear calculi, combining functional and
concurrent programming [10, 23, 34]. These calculi frequently in-
clude details specific to session typing in their type systems, and
so seem a poor fit for general purpose programming languages. Pu-
cella and Tov [29] give an encoding of session types in Haskell,
wrapping an underlying untyped use of channels. They express the
session typing discipline using the existing features of the Haskell
class system. However, they threat channels as second-class val-
ues, capturing the session types of channels in a parameterized
monad [2] rather than in the types of the channels themselves. One
consequence of this is that sending and receiving channels, while
possible, requires primitive operations (with particularly involved
types) distinct from those for sending and receiving values. We will
show that Quill allows us to have the best of both worlds: because
Quill is linear, we can have first-class channels, and because Quill
fits into the existing work on qualified types we can encode the
session typing discipline without having to extend our core type
system.

Honda gives five constructors for session types ζ, interpreted as
follows:

τ ! ζ Send a value of type τ , then continue as ζ
τ ? ζ Receive a value of type τ , then continue as ζ
ζ ] ζ′ Choose between behaviors ζ and ζ′

ζ C ζ′ Offer a choice of behaviors ζ and ζ′

End No communication

(Our syntax for the choice constructors differs from Honda’s to
avoid conflict with the notation for the linear logic connectives.)
Lindley and Morris [23] observed that, in a linear functional setting,
the choice types can be encoded in terms of ⊕ and the input and
output types, and so we omit them from our example. We introduce
types for the remaining session types—these types are empty, as
we will use them as tags rather than to type channels directly.

data t :!: s
data t :?: s
data End

Honda observed that communicating processes had dual expecta-
tions for their shared channels: if one process expects to send a
value of type τ , the other process should expect to receive a value
of type τ . Following Pucella and Tov [29], we can capture this us-
ing a type class with functional dependencies [20]:

class Dual t u | t → u, u → t
instance Dual s s' ⇒ Dual (t :!: s) (t :?: s')
instance Dual s s' ⇒ Dual (t :?: s) (t :!: s')
instance Dual End End

We now turn to channels and their primitive operators.

data Ch s
instance Un (Ch End)

Unlike other approaches to encoding session types in functional
languages, we treat End channels as unrestricted, avoiding the need
for explicit close operations. Previous work on linearity has dis-
cussed the encapsulation of unrestricted types in linear ones, either
via existential types [24, 33] or via a module system [29]. Alter-
natively, one might prefer to take the notion of linear channels as
primitive. Either approach is possible in Quill; as we are primarily
concerned with the use of linear types, we omit further discussion
of them here. (But see the extended version of this paper [25] for
the details of the packaging approach.) The primitive operations on
session-typed channels are as follows:

fork :: Dual s s' ⇒ (Ch s → M ()) → M (Ch s')

send :: t ≥ f ⇒ t → Ch (t :!: s)
f→ M (Ch s)

receive :: Ch (t :?: s) → M (t ⊗ Ch s)

We adopt the fork construct of Lindley and Morris both for its
simplicity and because it assures deadlock freedom. The Dual
predicate assures that the session types s and s' are well-formed
and dual. Gay and Vasconcelos [10] give two typings for the send
function, depending on the linearity of its first argument:

t •→ (t ! s) •→ s if t is unrestricted
t •→ (t ! s) ◦→ s otherwise

This fits precisely the pattern captured by the ≥ predicate in Quill.
Finally, as the communication primitives are side-effecting, we
assume the results are embedded in some suitable monad M. (This
is not an entirely innocuous choice; we will return to monads in a
linear setting for our next example.)

We present a simple example using session-typed channels. We
begin with a process that performs an arithmetic operation:

multiplier c =
do (x, c) ← receive c

(y, c) ← receive c
send (x ∗ y) c
return ()

The multiplier function defines a process that expects to read
two numbers on channel c, and then sends their product back
along the same channel. The inferred type for multiplier is
Num t ⇒ Ch (t :?: (t :?: (t :!: End))) → M (). Note that,
despite our reuse of the name c, each call to a communication
primitive returns a new copy of the channel, which is used linearly.
Next, we define a process to communicate with multiplier. To
illustrate the use of channels as first-class values, we define it in a
round-about way. First, we define a process that provides only one
of the two expected values:

sixSender c =
do (d, c) ← receive c

send 6 d
send d c
return ()

This function defines a process that begins by receiving a channel d
along c; it then sends 6 along the received channel before returning
the received channel along c. Thus, its type is

Num t ⇒ Ch (Ch (t :!: s) :?: Ch s :!: End) → M ()

Finally, we can define the main process, which uses the preceding
processes to compute 42:

answer = do d ← fork sixSender
c ← fork multiplier
d ← send c d
(c, d) ← receive d
c ← send 7 c
(x, c) ← receive c
return x

This example demonstrates the advantages of Quill for linear pro-
gramming. Unlike encoding-based approaches, we have simple
types and uniform treatment of channels and other data. Unlike
other concurrency-focused approaches, we have not built any as-
pects of session typing into our language or its type system.

Monads
In the previous example, we assumed that we could express our
communication primitives monadically, to account for their side ef-
fects. As they are fundamentally reliant on higher-order functions,
it is worth examining the interaction between linearity and the
monadic combinators. For a simple example, consider the desug-
aring of answer, which begins

fork sixSender>>= \d → fork multiplier>>= \c→ M



where M denotes the remainder of answer, and both c and d are
free in M. As d is of linear type, we see that λc.M must be a linear
function. Does this mean that the result of>>= must also be linear?
How does this play out for other monads, like the Maybe monad?

Of course, we could transport standard intuitionistic definitions
of monads directly into Quill, treating all functions as unrestricted.
Doing so would allow us to use monads for unrestricted values
without any new complexity. However, doing so would also rule
out interesting cases, such as those with channels in the previous
example. Here we take the opposite perspective, attempting to
generalize standard notions of monads to include the linear cases.
We will consider two canonical examples, failure and state.

First, we consider failure. We assume we have some type
Maybe t with constructors Just and Nothing; observe that Maybe t
is unrestricted precisely when t is unrestricted. To demonstrate that
Maybe is a monad, we give implementations of the return and
(>>=) operators, as follows:

return = \x → Just x
(>>=) = \m → \f → case m of

Nothing → Nothing
Just x → f x

The typing of return is uninteresting. On the other hand, consider
the use of f in the body of (>>=): if m is Nothing, then f is
discarded, whereas if m is Just x, then f is used once. So, we see
that f must be unrestricted, and so we have the types:

return :: t→ Maybe t

(>>=) :: t ≥ f ⇒ Maybe t→ (t •→ Maybe u)
f→ Maybe u

The requirement that f be unrestricted captures that the remainder
of the computation may not occur, an important characteristic of
the failure monad. For example, this means that the monad !M! in
the session types example cannot include exceptions. This should
align with our expectations: if a process fails, it cannot fulfill its
outstanding session-typed obligations.

Next, we consider the state monad. A state monad for state
values of type S is typically implemented in Haskell by the type
S → (t, S). This introduces additional choice in the linear case:
should we consider values of type S

◦→ t ⊗ S or of type S
•→

t ⊗ S? What constraints would this choice impose on the use of
the monad? We can clarify these questions by considering the
definition of return and (>>=). (Relying on our generalization of
abstraction and application, we consider these implementations in
parallel with the choice of the state monad itself.)

return = \x → \s → (x, s)
(>>=) = \m → \f → \s → let (x, s') = m s in f x s

We make two observations about the state monad. First, x is cap-
tured in \s → (x, s); therefore, a state computation can only be as
unrestricted as its result values. (This is true of the failure monad as
well, but is reflected in the inherent linearity of Maybe types.) Sec-
ond, note that the function f is used linearly in the body of (>>=),
so its type need not be unrestricted (unlike for the failure monad).
These observations are reflected in the types of return and (>>=).
We begin by introducing an alias for the state monad type:

type State k s t = s
k→ (t ⊗ s)

We can then type return and (>>=) by

return :: t ≥ State k s t ⇒ t → State k s t
(>>=) :: (State k s t ≥ g, f ≥ State k s u) ⇒

State k s t → (t
f→ State k s u)

g→
State k s u

The predicate State k s t ≥ g reflects that the term \f → . . . has
captured m of type State k s t.

Term variable x, y ∈ Var Type variables t, u ∈ TVar
Multienvironments H Environments Γ,∆

Type constructors Tκ ∈ T κ where {⊕, •→, ◦→} ⊆ T ?→?→?

Kinds κ ::= ? | κ→ κ

Types τκ ::= t | Tκ | τκ
′→κ τκ

′

Predicates π ::= Un τ | Fun τ | τ ≥ υ
Qualified types ρ ::= τ? | π ⇒ ρ
Type schemes σ ::= ρ | ∀t.σ
Expressions M,N ::= x | K M | λx.M | M N | in1 M | in2 N

| caseM of {in1 x 7→ N; in2 y 7→ N′}
| let x = M in N | let K x = M in N

Figure 1: Quill types and terms.

Finally, we generalize these examples. The problem is the type
of the second argument to (>>=): to be useful in the linear context,
we must sometimes include the restricted function type, but to
incorporate the full range of monads we must sometimes limit it
to unrestricted functions. We encompass both cases using a multi-
parameter type class for monads:

class Monad f m | m → f where
return :: t ≥ m t ⇒ t → m t
(>>=) :: (m t ≥ g, f ≥ m u) ⇒

m t → (t
f→ m u)

g→ m u

The definitions above give instances of our new Monad class:

instance Monad (
•→) Maybe

instance Monad k (State k s)

and that the example of dyadic session types will type in monads m
such that Monad (

◦→) m is provable.
We should emphasize that, because f is functionally dependent

on m, our reformulation of the Monad class does not introduce
any new polymorphism, or new potential for ambiguity. Rather,
it makes explicit (at the type level) existing differences in the
composition of monadic computations.

4. Substructural Qualified Types
We have considered some of the challenges of using linear calculi
in practice, given an intuitive description of how we addresses
these challenges using qualified types, and demonstrated how our
solution might be realized in a Haskell-like practical programming
language. In this section, we give a formal account of our approach
to substructural qualified types. We begin by giving an overview
of a core Quill calculus and its type system (§4.1). We then give
a syntax-directed variant on the type system (§4.2), preparatory to
giving an AlgorithmM [22] style type inference algorithm (§4.3).
Finally, we relate Quill typing to typing for a non-substructural core
calculus (§4.4), making concrete our claims that Quill encompasses
existing functional programming practice.

4.1 Quill Terms and Typing
The syntax of Quill types and terms is shown in Figure 1. Quill
types are stratified according to a simple kind system; we write
τ , υ and φ (without superscripts) to range over types of any kind.
(Unlike Mazurak et al. [24], we use kind ? for all types, not just
unrestricted ones.) We assume that ◦→, •→ and ⊕ are binary type
constructors, which we will write infix, corresponding to linear
and unrestricted functions and additive sums. We do not include
multiplicative or additive products (τ ⊗ υ and τ & υ), as these
can be encoded in terms of the other types. (These encodings



P | H ` M : σ

(VAR)
P | *x : σ+ ` x : σ

P | H,H′,H′ ` M : σ P ` H′ un
(CTR)

P | H,H′ ` M : σ

P | H ` M : σ P ` H′ un
(WKN)

P | H,H′ ` M : σ

P | H, x : τ ` M : υ

P⇒ Fun φ P ` H ≥ φ
(→ I)

P | H ` λx.M : φ τ υ

P | H ` M : φ τ υ

P | H′ ` N : τ P⇒ Fun φ
(→E)

P | H,H′ ` M N : υ

P | H ` M : σ P | H′, x : σ ` N : τ
(LET)

P | H,H′ ` let x = M in N : τ

P | H ` M : τi
(⊕ Ii)

P | H ` ini M ` τ1 ⊕ τ2

P | H ` M : τ1 ⊕ τ2 P | H′x, x : τ1 ` N : υ P | H′x, x : τ2,` N′ : υ
(⊕E)

P | H,H′x ` caseM of {in1 x 7→ N; in2 x 7→ N′} : υ

K : (∀~t.∃~u.Q⇒ τ ′)
•→ τ P⇒ [~υ/~u]Q

P | H ` M : [~υ/~u]τ ′ ~u /∈ ftv(P,H)
(MAKE)

P | H ` K M : τ

K : (∀~t.∃~u.Q⇒ τ ′)
•→ τ P | H ` M : τ

P, [~υ/~t]Q | H′, x : [~υ/~t]τ ′ ` N : υ′ ~u 6∈ ftv(P,H,H′, υ′)
(BREAK)

P | H,H′ ` let K x = M in N : υ′

P, π | H ` M : ρ
(⇒ I)

P | H ` M : π ⇒ ρ

P | H ` M : π ⇒ ρ P⇒ π
(⇒E)

P | H ` M : ρ

P | H ` M : σ t /∈ ftv(P,H)
(∀ I)

P | H ` M : ∀t.σ

P | H ` M : ∀t.σ
(∀E)

P | H ` M : [τ/t]σ

P ` · un

P⇒ Un τ(UN-τ )
P ` τ un

P, π ` ρ un
(UN-ρ)

P ` π ⇒ ρ un

P, Un t ` σ un
(UN-σ)

P ` ∀t.σ un

∧
x:σ∈H P ` σ un

(UN-H)
P ` H un

P ` · ≥ φ

P⇒ τ ≥ φ
(≥-τ )

P ` τ ≥ φ
P, π ` ρ ≥ φ

(≥-ρ)
P ` (π ⇒ ρ) ≥ φ

P, Un t ` σ ≥ φ
(≥-σ)

P ` (∀t.σ) ≥ φ

∧
x:σ∈H P ` σ ≥ φ

(≥-H)
P ` H ≥ φ

Figure 2: Typing rules.

depend on our overloading of abstraction for their full generality.)
We allow arbitrary additional type constructors, providing other
(user-defined) data types. Data types capture first-class universal
and existential types, following the approach of Jones’s FCP [19].
While we have not used these features in our examples, we include
them for two reasons. First, existential types are used prominently
in other approaches to linear functional programming [24, 33],
particularly to construct linear wrappers around unrestricted types,
and so we show that Quill accommodates similar constructions.
Second, existentials provide a another application of the techniques
developed to account for the linearity of functions; we describe this
at more length when consider extensions to our core calculus (§6).
Predicates π include those necessary for our treatment of linearity
(and can constrain higher-kinded types). Qualified types and type
schemes are standard for overloaded Hindley-Milner calculi. We
write ∀~t.Q⇒ τ to abbreviate ∀t1 . . .∀tn.P1 ⇒ . . .⇒ Pm ⇒ τ.

Quill includes standard terms for variables, abstractions, appli-
cations, and (additive) sums. We introduce polymorphism at let
bindings. First-class existential and universal types are expressed
using constructors K. We assume an ambient signature mapping
individual constructors K to types ∀~v.(∀~t.∃~u.Q ⇒ τ ′)

•→ τ . (This
type is not included in σ; σ denotes inferable type schemes.) Con-
struction K M builds a value of type τ , assuming that τ ′ has a suit-
ably generic type. We insist that constructors be fully applied. De-
construction let K x = M in N eliminates such values. The intro-
duction of first-class polymorphism through data types corresponds
to common practice in Haskell, and allows us to make clear the ex-
tent of type inference.

Figure 2 gives the Quill type system. The typing judgment
is P | H ` M : σ, where P is a set of predicates on the
type variables in the remainder of the judgment, H is a typing
environment, M is a term and σ a type scheme. Our treatment
of the typing environment follows a standard approach for linear
logic, but differs from some of the existing work on linear type
systems. We use multisets of typing assumptions (which we call
“multienvironments”); thus, the multienvironment *x : σ, x : σ+
is distinct from *x : σ+. We require that multienvironments be
consistent, so if *x : σ, x : σ′+ ⊆ H then we must have σ =
σ′, and we write H,H′ for the consistent multiset union of H
and H′. Assumptions of unrestricted type are duplicated in (CTR)
and discarded in (WKN); both rules use the auxiliary judgment
P ` · un, which lifts the Un predicate to typing environments. (The
assumption Un t in (UN-σ) accounts for terms like the empty list,
which should be treated as unrestricted until their type variables are
instantiated.) This allows us to simplify the other rules: in (VAR),
there must only be one binding in the environment, while rules like
(→ E) can split the typing environment among their hypotheses.
In particular, we avoid introducing an auxiliary judgment to split
type environments while sharing assumptions of unrestricted type
present in many linear type systems [24, 33]. Rules (→ I) and
(→ E) implement overloading of abstraction and application. In
(→ E), note that we allow the function term to be of any type
φ τ υ, so long as it satisfies the constraint Fun φ. In (→ I), we
allow a term λx.M to have any function type, so long as that type
is more restricted than its environment; the auxiliary judgment P `
· ≥ · lifts the ≥ predicate to type environments. We will assume
throughout this presentation that binders introduce fresh names.



P 3 π
P⇒ π

∧
π∈Q P⇒ π

P⇒ Q
τ =

◦→∨ τ =
•→

P⇒ Fun τ

K : (∀~t.∃~u.Q⇒ τ ′)
•→ τ P,Q, Un~t⇒ Un τ ′

P⇒ Un τ

P⇒ Un (τ
•→ υ)

P⇒ Un τ1 P⇒ Un τ2

P⇒ Un (τ1 ⊕ τ2)

P⇒ Un τ

P⇒ τ ≥ (υ
•→ υ′) P⇒ τ ≥ (υ

◦→ υ′)

P⇒ τ ≥ φ t t fresh

P⇒ τ ≥ φ
P⇒ τ t ≥ φ t fresh

P⇒ τ ≥ φ

Figure 3: Entailment rules.

First-class polymorphism is introduced in (MAKE) and eliminated
in (BREAK); our approach follows Jones [19] almost exactly, but
adds a predicate context Q. We write K : (∀t.∃u.Q ⇒ τ ′) → τ to
denote an instantiation of the signature for K in the ambient context.
We assume that each data type has at most one constructor; more
complex data types can be expressed using the other features of the
type system. The remaining rules are standard for linear sums and
qualified polymorphism.

Figure 3 gives a minimal definition of the predicate entailment
relation P ⇒ Q. One strength of type systems based on qualified
types is that the predicate system provides a natural point of exten-
sion, and our approach here is no different. Nevertheless, we spec-
ify some rules for the entailment judgment, namely the linearity of
the built-in types and that (only) ◦→ and •→ are in class Fun. In de-
termining the linearity of a data type τ , we assume that the univer-
sally quantified type variables~t are unrestricted (as a term of type
τ cannot have made any assumptions of~t), but cannot do so for the
existentially quantified variables ~u, as they may have been instan-
tiated arbitrarily in constructing the τ value. We have intentionally
given a minimal specification of ≥; in particular, we have omitted
various simplification rules which might be expected in a practical
implementation, and have limited the our attention to cases of ≥
with function types on their right-hand side (as those are the only
such predicates introduced by our typing rules). We will return to
the definition of this class when we discuss extensions to Quill (§6).
Finally, the lifting cases for≥ are a notational convenience; for ex-
ample, they allow us to write τ ≥ φ rather than τ ≥ φ t u for fresh
t and u.

4.2 A Syntax-Directed Quill Type System
The Quill type system has a number of rules that are not syntax di-
rected, including the structural rules and the rules introducing and
eliminating polymorphism. To simplify the definition of type infer-
ence and the proofs of its correctness, we give a syntax-directed
variant of the Quill type system. In doing so, we address two in-
dependent concerns. First, the rules (∀ I), (∀E), (⇒ I), and (⇒E)
may be used at any point in a derivation. This problem has already
been studied in the general context of qualified types. An identical
solution applies in Quill: uses of (∀E) and (⇒E) may always be
permuted to occur at occurrences of (VAR), while uses of (∀ I) and
(⇒ I) may always be permuted to occur at occurrences of (LET)
or at the end of the derivation. Second, the structural rules (WKN)
and (CTR) may also appear at any point in a typing derivation. As
in the polymorphism cases, we show that uses of these rules can

be permuted to definite places in the derivation: uses of (CTR) can
be permuted to appear immediately below a rule with multiple hy-
potheses (such as (→E) or (⊕E)) and uses of (WKN) can be per-
muted to occurrences of (VAR).

Figure 4 gives the syntax-directed variant of the Quill system.
The judgment P | Γ `S M : τ , is a syntax-directed variant of
P | H ` M : σ, and uses standard type environments Γ rather than
multienvironments H. We write Γ,Γ′ to denote partitioning the
environment; the treatment of contraction and weakening is explicit
in the typing rules, rather than via a partitioning relation on typing
environments. The auxiliary judgments are unchanged. The syntax-
directed system differs from the original type system in two ways.
First, we account for polymorphism. Our approach is identical
to Jones’s approach for (intuitionistic) qualified types [17]: we
introduce instantiation and generalization operators, accounting for
the role of predicates, and collapse the treatment of polymorphism
into the instances of (VARS) and (LETS).

Definition 1. We define instantiation and generalization as follows:

1. Let σ be some type scheme ∀~t.P ⇒ τ ′. We say that Q ⇒ τ is
an instance of σ, written (Q⇒ τ) v σ, if there is some ~υ such
that τ = [~υ/~t]τ ′ and Q⇒ [~υ/~t]P.

2. Let Γ be a typing environment, and ρ a qualified type. We define
Gen(Γ, ρ) to be the type scheme ∀(ftv(ρ) \ ftv(Γ)).ρ.

We use instantiation in (VARS), collapsing a use of (VAR) and
subsequent uses of (∀E) and (⇒E), and generalization in (LETS)
collapsing a use of (LET) and preceding uses of (⇒ I) and (∀ I).
Second, we account for contraction and weakening. In (VARS), we
allow an arbitrary environment, so long as the unused assumptions
∆ are unrestricted. In (→ES), we partition the input environment
into three parts: Γ is used exclusively in typing M, Γ′ is used
exclusively in typing N, and ∆ is used in both; consequently,
assumptions in ∆ must be unrestricted. The remaining rules follow
the same pattern.

The goal of the syntax-directed type system is a one-to-one cor-
respondence between syntactic forms and typing rules. However, it
is not the case that a typeable term has exactly one syntax-directed
typing derivation. For example, while the contents of the linear en-
vironments are determined by the term structure, the contents of
the unrestricted environments are not. For another example, con-
sider the term (λx.x) y. We can choose to type the abstraction as
either t ◦→ t or t •→ t (or even as t

f→ t assuming the predicate
Fun f ). Each of these choices would make the term well-typed, and
we assume that the terms obey the same laws (i.e., the choice of
type introduces no observable distinction in the semantics of the
term).

We now relate our original and syntax-directed type systems.
We start with environments. Intuitively, the syntax-driven system
introduces contraction when needed, guarded by Un constraints;
however, a multienvironment H could contain multiple instances of
assumptions with linear types. We introduce a notion of approxima-
tion between multienvironments H and environments Γ that holds
when the only repeated assumptions in H are for unrestricted types.

Definition 2. If H is a multienvironment, Γ is an environment, and
P is some context, then we say that Γ approximates H under P,
written P ` H ≈ Γ, if x : σ ∈ H if and only if x : σ ∈ Γ, and if
*x : σ, x : σ+ ⊆ H, then P ` σ un.

We now turn to our primary results. First, derivations in the
syntax-directed system correspond to derivations in the original
system.

Theorem 3 (Soundness of `S). If P | Γ `S M : τ and P ` H ≈ Γ,
then P | H ` M : τ .



P ` ∆ un (P⇒ τ) v σ
(VARS)

P | ∆, x : σ `S x : τ

Q | Γ,∆ `S M : τ σ = Gen(Γ,∆; Q⇒ τ)

P | Γ′,∆, x : σ `S N : υ P ` ∆ un
(LETS)

P | Γ,Γ′,∆ `S let x = M in N : υ

P | Γ, x : τ `S M : υ
P⇒ Fun φ P ` Γ ≥ φ

(→ IS)
P | Γ `S λx.M : φ τ υ

P | Γ,∆ `S M : φ τ υ P | Γ′,∆ `S N : τ

P⇒ Fun φ P ` ∆ un
(→ES)

P | Γ,Γ′,∆ `S M N : υ

P | Γ `S M : τi
(⊕ Ii

S)
P | Γ `S ini M : τ1 ⊕ τ2

P | Γ,∆ `S M : τ1 ⊕ τ2 P ` ∆ un
P | Γ′,∆, x : τ1 `S N : υ P | Γ′,∆, x : τ2 `S N′ : υ

(⊕ES)
P | Γ,Γ′,∆ `S caseM of {in1 x 7→ N; in2 x 7→ N′} : υ

K : (∀~t.∃~u.Q⇒ τ ′)
•→ τ P⇒ [~υ/~u]Q

P | Γ `S M : [~υ/~u]τ ′ ~t /∈ ftv(P,Γ)
(MAKE)

P | Γ `S K M : τ

K : (∀~t.∃~u.Q⇒ τ ′)
•→ τ P | Γ,∆ `S M : τ P `S ∆ un

P, [~υ/~t]Q | Γ′,∆, x : [~υ/~t]τ ′ `S N : υ′ ~u 6∈ ftv(P,Γ,Γ′,∆, υ′)
(BREAK)

P | Γ,Γ′,∆ `S let K x = M in N : υ′

Figure 4: Syntax-directed typing rules.

The proof is by structural induction on the derivation of P | Γ `S
M : τ , and relies on introducing instances of the structural and
polymorphism rules.

Second, we show completeness of the syntax directed system.
A derivation in the original system may end with uses of (⇒ I) or
(∀I), moving predicates from the context to the type or quantifying
over free type variables. In contrast, there are no such steps in
a derivations in the syntax-directed system. To account for this
difference, we introduce a notion of qualified type schemes, again
following Jones [17].

Definition 4. A qualified type scheme (P | σ) pairs a type scheme
σ with a set of predicates P. Let σ be ∀~t.Q ⇒ τ and σ′ be
∀~t′.Q′ ⇒ τ ′. We say that (P | σ) is an instance of (P′ | σ′),
written (P | σ) v (P′ | σ′) iff there are ~υ such that τ = [υi/t′i ]τ

′

and P,Q⇒ P′, [υi/t′i ]Q
′. We treat type schemes σ as abbreviations

for qualified type schemes (∅ | σ).

We can now state the completeness of the syntax-directed system.

Theorem 5 (Completeness of `S). If P | H ` M : σ and
P ` H ≈ Γ, then there are some Q and τ such that Q | Γ `S M : τ
and (P | σ) v Gen(Γ,Q⇒ τ).

Intuitively, this states that for any derivation in our original type
system, there is a derivation of at least as general a result in the
syntax-directed system. The proof is by induction on the derivation
of P | H ` M : σ. The interesting cases rely on the role of
generalization and instantiation in the syntax-directed type system
and the safe movement of structural rules up derivation trees.

4.3 Type Inference for Quill
Having defined a suitable target type system, we can give a type
inference algorithm for Quill. We have three separate concerns dur-
ing type inference. First, we use a standard Hindley-Milner treat-
ment of polymorphism. Second, we introduce Un predicates for
non-linear use of variables. We track the variables used in each
expression, and so detect when variables are reused or discarded.
Third, we account for first-class polymorphism. We introduce a dis-
tinction between rigid and flexible type variables; only the latter are
bound in unification. These three concerns add apparent complexity
to the type inference algorithm, but can be understood separately.

The inference algorithm is given in Figure 5, in the style of Al-
gorithmM [22]. The inputs include the environment Γ, expression
M and expected type τ , along with the current substitution S and the
rigid type variables X. The output includes the generated predicates
P, the resulting substitution S′, and a set of used (term) variables Σ.
We let ui range over fresh type variables, and let U,R, S range over
substitutions. We will look at illustrative cases of the algorithm in
detail; the remaining cases are constructed along the same lines.

In the variable case, we are given both the variable x and its
expected type τ . We unify x’s actual type, given by Γ, with its ex-
pected type τ . This illustrates the primary difference between Al-
gorithm M and Milner’s Algorithm W: unification is moved as
close to the leaves as possible. We defer the details of unification to
a separate algorithm MguX(τ, υ), where the type variables in X are
not bound in the resulting unification procedure. The implementa-
tion of unification does not differ from previous presentations, such
as Jones’s unification algorithm for FCP [19]. We return any pred-
icates in the type scheme of x, the updated substitution, and the
observation that x has been used.

The application case demonstrates the sets of used variables.
We check the subexpressions M and N; to account for the over-
loading of functions, we only assume that M has type u1 u2 τ , for
some function type u1. The variables used in M are captured by
Σ, and those used in N are captured by Σ′. Any variables used in
both must be unrestricted, and so the predicates inferred for the
application include not just the predicates inferred for each sub ex-
pression (P and P′), but also that any variables used in Σ∩Σ′ must
have unrestricted type. We capture this with the auxiliary function
Un(Γ|Σ∩Σ′), where Γ|Σ denotes the restriction of Γ to variables in
Σ. We give a declarative specification of Un(−); an implementa-
tion that finds the simplest such P can be straightforwardly derived
from the definitions of P ` · un and entailment.

The let case demonstrates the treatment of polymorphism and
binders. First, we must account for the possibility that x was not
used in N, and thus must be of unrestricted type. This is captured
by Weaken(x, σ,Σ). Second, we consider generalization. Recall the
term (λx.x) y, where y has type τ . The algorithm will infer that this
term has type τ under the assumption Fun u for some variable u.
But u appears neither in the typing environment nor in the result,
so naively generalizing this expression would give the (apparently



M(S,X; Γ ` M : τ) = P, S′,Σ

M(S,X; Γ ` x : τ) = ([~u/~t] P),U ◦ S, {x}
where (x : ∀~t.P⇒ υ) ∈ S Γ

U = MguX([~u/~t]υ, S τ)
M(S,X; Γ ` λx.M : τ) = (P ∪ Q), S′,Σ \ x

where P; S′; Σ =M(MguX(τ, u1 u2 u3) ◦ S,X;
Γ, x : u2 ` M : u3)

Q = {Fun u1} ∪ Leq(u1,Γ|Σ)∪
Weaken(x, u2,Σ)

M(S,X; Γ ` M N : τ) = Q,R′,Σ ∪ Σ′

where P,R,Σ =M(S,X; Γ ` M : u1 u2 τ)
P′,R′,Σ′ =M(R,X; Γ ` N : u2)

Q = P ∪ P′ ∪ {Fun u1}∪
Un(Γ|Σ∩Σ′)

M(S,X; Γ ` ini M : τ) = P,R,Σ
where P,R,Σ =M(MguX(τ, u1 ⊕ u2) ◦ S,X; Γ ` M : ui)

M(S,X; Γ ` caseM of {in1 x 7→ N; in2 y 7→ N′} : τ) =
(PM ∪ PN ∪ PN′ ∪ Q),R′′,ΣM ∪ ΣN ∪ ΣN′

where PM,R,ΣM =M(S,X; Γ ` M : u1 ⊕ u2)
PN ,R′,ΣN =M(R,X; Γ, x : u1 ` N : τ)

PN′ ,R′′,ΣN′ =M(R′,X; Γ, y : u2 ` N′ : τ)
Σ′ = (ΣN \ ΣN′) ∪ (ΣN′ \ ΣN)∪

ΣM ∩ (ΣN ∪ ΣN′)
Q = Un(Γ|Σ′) ∪Weaken(x, u1,ΣN)∪

Weaken(y, u2,ΣN′)

M(S,X; Γ ` let x = M in N : τ) = (P′ ∪ Q),R′,Σ ∪ (Σ′ \ x)
where P,R,Σ =M(S,X; Γ ` M : u1)

σ = GenI(R Γ,R (P⇒ u1))
P′,R′,Σ′ =M(R,X; Γ, x : σ ` N : τ))

Q = Un(Γ|Σ∩Σ′) ∪Weaken(x, σ,Σ′)
M(S,X; Γ ` K M : τ) = (P ∪ [~u1/~t1, ~u3/~t3]Q),R,Σ

where K : ∀~t1.(∀~t2.∃~t3.Q⇒ υ′)
•→ υ

U = MguX([~u1/~t1]υ, τ)
P,R,Σ =M(U ◦ S,X ∪ ~t2; Γ ` M : [~u1/~t1, ~u3/~t3]υ′)

~t2 # ftv(P,R Γ)
M(S,X; Γ ` let K x = M in N : τ) = P,R′,ΣM ∪ (ΣN \ x)

where K : ∀~t1.(∀~t2.∃~t3.Q⇒ υ′)
•→ υ

PM,R,ΣM =M(S,X; Γ ` M : [~u1/~t1]υ)
PN ,R′,ΣN =M(R,X ∪ ~t3; Γ, x : [~u1/~t1, ~u2/~t2]υ′ ` N : τ)

~t3 # ftv(PN ,R′ Γ,R′ τ)
P′N ∪ [~u1/~t1, ~u2/~t2]Q⇒ PN

P = PM ∪ P′N ∪Weaken(x, σ,ΣN) ∪ Un(Γ|ΣM∩ΣN )

Leq,Un,Weaken,GenI

Leq(φ,Γ) =
⋃
{P | P ` φ ≤ τ}

Un(Γ) =
⋃
{P | (y : σ) ∈ Γ,P ` σ un}

Weaken(x, σ,Σ) =

{
P if x 6∈ Σ, P ` σ un

∅ otherwise

GenI(Γ,P⇒ τ) = ∀(ftv(S P, τ)).S P⇒ τ

where S improves ftv(P) \ ftv(Γ, τ) in P

Figure 5: Type inference algorithmM. We let ui range over fresh variables, and write A#B to require that A and B be disjoint.

ambiguous) type scheme (Fun u) ⇒ τ . However, this is not a real
ambiguity: we have no way of observing the choice of u in the re-
sulting expression, so we could assume it to be ◦→ without decreas-
ing the expressiveness or safety of type inference. We formalize this
observation using an adaptation of Jones’s notion of improvement
for qualified types [18]. An improving substitution for a qualified
type P ⇒ τ is a substitution S such that any satisfiable instance of
P⇒ τ is also a unambiguous satisfiable instance of S (P⇒ τ). For
example, [

•→/f ] is an improving substitution for (Un f ,Fun f )⇒ τ ,
as the only ways to prove Fun f are if f is •→ or ◦→ and only the
former is unrestricted. In the type (Fun f )⇒ τ , where f is not free
in τ or the environment, we can instantiate f to either •→ or ◦→ and
cannot observe the choice. As this choice does not introduce am-
biguity, we consider [

◦→/f ] to be an improving substitution in such
cases. We say that S is an improving substitution for X in P if S is
the union of such improvements for each variable in X, and apply
such an improving substitution before generalizing. Again, we give
a declarative specification of GenI(−,−), as the derivation of its
implementation is entirely straightforward.

We can now relate type inference and the syntax-directed type
system. First, inference constructs valid typings.

Theorem 6 (Soundness ofM). IfM(S,X; Γ ` M : τ) = P, S′,Σ,
then S′ P | S′ (Γ|Σ) ` M : S′ τ .

The proof is by induction on the structure of M; each case involves
comparing the predicates generated in inference to the predicates
needed for typing. In combination with Theorem 3, this gives a

similar soundness result for inference with respect to the original
type system. Next, we want to show that any valid typing can be
found by inference.

Theorem 7 (Completeness of M). If S is a substitution and X
is a set of type variables such that P | S Γ `S M : S τ , and
S|X = id, then M(id,X; Γ ` M : τ) = Q, S′,Σ such that
(P⇒ S τ) v GenI(S′ Γ, S′ Q⇒ S′ τ).

The proof is by induction on the typing derivation, observing in
each case that the computed type generalizes the type in the deriva-
tion. Again, in combination with Theorem 5, we have a complete-
ness result for inference with respect to the original type system.
Finally, this allows us to give a constructive proof that Quill enjoys
principal types.

Theorem 8 (Principal Types). If P0 | H ` M : σ0 and P1 |
H ` M : σ1 then there is some σ such that ∅ | H ` M : σ and
(P0 | σ0) v σ, (P1 | σ1) v σ.

The soundness of inference tells us that, if there are any typings
for a term in an environment, then the inference algorithm will
compute some typing for that term. The completeness of inference
tells us that the computed type will be at least as general as the
original types.

4.4 Conservativity of Typing
We have claimed that Quill is as expressive as functional languages
without linearity. To formalize that claim, we will show that any



expression typeable in OML, Jones’s core calculus for qualified
types [17], is also typeable in Quill.

OML is a Core ML-like language with qualified types. Its types
and terms are pleasingly simple: the former contains functions,
type variables, and qualified and quantified types, and the latter
contains variables, applications, abstractions, and let (to introduce
polymorphism). We do not give a full description of OML typing
here, partly as it is so similar to Quill typing. In particular, as
in Quill typing, OML has a syntax directed typing judgment P |
Γ `SOML M : τ , where P is a collection of predicates, Γ an OML
typing environment and τ an OML type.

The crux of our argument is that (by construction) the syntax-
directed typing rules of Quill can each be seen as generalizations
of the corresponding rules of OML. For example, rules (→ IS) and
(→ES) can introduce generalization over function types, a feature
not present in OML. However, they need not do so; if all functions
are unrestricted, (→ IS) and (→ES) are elaborate restatements of
the corresponding rules of OML. The remaining difference is in
the treatment of variables: Quill may insist on predicates to capture
their unrestricted use, where there are no corresponding predicates
required by OML, but this will never cause a term to be ill-typed.

Theorem 9. If P | Γ `SOML M : τ , then there is some Q such that
Q | Γ `S M : τ , and Q⇒ P.

OML also has a sound and complete type inference algorithm, and
principal types. Thus, we see that if OML type inference accepts
a given term, then Quill type inference will also accept the term,
and in each case will compute its most general typing. We might
hope to show the converse as well; however, we do not know of a
non-linear core calculus that matches the exact features of Quill,
including both qualified types and data type-mediated first class
polymorphism.

We do not suggest that terms are given the same types in each
setting: for example, the function λx.λy.y is given the type ∀tu.t→
u → u in OML, whereas it would given the type ∀tu.Un t ⇒ t →
u → u in Quill. Similarly, sums must be taken as primitive in
Quill (as their elimination form shares its environment), whereas
they can be encoded in OML. Finally, as demonstrated in our
earlier discussion of monads (§3.3), Quill may suggest more refined
abstractions than are present in non-linear languages. Nevertheless,
this result does show a strong connection between programming
in Quill and programming in traditional functional languages, one
which is not shared by other combinations of linear and functional
programming.

5. Semantics
We motivated the discussion of linear type systems by consider-
ing examples like session types and mutable arrays, in which we
wanted to avoid duplicating or discarding values of linear types.
The Quill type system, however, only restricts the use of assump-
tions, and says nothing about the use of values directly. Further,
Quill differs from other substructural calculi in several ways, in-
cluding the use of overloading and the form of first-class poly-
morphism. In this section, we demonstrate that Quill assures that
the use of values, not just of assumptions, is consistent with their
typing. To do so, we define a natural semantics for Quill terms,
annotated with the values introduced and eliminated in the course
of evaluation. We can then show that any values used non-linearly
have unrestricted type. Our approach is strongly inspired by that
used by Mazurak et al. to prove a similar property of their F◦ cal-
culus [24].

We begin by defining a notion of values for Quill. Intuitively,
we might expect values to be abstractions, sums of values, or con-
structors applied to values. However, our intended safety property

Ix 3 j, k
Value 3 V,W ::= Kj V | λjx.M | inj

i V
M,N ::= V | . . .

j fresh

λx.M ⇓λ
jx.M
∅ λjx.M

M ⇓I
E V j fresh

K M ⇓I,Kj V
E Kj V

M ⇓I
E λ

jx.M′ N ⇓I′
E′ V [V/x]M′ ⇓I′′

E′′ W

M N ⇓I,I′,I′′

E,E′,E′′,λjx.M′ W

M ⇓I
E V j fresh

ini M ⇓I,inj
i V

E inj
i V

M ⇓I
E V [V/x]N ⇓I′

E′ W

let x = M in N ⇓I,I′

E,E′ W

M ⇓I
E inj

i V [V/xi]Ni ⇓I′
E′ W

caseM of {in1 x1 7→ N1; in2 x2 7→ N2} ⇓I,I′

E,E′,inj
i v

W

Figure 6: Linearity-aware semantics for Quill.

requires that we distinguish different instances of syntactically-
identical values. The top of Figure 6 gives an extended syntax of
Quill, in which values are tagged with indices from some index
set Ix. The semantics will tag new values with fresh indices, and
we will then rely on the indices to establish identity when showing
safety. Given a set of assumptions P, we identify a subset of values,
LinValsP, as linear:

LinValsP = {V ∈ Value | if ` V : τ , then P 6⇒ Un τ}.

Our goal is to show that values in LinValsP are neither duplicated
nor discarded during evaluation. The contents of LinValsP depend
on the signatures of the constructors. For a simple example, sup-
pose that we have some K with signature (∃u.u)

•→ T . To show
P ⇒ Un T , we would have to show that P ⇒ Un u (where
u 6∈ ftv(P)). This is clearly impossible, so K V ∈ LinValsP for any
value V and non-trivial P. On the other hand λx.x is not in LinValsP,
as it can be given unrestricted type.

The bottom of Figure 6 gives a natural semantics for Quill. The
evaluation relation M ⇓I

E V denotes that M evaluates to V; the anno-
tations I and E are multisets of values, I capturing all values intro-
duced during the evaluation and E capturing all values eliminated
during the evaluation. (We track values, rather than just indices, so
that we can state the type safety theorem below.) Functions evaluate
to themselves, but annotated with a fresh index. The only value in-
troduced is the function, and no values are eliminated. The other in-
troduction forms are similar, but must account for the evaluation of
their subexpressions. We use call-by-value evaluation; as observed
by Mazurak et al. [24], call-by-name and call-by-need evaluation
may result in discarding linearly typed values during evaluation.
The values introduced in evaluating an application are those intro-
duced in evaluating each of its subexpressions and in evaluating
the substituted result of the application. The values eliminated are
those eliminated in each hypothesis and the function itself. The let
and case rules are similar.

We can now state our desired safety property. Intuitively, if
M ⇓I

E V , we expect that each linear value introduced during
evaluation (that is, each W ∈ I∩LinValsP) will appear either exactly
once, either in E or as a subexpression of the result V . For any
expression M, we define SExp(M) to be the subexpressions of M,
defined in the predictable fashion, Exp(M) = *M +∪SExp(M), and
Val(M) = Exp(M) ∩ Value.



Theorem 10 (Type safety). Let M be a closed term such that
` M : ∀t.P⇒ τ and M ⇓I

E V.

1. P | ∅ ` V : τ .
2. Let E′ = E ∪ Val(V), and let D = I \ E′ (the values discarded

during evaluation) and C = E′ \ I (the values copied during
evaluation). Then, W ∈ D ∪ C only if W 6∈ LinValsP.

The proof is by induction over the structure of M. The key observa-
tion is that duplication and discarding can happen only as the result
of substitution, and thus that linearity of variables (i.e., assump-
tions) is enough to assure that only unrestricted values are dupli-
cated. We believe this argument can be straightforwardly general-
ized to small-step semantics, again following Mazurak et al. [24]

6. Extensions
We describe three extensions of Quill, showing the generality and
flexibility of our approach.

Quill has a linear type system, in which both contraction (dupli-
cation) and weakening (discard) are limited to unrestricted types.
Several alternative substructural logics exist: relevant logics, for
example, exclude weakening but not contraction, and affine log-
ics exclude contraction but not weakening. Some systems, such as
that of Ahmed et al. [1] and Gan et al. [9] provide linear, affine,
relevant, and unrestricted types simultaneously. Finally, there have
been several type systems that introduce similar partitioning of as-
sumptions to control side-effects, starting from Reynolds’ work on
Idealized Algol [30] and continuing with modern work on bunched
implication [27] and separation logic. We have focused on the lin-
ear case in particular because various examples, such as session
types, require its restrictions on both contraction and weakening.
Nevertheless, we believe the Quill approach would apply equally
well in these other cases. For example, the type system we have
given has a single predicate, Un τ , used both when assumptions are
duplicated and when they are discarded. Alternatively, we could in-
troduce distinct predicates for these cases, say Dup τ and Drop τ .
We could then redefine our existing predicate Un τ as the conjunc-
tion of Dup τ and Drop τ . As in the systems of Ahmed at al. and Gan
et al., we would require four arrow types. However, the remainder
of the Quill approach would adapt seamlessly. We could extend the
Fun τ predicate and the ≥ relation to include the new arrow types,
and the resulting system would continue to enjoy principal types
and complete type inference.

The treatment of functions differs from the other primitive types
(like products and sums) because the linearity of a function from τ
to υ cannot be determined from linearity of τ and υ. A similar
observation can be made of existential types. For example, suppose
that we have two constructors with signatures K1 :: (∃u.u)

•→ T1 t
and K2 :: (∃u.Un u ⇒ u)

•→ T2 t. Assumptions of type T1 τ will
always be treated as linear, and assumptions of type T2 τ always
unrestricted, regardless of the choice of τ . We could view T1 and T2

as instances of a general T pattern (i.e., as the satisfying instances
of a predicate T t) just as we view •→ and ◦→ as instances of a
general→ pattern. Following the approach taken for functions, we
would extend the ≥ relation to include the T types, asserting that
· ⇒ τ ≥ T1 υ and Un τ ⇒ τ ≥ T2 υ. We would then introduce
a generalized constructor K :: (T t, u ≥ t) ⇒ u •→ t, and a
generalized deconstructor unK :: (T t, t ≥ f ) ⇒ t → (∀u.u →
r)

f→ r. As the goal is generalizing over the predicate Un u, the
body of the deconstructor cannot rely on its presence. This example
demonstrates the flexibility of Quill; in particular, it shows that our
treatment of functions is an instance of a more general pattern, itself
expressible in Quill. We suspect that this treatment of existentials
would also come closest to capturing how the use of existentials
in non-linear functional languages could be expressed in linear

calculi. On the other hand, there are cases for which this approach
would not be appropriate, such as the use of existentials to enforce
linear use of unrestricted primitives. We believe that more practical
experience would be require to determine how, and how often, this
generalization of existentials should be applied.

We have treated the dup and drop methods as providing a help-
ful intuition for the use of the Un predicate, but have assumed that
their explicit use or implementation is not of interest. However,
there are cases in which providing non-trivial implementations of
these methods could be useful. For example, many operating sys-
tem resources, such as file handles, need to be explicitly freed.
One could imagine capturing such resources as affine types in a
language based on Quill, in which the drop method freed the un-
derlying resource. Similarly, given suitable primitives, one could
imagine using drop and dup to implement a kind of reference-
counting scheme for resources, in which dup incremented the ref-
erence count and drop decremented it. This approach would gen-
eralize the various scope based mechanisms for managing such re-
sources in languages such as C# and Java. The derived definitions
of drop and dup for products and sums (§3.1) would extend to this
setting as well. However, this would introduce a new concern: the
placement of automatic inserted calls to the drop and dup methods.
For a simple example, imagine that some variable y is in scope in
the expression λx.M, but not free in M. We must insert a call to
drop y. Our current syntax-directed approach could be interpreted
as moving calls to drop to the leaves of the typing derivation, but in
this case that would delay the discard of y until the function λx.M
is invoked, which might be undesirable.

7. Related Work
The past thirty years have seen a wealth of work on linear types and
their applications. We summarize some of the work most directly
related to our own.

In introducing substructural type systems (§2.2), we described
several other general purpose calculi, including F◦ of Mazurak et
al. [24], and Alms of Tov and Pucella [33]. These systems were
both influential on the development of Quill. Our work differs
from theirs in two regards. First, we have generalized the treat-
ment of functions, and thus increased the expressiveness of func-
tion combinators. We believe that, especially given the importance
of combinator-based idioms in functional programming, this is a
significant advance in the usability of linear functional calculi. Sec-
ond, our treatment relies on qualified types, rather than building no-
tions of subkinding, subtyping, and variance into the type system
itself. While this may seem to simply be trading one kind of com-
plexity for another, we believe that qualified types are an indepen-
dently useful language feature (a claim borne out by the experience
of Haskell). Finally, we believe that qualified types are a natural
way to express relationships among types, as demonstrated by our
generalization of relative linearity to encompass existential types.

F◦, Alms, and Quill all rely on identifying a collection of types
as unrestricted (through kind mechanisms in the first cases and
type predicates in ours). There are several other mechanisms to
integrate linear and unrestricted types. Wadler [35] and Barber
and Plotkin [3] give calculi based directly on the propositions and
proofs of linear logic, in which each linear type τ has an intu-
itionistic counterpart !τ . These calculi also draw a distinction be-
tween intuitionistic and linear assumptions, where only the former
are subject to contraction and weakening. While these calculi have
close logical connections, the manipulation of the ! modality adds
significant syntactic bureaucracy, and does not provide an obvious
route to generalizing linear and unrestricted behavior. Walker [37]
and Ahmed et al. [1] present systems of annotations for linearity
(albeit without polymorphism). These approaches seem less well
suited for programming with linear types, however. For example,



they provide linear Booleans (of little expressive value, as the du-
plication and discarding operations for Booleans can be easily de-
fined) and unlimited session-typed channels (presumably an empty
type). Finally, they require all types to be annotated with linear-
ity (or usage) annotations, which is acceptable in a core language
but unsuited to languages used by humans. Clean adopts a similar
annotation-based approach in its uniqueness typing system [31].
However, the aims of uniqueness typing and linearity are dual: in
Clean, unique values can become non-unique (at the cost of some
of their operations), while in a linear type system we must guaran-
tee linearity (but can use unrestricted values linearly).

Gustavsson and Svenningsson [12] describe a system of usage
annotations and bounded usage polymorphism; Hage et al [14] de-
scribe an alternative approach to usage inference based on effect
typing and subeffects. These approaches differ from linear type sys-
tems in two ways. First, they treat usage separately from types; as
we argued in the last paragraph, this produces confusing or empty
types, like linear Booleans or unrestricted channels. Second, lin-
earity is prescriptive, while usage types are descriptive. This means
that usage can be approximated, where approximations of linear-
ity would either lose safety or expressiveness. Consequently, us-
age analyses can be invisible to the programmer, whereas linearity
must (to some degree) be programmer-visible. Nevertheless, our
≤ predicate seems similar to approaches to subeffecting for usage
and strictness [15], and we believe that investigating this similarity
is valuable future work.

Finally, there have been numerous substructural approaches to
typing for imperative and low-level languages, including region
types [38], alias types [32], adoption and focus [7], and linear
types for locations [26], and several generalizations of linear typ-
ing, including coeffect systems [28]. These approaches have simi-
lar goals to our work—establishing safety guarantees beyond those
expressed in traditional type systems—but differ in their under-
lying calculi and do not share our focus on principality and type
inference. Nevertheless, some of the ideas of these systems could
be profitably applied in ours. For example, some adaptation of the
adoption and focus mechanisms could avoid the rebinding present
in cases such as our dyadic session types example. We think explor-
ing the overlap of our system and the problems they address, such
as exploring explicit memory management in a Quill-like language,
will be important future work.

8. Future Work
We have presented Quill, a new linear functional language achiev-
ing both the safety guarantees made possible by linear types and the
expressiveness of conventional functional programming languages.
We have demonstrated several examples of linear and functional
programming in Quill. We have shown that Quill has principal
types and decidable type inference, that it is a conservative exten-
sion of existing functional calculi, and that reduction preserves lin-
earity. We have also shown several simple extension of the core
Quill calculus, incorporating more flexible treatment of existen-
tials, and other notions of substructural typing. We conclude by
discussing several directions for future work.

We intend Quill to provide a foundation for practical functional
programming with linear types. This can be tested in two ways.
First, we intend to explore abstractions for linear programming.
We hope to draw on existing mechanisms, such as adoption and
focus [7] in the imperative setting and parameterized monads [2]
in the functional setting, while taking advantage of Quill’s first-
class treatment of linearity to express these mechanisms within the
language. Second, we hope to build larger programs in Quill, taking
advantage of linearity to enhance safety properties; domains like
concurrency and low-level programming seem particularly suited
to such an approach.

Quill distinguishes between linear and unrestricted functions for
type safety reasons, while the (high-level) semantics we give treats
abstractions identically. Similar distinctions are drawn by usage
type systems, for efficiency reasons. We believe that similar effi-
ciency gains could be obtained in compiling Quill programs. As
our treatment of functions is general, similar approaches could be
applied to other types for efficiency reasons as well. For example,
rather than requiring that arrays be treated linearly, we could over-
load the array operations to apply to both linear and unrestricted
arrays, but to use efficient in-place operations when arrays were
used linearly.

The central technical problem addressed by Quill is the multi-
plication of function spaces. Linear type systems are not the only
context in which this can occur. Similar multiplications happen, for
example, in type and effect systems or in systems that distinguish
pointed and unpointed types [21]. We believe that the approach
taken in Quill would generalize to such cases as well; in particu-
lar, we believe that tracking pointedness could be relevant in many
of the same application domains in which linearity is relevant.
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A. Packaging Unrestricted Channels
We might want to express session typing by wrapping an under-
lying unrestricted implementation of untyped channels (which we
will call Chan, patterned on the Haskell Chan type). Previous work
has demonstrated the use of existential types in doing this kind of
wrapping. We have two problems:

1. How to capture the linearity of sessions, while still allowing End
channels to be unrestricted; and,

2. How to capture the types of sent and received values.

Ideally, we would like a solution that accomplishes both using
existential types, avoiding the need for any waffle about the module
system. Solving the first is actually relatively easy, and just relies
on existing classes and simple existential types:

instance Un End
data Ch s = c ≥ s ⇒

PackCh c (Dynamic → c → M c)
(c → M (Dynamic, c))

makeChannel :: Chan Dynamic → Ch s
makeChannel c =

PackCh c (\v c → do writeChan c v; return c)
(\c → do v ← readChan c; return (v, c))

send :: t ≥ f ⇒ t → Ch (t :!: s)
f→ M (Ch s)

send v (Ch c sender receiver) =
do c ← sender (toDyn v) c

return (Ch c sender receiver)

receive :: Ch (t :?: s) → M (t, Ch s)
receive (Ch c sender receiver) =

do (v, c) ← receiver c
return (fromDyn undefined v, Ch c sender receiver)

However, while this enforces linearity, it does not guarantee session
typing. In particular, code with access to the Ch type may send a
Dynamic value containing the wrong type, causing the correspond-
ing fromDyn to fail. We can do better if we assume a notion of type
equality (at the cost, of course, of significant additional complex-
ity in the type system). We start with type equality, which we can
define using functional dependencies:

class t ≡ u | t → u, u → t
instance t ≡ t

We can then define the channel type as follows.

instance Un End
data PChan s = PChan (Chan Dynamic)
data Ch s = c s ≥ s ⇒

PackCh (c s)
((t ≥ f, s ≡ (t :!: s')) ⇒
t → c s → M (c s'))
((s ≡ (t :?: s')) ⇒
c s → M (t, c s'))

The type PChan wraps an unrestricted channel with a phantom
type variable. The type Ch follows the same pattern as before,
but now encoding the form of the send and receive functions in
the packaged sender and receiver. Consequently, this version de-
pends on both first-class existentials and universals. Correspond-
ingly, the implementations move the introduction and elimination
of the Dynamic type into the packaged functions, but are otherwise
unchanged.

makeChannel :: Chan Dynamic → Ch s
makeChannel c =

PackCh (PChan c)
(\v (PChan c) → do writeChan c (toDyn v)

return (PChan c))

(\(PChan c) → do v ← readChan c
return (fromDyn undefined v,

PChan c))

send :: t ≥ f ⇒ t → Ch (t :!: s)
f→ M (Ch s)

send v (Ch c sender receiver) =
do c ← sender v c

return (Ch c sender receiver)

receive :: Ch (t :?: s) → M (t, Ch s)
receive (Ch c sender receiver) =

do (v, c) ← receiver c
return (v, Ch c sender receiver)

B. Encoding Products in Quill
We define an encoding E(−) from an extension of Quill with
multiplicative and additive products to Quill without products. To
review, the terms and typing rules for the additive product are as
follows.

Γ ` M : τ Γ ` N : υ

Γ ` [M,N] : τ & υ

Γ ` M : τ & υ

Γ ` fstM : τ

Γ ` M : τ & υ

Γ ` sndN : υ

The terms and typing rules for the multiplicative product are as
follows.

Γ ` M : τ Γ′ ` N : υ

Γ,Γ′ ` (M,N) : τ ⊗ υ

Γ ` M : τ ⊗ τ ′ Γ′, x : τ, y : τ ′ ` N : υ

Γ ` let (x, y) = M in N : υ

The encoding of multiplicative products is simply the typical
Church encoding of products. We assume the following constructor
to capture the use of universal types:

MP :: ∀tu.(∀vf .(t ≥ f , u ≥ f )⇒ (t→ u→ v)
f→ v)

•→ MP t u.

We can then define the encoding of the multiplicative product and
its terms.

E(τ ⊗ υ) = MP E(τ) E(υ)

E((M,N)) = MP (λf . f E(M) E(N))

E(let (x, y) = M in N) = let MP f = E(M)
in f (λx.λy.E(N))

The encoding of additive products has a similar flavor, but
must be defined in terms of (additive) sums. Again, we assume a
constructor for a suitable universal type:

AP :: ∀tu.(∀vf .(t ≥ f , u ≥ f )⇒

((t
f→ v)⊕ (u

f→ v)
f→ v))

•→ AP t u.

We can then encode the additive product and its terms as follows.

E(τ & υ) = AP E(τ) E(υ)

E([M,N]) = AP(λl. case l of { in1 f 7→ f E(M);
in2 f 7→ f E(N)}

E(fstM) = let AP f = E(M) in in1 id

E(sndM) = let AP f = E(M) in in2 id

C. Proofs
C.1 Syntax-Directed Type System

Theorem 3 (Soundness of `S). If P | Γ `S M : τ and P ` H ≈ Γ,
then P | H ` M : τ .



Proof. By structural induction on the derivation of P | Γ `S M : τ .

• Case (VARS). We have a derivation of P | x : σ ` x : σ by
(VAR). We construct the necessary derivation in three further
steps. First, as Q ⇒ τ v σ, we can construct a derivation
of P | x : σ ` x : Q ⇒ τ by repeated applications of
(∀ E). Second, as P ⇒ Q, we can construct a derivation of
P | x : σ ` x : τ by repeated application of (⇒E). Finally, as
P ` Γ un, we can construct a derivation of P | Γ, x : σ ` x : τ
by using (WKN) for each binding in Γ.

• Case (→IS). By the induction hypothesis, we have a derivation
of P | H, x : τ ` M : υ. Apply (→ I), and reusing the
derivations of Fun φ and φ v Γ, we construct a derivation of
P | Γ ` λx.M : φτυ.

• Case (→ES). By the induction hypothesis, we have derivations
of P | Γ,∆ ` M : τ → υ and P | Γ,∆′ ` N : τ . Applying
(→ E), reusing the derivation of P ` Fun φ, we construct a
derivation of P | Γ,Γ,∆,∆′ ` M N : υ. Finally, as P ` Γ un,
we can apply (CTR) for each binding in Γ, constructing a
derivation of P | Γ,∆,∆′ ` M N : υ.

• Case (⊕ Ii
S) is direct from the induction hypothesis.

• Case (⊕ES). From the induction hypothesis we have a deriva-
tion of P | Γ,Γ′,∆,∆ ` caseM of {in1 x 7→ N; in2 x 7→
N′} : υ. We can then repeated apply rule (CTR), justified
by the assumption P ` ∆ un, to derive P | Γ,Γ′,∆ `
caseM of {in1 x 7→ N; in2 x 7→ N′} : υ.

• Cases (MAKES) and (BREAKS) follow immediately from the
induction hypothesis.

• Case (LETS). By the induction hypothesis, we have a derivation
Q | Γ,∆, x : τ ` M : τ . We can construct a derivation of
∅ | Γ,∆, x : σ ` M : σ by application of (∀ E) and (⇒ E)
at each use of variable x and application of (∀ I) and (⇒ I) at
the conclusion of the derivation. We also have a derivation of
P | Γ,∆′, x : σ ` N : υ by the induction hypothesis. Applying
(LET) gives a derivation of P | Γ,Γ,∆,∆′ ` let x =
M in N : υ. Finally, as P ` Γ un, we can apply (CTR)
repeatedly to derive P | Γ,∆,∆′ ` let x = M in N : υ.

Theorem 5 (Completeness of `S). If P | H ` M : σ and P ` H ≈
Γ, then there are some Q and τ such that Q | Γ `S M : τ and
(P | σ) v Gen(Γ,Q⇒ τ),

We begin with helpful intermediate results.

Lemma 11. If P | Γ `S M : τ , then, letting σ = Gen(Γ,P ⇒ τ),
for any P′ ⇒ τ ′ v σ, P′ | Γ `S M : τ ′.

Proof. Let σ = ∀~t.Q ⇒ υ. By definition, there are some ~φ

such that τ ′ = [~φ/~t]υ and P′ ⇒ [~φ/~t]Q. Therefore, we have
P′ | [~φ/~t]Γ ` M : τ ′. Finally, since the~t are free in Γ, we have
that P′ | Γ ` M : τ ′.

Define H v H′ if dom(H) = dom(H′) and for each x ∈
dom(H), H(x) v H′(x). Define ∆ v ∆′ similarly.

Lemma 12. If P | ∆ `S M : τ , and ∆ v ∆′, then P | ∆′ `S M : τ.

Proof. The proof is by induction on the derivation of P | ∆ `
M : τ ; the only interesting case is for (VARS), which depends
on the observation that if (P ⇒ τ) v σ and σ v σ′ then
(P⇒ τ) v σ′.

Lemma 13. If P | H ` M : τ , y is not free in M, and P ` σ un,
then P | H, y : σ ` M : τ .

Proof. By induction on the derivation of P | H ` M : τ . In the
(VARS) case, we know that M is an expression x, H is H′, x : σ′ for
some H′ such that P ` H′ un, and, as y is not free in M, y is not x.
Given that P ` σ un, we have that P ` (H′, y : σ) un, and we can
construct a new derivation of P | H, y : σ ` x : τ by (VARS). The
remaining cases are straightforward by the induction hypothesis;
in those cases where the context is split, the binding y : σ can be
included in either context (or, in fact, both).

Proof of Theorem 5. By induction on the derivation of P | H ` M :
σ.

• Case (VAR). We have H = {x : σ}; let σ = (∀~t.Q ⇒ τ). Pick
fresh type variables ~u; we have ([~u/~t]Q⇒ [~u/~t]τ) v σ, and so
P, [~u/~t]Q | H ` x : [~u/~t]τ by (VARS). As the ~u are fresh,

σ′ = Gen(Γ,P, [~u/~t]Q⇒ [~u/~t]τ)

= ∀~u.(P, [~u/~t]Q)⇒ [~u/~t]τ

and (P | σ) v σ′.
• Case (CTR). Because (x : σ) is the only newly duplicated

binding in the subderivation, and P ` σ un, the induction
hypothesis gives the required derivation of Q | Γ, x : σ ` M : τ
such that (P | σ) v (∅ | Gen(Γ, x : σ; Q⇒ τ)).

• Case (WKN) follows from Lemma 13 and the induction hypoth-
esis.

• Case (→ I). By the induction hypothesis and Lemma 11, we
have a derivation of Q | Γ `S M : υ. It is immediately apparent
that if P ` H ≥ φ then P ` Γ ≥ φ, and so we can construct the
desired derivation by (→ IS).

• Case (→ E). By the induction hypothesis and Lemma 11, we
have dervations P | Γ `S M : φτυ and P | Γ′ ` N : τ . Finally,
for any x : σ in both Γ and Γ′, we have that P ` σ un, so we
can suitably partition Γ and Γ′ and apply (→ES).

• Cases (⊕Ii), (⊕E), (MAKE), and (BREAK) follow from similar
arguments to those for (→ I) and (→E).

• Case (⇒ I). From the induction hypothesis, we have Q | Γ `S
M : τ such that, letting σ = Gen(Γ,Q ⇒ τ), (π,P | ρ) v σ.
As (P | π ⇒ ρ) v (π,P | ρ), we also have (P | π ⇒ ρ) v σ.

• Case (⇒E). From the induction hypothesis, we have Q | Γ `S
M : τ such that, letting σ = Gen(Γ,Q ⇒ τ), (P | π ⇒ ρ) v
σ. Since P ⇒ π, we have (P | ρ) v (P | π ⇒ ρ), and so
(P | ρ) v σ.

• Case (∀I). From the induction hypothesis, we have Q | Γ `S M :
τ such that, letting σ′ = Gen(Γ,Q⇒ τ), (P | π ⇒ ρ) v σ′.

• Case (∀E). From the induction hypothesis, we have Q | Γ `S
M : τ such that, letting σ′ = Gen(Γ,Q ⇒ τ), (P | π ⇒ ρ) v
σ. As (P | [τ/t]σ) v (P | σ), (P | [τ/t]σ) v σ′.

• Case (LET). From the induction hypothesis, we have Q | Γ, x :
∀τ.σ `S M : τ such that, letting σ′ = Gen(Γ,Q ⇒ τ), (P |
∀t.σ) v σ′. Thus, we conclude that Γ, x : ∀t.σ v Γ, x : σ′ and,
applying Lemma 12, the induction hypothesis, and Lemma 11,
we have a derivation of Q′ | Γ, x : σ′ ` N : υ. Finally, we apply
(LETS) to conclude Q,Q′ | Γ `S let x = M in N : υ.

C.2 Type Inference
We begin with the soundness of the inference algorithm.
Theorem 6 (Soundness ofM). IfM(S,X; Γ ` M : τ) = P, S′,Σ,
then S′ P | S′ (Γ|Σ) ` M : S′ τ .
The unusual aspect of the proof is the introduction of improving
substitutions during type inference. We must show that their intro-
duction does not compromise the soundness of the corresponding
derivations. We begin by giving a more formal characterization of



the possible improving substitutions for Quill constraints. We will
restrict our attention to simplified constraints.

Definition 14. A constraint is simple in (the type variable) t if the
constraint is of the form Un t, Fun t, or τ ≥ t. A constraint is simple
if it is simple in some t. An entailment P ⇒ Q is non-trivial if the
only uses of the assumption rule are for simple constraints.

Relying on simple constraints does not limit the expressiveness of
the type system.

Lemma 15. Suppose that there is a non-trivial entailment P⇒ Q;
then there is some Q′ such that Q′ is simple and P⇒ Q′ ⇒ Q. We
call Q′ the simplification of Q.

Proof. By induction on the derivation of P ⇒ Q; the cases are
individually straightforward. As an illustrative case, if Un (τ1 ⊕
τ2) ∈ Q, then the simplification of {Un τ1, Un τ2} is a subset of
Q′.

We can now define improving substitutions for simple constraints.

Definition 16. Suppose that Q is simple, and X is some set of
type variables. We define a substitution S, called the improving
substitution for X in Q, as follows:

• If Un t ∈ Q, then S t =
•→; and,

• If Un t 6∈ Q, then S t =
◦→.

Lemma 17. Suppose that Q | Γ `S M : τ , X = ftv(Q) \ ftv(Γ, τ),
Q′ ⇒ Q is a simplification of Q, and S is an improving substitution
for X in Q′. Then S Q | Γ `S M : τ .

Proof. By induction on the derivation of Q | Γ `S M : τ . The key
observation is that, if some variable f is bound in the improving
substitution then it must be used in rules (→ IS),(→ES), and then
S f is a suitable function type for any of its uses.

Next, we account for routine manipulations of syntax-directed
typing derivations. Strengthening the assumed context preserves
typing.

Lemma 18. If P | ∆ `S M : τ , and Q⇒ P, then Q | ∆ `S M : τ .

The syntax-directed typing system is closed under substitution:

Lemma 19. If P | ∆ ` M : τ , then S P | S ∆ ` M : S τ .

We can add bindings to the environment of a typing derivation, so
long as they are unlimited .

Lemma 20. If P | ∆ `S M : τ , y is not free in M, and P ` σ un,
then P | ∆, y : σ `S M : τ .

The proof is by induction over the derivation of P | ∆ `S M : τ ,
similarly to that for Lemma 13. Finally, we can show that type
inference respects the rigid type variables (assuming the same of
the unification algorithm):

Lemma 21. IfM(S,X; Γ ` M : τ) = P,R,Σ, and S|X = id, then
R|X = id.

The proof is by induction on M.
Finally, we are prepared to show the soundness of the inference

algorithm.

Proof of Theorem 6. By induction on the structure of M:

• Case x. We have that (x : ∀~t.P⇒ τ) ∈ Γ and Σ = {x}. We see
immediately that

([ui/ti]P⇒ [ui/ti]τ) v (∀~t.P⇒ τ).

So, we can apply (VARS) to construct a derivation of

[ui/ti]P | {x : ∀~t.P⇒ τ} `S x : [ui/ti]τ.

• Case λx.M. We have that

P, S′,Σ =M(MguX(τ, u1 u2 u3) ◦ S,X; Γ, x : u2 ` M : u3)

and so, by the induction hypothesis,

S′ P | S′ ((Γ, x : u2)|Σ) `S M : S′ u3.

Let Q = {Fun u1} ∪ Leq(u1,Γ|Σ)∪Weaken(x, u2,Σ)∪ P and
let Σ′ = Σ \ {x}. By Lemmas 18 and 20 we can construct a
derivation of

S′ Q | S′ ((Γ, x : u2)|Σ′) `S M : S′ u3.

The desired result is then immediate by (→ IS).
• Case M N. We have that

P,R,Σ =M(S,X; Γ ` M : u1 u2 τ)

P′,R′,Σ′ =M(R,X; Γ ` N : u2)

Let Q = Un(Γ|Σ′) ∪Weaken(x, u1,ΣN) ∪Weaken(y, u2,ΣN′)
and Q′ = P ∪ P′ ∪ Q. Let Γ′ = Γ|Σ∩Σ′ , ∆ = Γ|Σ\Σ′

and ∆′ = Γ|Σ′\Σ (and note that these partition Γ|Σ∪Σ′ ). By
Lemmas 18 and 19 and the induction hypothesis, we have
derivations of the following:

R′ Q′ | R′ Γ′,R′∆ `S M : R′(u1 u2 τ)

R′ Q′ | R′ Γ′,R′∆′ `S N : R′u2.

Finally, note that by construction Q′ ⇒ Γ′ un and Q′ ⇒
Fun u1, so the desired result follows from an application of
(→ES).

• Case ini M is immediate by the induction hypothesis.
• Case caseM of {in1 x 7→ N; in2 y 7→ N′} follows a very

similar argument to that for application.
• Case let x = M in N. We have that

P,R,Σ =M(S,X; Γ ` M : u1)

P′,R′,Σ′ =M(R,X; Γ, x : σ ` N : τ)

where σ = GenI(R Γ,R (P ⇒ u1)). Let T improve ftv(P) \
ftv(Γ,R u1) in P and. Then there is a partition of Γ into ΓM ,
ΓN , and ∆ such that, by Lemmas 17, 19 and the induction
hypothesis we have

(T ◦ R′) P | R′ (ΓM,∆) `S M : R u1

R′ P′ | R′ (ΓN ,∆, x : σ) `S N : R′ τ

and the result follows by an application of (LETS).
• Case K M. We have that K : ∀~t1.(∀~t2.∃~t3.Q′ ⇒ φ′)

•→ φ; let
(∀~t2.∃~t3.(Q ⇒ υ′)

•→ υ be an instance of that type such that
U = MguX(υ, τ) does not fail and Uυ = υ. (If such an instance
did not exist, type inference would fail.) We have that

P,R,Σ =M(U ◦ S,X ∪ ~t2; Γ ` M : [~u3/~t3]υ′).

By the induction hypothesis, we have that

R P | R (Γ|σ) `S M : R ([~u3/~t3]υ′).

The side condition P∪[~u3/~t3]Q⇒ [~u3/~t3]Q holds trivially, and
~t2 6∈ ftv(P,R Γ) is assured by Lemma 21 and the side conditions
inM.

• Case let K x = M in N. We have that

PM,R,ΣM =M(S,X; Γ ` M : υ).

As in the previous case, let (∀~t2.∃~t3.(Q ⇒ υ′)
•→ υ be an

instance of the type of K. (If there is not such an instance,



type inference fails.) By the induction hypothesis and Lem-
mas 20 and 19, we have that there is a partition of Γ|ΣM∪ΣN

into ΓM,ΓN ,∆ such that

R′ P | R′(ΓM,∆) `S M : υ

R′ (P ∪ [~u2/~t2]Q) | R′ (ΓN ,∆
′) `S N : τ

and the side condition is assured by Lemma 21.

Completeness of the inference algorithm is relatively straight-
forward. We begin with a lemma characterizing the effect of the
input substitution.

Lemma 22. IfM(S,X; Γ ` M : τ) = P, S′,Σ, thenM(id,X; Γ `
M : τ) = P′, S′′,Σ where P⇒ S P′ and S′ = S ◦ S′′.

Proof. By induction on the structure of M.

We can now show that the algorithm is complete.
Theorem 7 (Completeness ofM). If S is a substitution such that
P | S Γ `S M : S τ , and S|X = id, thenM(id,X; Γ ` M : τ) =
Q, S′,Σ such that (P⇒ S τ) v GenI(S′ Γ, S′ Q⇒ S′ τ).

Proof. We show the result for M(S,X; Γ ` M : τ) by induction
on the height of the derivation of P | S Γ `S M : S τ , and then apply
Lemma 22 to show the theorem.

• Case (VARS). We have that (x : σ) ∈ Γ such that (P⇒ S τ) v
σ. Let σ = ∀~t.Q⇒ υ. Then, we have that

M(S,X; Γ ` x : τ) = ([~u/~t] Q),U ◦ S, {x}

where U = MguX([~u/~t] υ, S τ). By assumption U [~u/~t]υ = S τ
and P⇒ U ([~u/~t] Q), so P⇒ S τ v GenI(S Γ, S Q⇒ S τ).

• Case (→ IS). We have a derivation concluding P | Γ `S
λx.M : φ τ υ such that P ⇒ Fun φ and P ⇒ Γ ≥ φ. It
is immediate that MguX(φ τ υ, u1 u2 u3) will give the unifier
[φ/u1, τ/u2, υ/u3], so we will assume that unifier for the re-
mainder of this case. By the induction hypothesis, we have that

M(S,X; Γ, x : τ ` M : υ) = Q′,R,Σ

(the role of the generalization is unimportant). Therefore, we
see that

M(S,X; Γ ` λx.M : φτυ) = Q,R,Σ \ x

where Q = Q′ ∪{Fun φ}∪ Leq(φ,Γ)∪Weaken(x, τ,Σ). That
P ⇒ Q follows from the assumption that P ⇒ Q′, the side
conditions of the initial derivation, and the side conditions of
any uses of (VARS) in the initial derivation.

• Case (→ ES). We have a derivation concluding P | S Γ `S
M N : υ (where υ = S τ ). By the induction hypothesis, we
can conclude that

M(S,X; Γ ` M : φ τ ′ υ) = Q, S,Σ

M(S,X; Γ ` N : τ ′) = Q′, S,Σ′

where P⇒ Q and P⇒ Q′. So, we have that

M(S,X; Γ ` M N : υ) = Q′′, S,Σ ∪ Σ′

where Q′′ = Q∪Q′∪{Fun φ}∪Un(Γ|Σ∩Σ′). Finally, the side
conditions of the initial derivation ensure that P ⇒ Fun φ and
P⇒ Un(Γ|Σ∩Σ′) and so P⇒ Q′′.

• Cases (⊕ Ii
S) and (⊕ ES) follow from similar arguments to

those for (→ IS) and (→ES).

• Case (LETS). We have a derivation concluding P | S Γ `S
let x = M in N : υ (where υ = S τ , and Γ is partitioned into
ΓM , ΓN , and ∆). From the subderivation of Q | S (ΓM,∆) `S
M : τ ′ and the induction hypothesis conclude that

M(S,X; Γ ` M : u1) = Q,′ , S′Σ

such that Gen(S Γ, S (Q ⇒ τ ′)) v GenI(S Γ, S′ (Q′ ⇒
u1)). Then, from the subderivation of P | S (ΓN ,∆, x :
Gen(S Γ, S (Q ⇒ τ ′)) ` N : υ, Lemma 12, and the induc-
tion hypothesis, we conclude that

M(S′,X; Γ, x : GenI(S Γ, S (Q′ ⇒ u1)) ` N : υ) = P,′ , S′Σ′

where the side conditions on the initial derivation are sufficient
to ensure that P ⇒ Un(Γ|Σ∩Σ′) while the side conditions on
uses of (VARS) assure that P⇒ Weaken(x,GenI(S Γ, S′ (Q′ ⇒
u1)),Σ′).

• Cases (MAKES) and (BREAKS) follow from the induction hy-
pothesis, with similar arguments as for cases (→ IS) and (→
ES); the eigenvariable conditions in (MAKES) and (BREAKS)
are sufficient to ensure that the disjointness conditions in M
hold.

Finally, we can build on the soundness and completeness of
the type inference algorithm and the syntax-directed type system
to give an effective proof of principal types.
Theorem 8 (Principal Types). If P0 | H ` M : σ0 and P1 |
H ` M : σ1 then there is some σ such that ∅ | H ` M : σ
and (P0 | σ0) v σ, (P1 | σ1) v σ.

Proof. Suppose that P0 | H ` M : σ0. From Theorem 3 we have
there there are some Q0 and τ0 such that Q0 | Γ `S M : τ0 and
(P | σ0) v Gen(Γ,Q0 ⇒ τ0). Similarly, from P1 | H ` M : σ1,
we have Q1 | Γ `S M : τ1 such that (P1 | σ1) v Gen(Γ,Q1 ⇒ τ1).
From Theorem 5, we have that W(Γ,M) = Q; S∆; υ such that,
writing σ = Gen(Γ,Q ⇒ υ), Gen(Γ,Q0 ⇒ τ0) v σ and
Gen(Γ,Q1 ⇒ τ1) v σ. Finally, by transitivity, we have that
(P0 | σ0) v σ and (P1 | σ1) v σ.

C.3 Conservativity of Typing
We now show that Quill is a conservative extension of Jones’s core
functional calculus OML. We give the syntax and typing rules of
OML in Figure 7. We overload the meta-variables of Quill to play
similar roles in the definition of OML; the meaning of individual
meta-variables will be apparent from context. Our presentation of
OML differs from Jones’s [17] in two respects. First, we associate
Jones’s function type (τ → υ) with our unrestricted function type
(τ •→ υ). This preserves the meaning of OML terms while avoiding
the need to introduce new polymorphism in the interpretation of
OML types as Quill types. It may seem restrictive, but the principal
types theorem for Quill (Theorem 8) assures that we can find
more general types for terms if they exist. Second, we treat sums
explicitly, whereas Jones leaves them implicit (or treated by Church
encoding). This corresponds to the need to introduce one additive
type in Quill; the typing rules we give for for τ ⊕ υ in OML are
exactly those that would arise by encoding.

We can now show that Quill is a conservative extension of
OML, by showing that any syntax-directed typing of a term in
OML corresponds to a syntax-directed typing of the same term in
Quill.
Theorem 9. If P | Γ `SOML M : τ , then there is some Q such that
Q | Γ `S M : τ , and Q⇒ P.



Term variable x, y ∈ Var Type variables t, u ∈ TVar
Environments Γ

Type constructors Tκ ∈ T κ where {⊕, •→} ⊆ T ?→?→?

Kinds κ ::= ? | κ→ κ

Types τκ ::= t | Tκ | τκ
′→κ τκ

′

Predicates π ::= . . .
Qualified types ρ ::= τ? | π ⇒ ρ
Type schemes σ ::= ρ | ∀t.σ
Expressions M,N ::= x | λx.M | M N | in1 M | in2 N

| caseM of {in1 x 7→ N; in2 y 7→ N′}
| let x = M in N

(x : σ) ∈ Γ (P⇒ τ) v σ

P | Γ `SOML x : τ

P | Γ, x : τ `SOML M : υ

P | Γ `SOML λx.M : τ
•→ υ

P | Γ `SOML M : τ
•→ υ

P | Γ `SOML N : τ

P | Γ `SOML M N : υ

P | Γ `SOML M : τi

P | Γ `SOML ini M : τ1 ⊕ τ2

P | Γ `SOML M : τ1 ⊕ τ2 P | Γ, x : τ1 `SOML N : υ
P | Γ, y : τ2 `SOML N′ : υ

P | Γ `SOML caseM of {in1 x 7→ N; in2 y 7→ N′} : υ

Q | Γ `SOML M : τ P | Γ, x : Gen(Γ,Q⇒ τ) `SOML N : υ

P | Γ `SOML let x = M in N : υ

Figure 7: Terms and typing of OML.

Proof. The proof is by induction on the structure of the deriva-
tion; the cases are all immediate by the induction hypothesis and
Lemma 18.

C.4 Semantics
We begin by giving the “predictable” definition of the subexpres-
sions SExp(M) of an expression M, as follows.

SExp(x) = ∅
SExp(λx.M) = Exp(M)

SExp(M N) = Exp(M) ∪ Exp(N)

SExp
(
case x of
{in1 x 7→ N; in2 y 7→ N′}

)
= Exp(M) ∪ Exp(N) ∪ Exp(N′)

SExp(ini M) = Exp(M)

SExp(let x = M in N) = Exp(M) ∪ Exp(N)

SExp(K M) = Exp(M)

SExp(let K x = M in N) = Exp(M) ∪ Exp(N)

Theorem 10 (Type safety). Let M be a closed term such that
` M : ∀t.P⇒ τ and M ⇓I

E V.

1. P | ∅ ` V : τ .

2. Let E′ = E ∪ Val(V), and let D = I \ E′ (the values discarded
during evaluation) and C = E′ \ I (the values copied during
evaluation). Then, W ∈ D ∪ C only if W 6∈ LinValsP.

Proof. The proof of (1) is a straightforward induction on the height
of the derivation of M ⇓I

E V . The proof of (2) is done similarly,
by cases on the reducing term. We show an illustrative case; the
remaining cases are similar.

• Case M N. We have that M ⇓I
E λjx.M′, N ⇓I′

E′ V , and
[V/x]M′ ⇓I′′

E′′ W. Let

I0 = I ∪ I′ ∪ I′′;

E0 = E′ ∪ E′ ∪ E′′ ∪ λjx.M′; and,

E′0 = E0 ∪ Val(W).

W.L.O.G., suppose that W′ ∈ I0 \E′0 (i.e., it is discarded during
evaluation). If this happens during the reduction of M or N then
the case holds by the induction hypothesis. Alternatively, it may
happen during the reduction of [V/x]M′. But then the result
holds from the well-typing of M. For example, suppose that the
variable x (of type τ ) does not appear in M′, and so V itself is
discarded. Then for M to be well-typed, it must be the case that
P⇒ Un τ , and so V 6∈ LinValsP.


	Introduction
	Substructural Type Systems
	Applications of Substructural Typing
	General-Purpose Linear Calculi

	Programming in Quill
	Contraction and Weakening with Class
	The Problem of the Copyable Closure
	Quill in Action

	Substructural Qualified Types
	Quill Terms and Typing
	A Syntax-Directed Quill Type System
	Type Inference for Quill
	Conservativity of Typing

	Semantics
	Extensions
	Related Work
	Future Work
	Packaging Unrestricted Channels
	Encoding Products in Quill
	Proofs
	Syntax-Directed Type System
	Type Inference
	Conservativity of Typing
	Semantics


